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Abstract: A common technique used to solve multi-objective optimization problems consists of
first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most
interesting solution for a human decision maker (DM). Sometimes this technique is referred to as
generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage
using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal
front of non-dominated solutions and a second stage, which uses the Technique for Order Preference
by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to
the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir
solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show
the utility of the proposed methodology, several original experiments and comparisons between
different recognized MOEAs were carried out on a welded beam engineering design benchmark
problem. The problem was solved with two and three objectives and it is characterized by a lack of
knowledge about ideal and nadir values.

Keywords: multiple criteria decision-making; TOPSIS; preferences; engineering design; optimization;
multi-objective evolutionary algorithms

1. Introduction

When real Multi-objective Optimization Problems (MOPs) are tackled, two different working
approaches can be identified in the literature. The first, known as Multiple Criteria Decision-Making
(MCDM) [1–13], is essentially interested in decision-making, for example in helping a human
Decision-Maker (DM) to choose between various alternatives or solutions in accordance with several
conflicting criteria or objectives. The main representatives of this approach can be found in schools
of economics, management and finance and the role and participation of the DM before and during
the decision-making process are decisive. The second, Multi-Objective Optimization (MOO) [14–19],
more to the taste of engineers and mathematicians, is related to highly complex optimization problems,
where, rather than the decision, the major interest lies in using fast algorithms to find a non-dominated
set of solutions or Pareto-soptimal Front (POF). In this approach, DM participation in the search process
may not be necessary. MCDM and MOO are therefore two disciplines belonging to two different
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scientific communities, who solve similar problems and communicate with one another but have
different competences.

The population-based Multi-Objective Evolutionary Algorithms (MOEA) [20–31], rather popular
among the MOO scientific community, have shown a remarkable performance when solving hard
optimization problems. These algorithms do not guarantee the determination of the exact POF,
but the result is very close to the exact solution. Most MOEAs are categorized as a posteriori
preference articulation, also referred to as Generate First–Choose Later (GFCL) [27,32]. The idea
involves first generating multiple optimal Pareto solutions followed by choosing the most preferred
one according to some criteria. The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [33],
the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [34] and the Global
Weighting Achievement Scalarizing Function Genetic Algorithm (GWASF-GA) [35], to cite only three
of the many relevant MOEAs, are recognized algorithms in the multi-objective literature that use
this approach. NSGA-II is based on Pareto’s dominance as a criterion to converge to the POF and
crowding-distance operator as increasing diversification in the population. MOEA/D uses a strategy of
decomposing the MOP into several scalar sub-problems that are simultaneously solved by the evolution
of a population of solutions. GWASF-GA incorporates the ideas of NSGA-II and MOEA/D and it
classifies solutions on Pareto fronts but based on the achievement scalarizing function of Wierzbicki [36].
On the other hand, Branke [37] suggested that, if a DM has some idea about what solutions to the
problem might be preferred, this knowledge should be exploited. In this line, Branke proposed the
integration of this imprecise knowledge (partial user preferences) in a MOEA, with the purpose of
focusing the search for solutions in that region of the POF that is most relevant for the DM. The final
result of this approach is a small region of the POF which contains the most likely preferred solutions
for DM and from which the DM will select a solution. This approach also assumes a GFCL methodology
and some examples that include DM’s partial-preferences as a reference point are reported in [38–44].
The Non-g-Dominated Sorting Genetic Algorithm (g-NSGA-II in this work) modifies the dominance of
Pareto in the original NSGA-II because of the g-dominance relation proposed in [41]. The Weighting
Achievement Scalarizing Function Genetic Algorithm (WASF-GA) [43], similar to NSGA-II, devises the
population of individuals into several fronts but based on the achievement scalarizing function of
Wierzbicki [36] for each vector of weights in a sample of the weight vector space.

MOEAs have extensive applications in the engineering field [45] and, some of them, propose a
two-stage methodology. The first stage, using some evolutionary method, is dedicated to building
the best POF of solutions. The second stage engages some MCDM technique to select the most
attractive one. This methodology has shown excellent potential in various optimization problems.
In [46], a two-stage approach for solving multi-objective system reliability optimization problems
is proposed. A POF is initially identified at the first stage by applying a MOEA. Quite often there
are a large number of Pareto optimal solutions, and it is difficult, if not impossible, to effectively
choose the representative solutions for the overall problem. To overcome this challenge, an integrated
multi-objective selection optimization (MOSO) method is used in the second stage. In [47], a procedure
to solve the multi-objective reactive power compensation problem is proposed. This procedure is
based on the combination of a genetic algorithm (GA) and the ε-dominance concept. Moreover, to help
the DM to extract the best compromise solution from a finite set of alternatives the Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) is used. In [48], an approach integrating
NSGA-II and TOPSIS method to optimize stochastic computer networks is proposed. NSGA-II searches
for the POF where network reliability is evaluated in terms of minimal paths and recursive sum of
disjoint products. Subsequently, TOPSIS method determines the best compromise solution. In [49],
a hybrid method integrating Artificial Neural Network (ANN), modified NSGA-II and TOPSIS method
for determining the optimum biodiesel blends and speed ranges of a diesel engine fueled with
castor oil biodiesel blends is presented. First, an ANN predicts brake power, brake specific fuel
consumption and the emissions of engine. Then, the modified NSGA-II is used for the multi-objective
optimization process. Finally, an approach based on TOPSIS method is implemented for finding
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the best compromise solution from the POF. In [50], a two-phase evaluation method is proposed
for focusing on the characteristics of dynamic risk and multi attributes in project operations. In the
first phase, a Markov process is used to evaluate the risk. Then, through the application of the
TOPSIS method, a risk management strategy is selected considering completion time, cost, quality and
probability of success as desired criteria. In [51], a hybrid approach integrating modified NSGA-II and
TOPSIS method is proposed for achieving a lightweight design of the front sub-frame of a passenger car.
Initially, the modified NSGA-II is employed for multi-objective optimization of the sub-frame, and then,
by means of entropy weight theory and TOPSIS method, all the obtained solutions are ranked from the
best to the worst in order to determine the best compromise solution. In [52], a decision-making tool
based on multi-objective optimization technique MOORA is proposed. MOORA helps the designer for
extracting the operating point as the best compromise solution to execute the candidate engineering
design. In [53], an extended model predictive control scheme, called Multi-Objective Model Predictive
Control (MOMPC), is described for dealing with real-time operation of a multi-reservoir system.
The MOMPC approach incorporates a NSGA-II, MCDM and the receding horizon principle to solve a
multi-objective reservoir operation problem in real time.

This paper proposes a methodology that follows a two-stage MOO+MCDM procedure. In the
MOO stage (GF), a MOEA (any metaheuristic or deterministic method could have been used) obtains
an approximate POF of solutions. Then, in the MCDM stage (CL), the L1 distance metric is proposed
and used in TOPSIS method (although another methodology supporting DM could have been used)
in order to automatically obtain an approximate ranking of the solutions that could be interesting to
a DM. The novelty of this work lies in the following aspects: (i) the decision is formulated based on
an approximate POF of non-dominated solutions and consequently the ideal and nadir solutions to
the real MOP may not be known; and (ii) even when the ideal and nadir solutions of the MOP are
unknown, it is demonstrated in this work that, by using the L1 distance metric in TOPSIS method,
the best approximate ranking of solutions can be generated. In this context, no references (that we know
of) indicate whether the ideal and nadir solutions, used in TOPSIS, are the true solutions of the MOP
under study. The effectiveness of the proposed technique is verified by numerous experiments and
performance comparisons between various MOEAs on a welded beam engineering design benchmark
problem. Minimization of cost of fabrication, deflection and normal stress are the goals. This problem
is characterized by a lack of knowledge about ideal and nadir values [54].

This article is structured as follows. The next section briefly explains some multi-objective basic
concepts that make it easier to understand the work presented here. Section 3 details the proposed
methodology. Section 4 gives application cases to validate the proposed method and lastly, Section 5
contains the conclusions.

2. Basic Concepts

Some basic definitions closely related to this study on MOO and MCDM are put forward in
this section.

A MOP in terms of minimization is formalized as follows:

Min. f (x) = f1(x), . . . , f j(x), . . . , fm(x)
s.t. x ∈ X

(1)

where x = (x1, . . . xl , . . . , xk) is the decision variable vector, X is the set of feasible solutions in the
decision space, j = (1, 2, . . . , m objectives) and l = (1, 2, . . . , k decision variables). To represent the set
of solutions x ∈ X in the objective space, we define:

Z = {z = (z1, . . . , zj, . . . , zm) ∈ Rm : z1 = f1(x), zj = f j(x), zm = fm(x), ∀x ∈ X} (2)

in Equation (2), Z is the set of feasible solutions in the objective space and z ∈ Z is a solution vector
(image of x ∈ X) in the objective space.
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Pareto-optimal front POF. The set of all non-dominated solutions z ∈ Z in the objective space is known
as the Pareto-Optimal Front.

Ideal solution I+. Let us assume that only true POF of solutions are taken into account. The solution
with the best possible values for each of the objective functions I+ = (I+1 , . . . , I+j , . . . , I+m ) is known as

the ideal solution, i.e., I+j = min. f j(x) (see Figure 1).
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Figure 1. Feasible solution set Z in the objectives space, the ideal I+ and nadir I− solutions,
the approximate ideal z+ and nadir z− solutions and L1 distances .

Nadir solution I−. Let us assume that only true POF of solutions are taken into account. The solution
with the worst possible values for each of the objective functions z− = (z−1 , . . . , z−j , . . . , z−m) is known

as the nadir solution, i.e., z−j = max. f j(x) (see Figure 1).

Approximate ideal solution z+. Let us assume that only approximate POF of solutions are taken
into consideration. The solution with the best possible values for each of the objective functions
z+ = (z+1 , . . . , z+j , . . . , z+m) is known as the approximate-POF-based ideal solution, i.e., z+j = min. f j(x)
(see Figure 1).

Approximate nadir solution z−. Let us assume that only approximate POF of solutions are taken
into account. The solution with the worst possible values for each of the objective functions z− =

(z−1 , . . . , z−j , . . . , z−m) is known as the approximate-POF-based nadir solution, i.e., z−j = min. f j(x) (see
Figure 1).

TOPSIS method. The TOPSIS method [2] establishes that the chosen solution should have the shortest
distance to the ideal solution I+ and the longest distance from the nadir solution I−. The weighted
distance of each solution from I+ and I−, according the chosen value p, can be, respectively,
calculated as (3) and (4). Afterwards, the similarity ratio S(z), defined in Equation (5), is assigned to
each solution. The final ranking of solutions is obtained sorting the set of solutions decreasingly in
terms of S(z).

LI+
p (z) =

[
m

∑
j=1

wp
j

∣∣∣zj − I+j
∣∣∣p]1/p

(3)
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LI−
p (z) =

[
m

∑
j=1

wp
j

∣∣∣I−j − zj

∣∣∣p]1/p

(4)

S(z) =
LI−

p (zi)

LI+
p (zi) + LI−

p (zi)
0 ≤ S(z) ≤ 1 (5)

3. Methodology

The proposed method in this article draws together two independent technical stages of MOO
and MCDM, as shown in Figure 2.

Figure 2. Proposed two-stage MOO and MCDM methodology.

Let us assume a MOP defined according to (1). Firstly, in the optimization stage (GF): (i) the DM
decide which method to select to solve the MOP; and (ii) the DM specifies the parameters values of
the metaheuristic algorithm used. Then, the algorithm is executed until the stopping condition has
been reached. At this point, a discretized approximate POF of non-dominated solutions is available
(see Figure 1) (two objective functions are considered), and the matrix formulation (6) where the
POF={zi, i = 1, 2, . . . , n} of solutions is compared to the set of objective functions {zj, j = 1, 2, . . . , m}
according to the eij evaluations of the solution zi regarding the objective zj.



z1 . . zj . . zm

z1 e1
1 . . e1

j . . e1
m

. . . . . . . .

. . . . . . . .
zi ei

1 . . ei
j . . ei

m
. . . . . . . .
. . . . . . . .
zn en

1 . . en
j . . en

m


(6)

Subsequently, now in the decision-making stage (CL), we proceed as follows: (i) the DM
decides which method to select for choosing the preferred solution; (ii) the DM expresses weights
(high-level preferences) w = {wj, j = 1, 2, . . . , m} associated to each objective function and
metric value; (iii) based on the discretized approximate POF of obtained solutions, the weighted
distance Lz+

1 to the approximate-POF-based ideal solution z+ and the weighted distance Lz−
1 to the
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approximate-POF-based nadir solution z− are computed for each solution (see Figure 1); and (iv) the
final ranking of solutions is given by similarity ratio S∗(zi) defined in Equation (7).

S∗(zi) =
Lz−

p (zi)

Lz+
p (zi) + Lz−

p (zi)
(7)

Proposition 1. Using the L1 distance metric to the approximate-POF-based ideal (z+) and nadir (z−) solutions
and the L1 distance metric to the ideal (I+) and nadir (I−) solutions in TOPSIS method, ∀ zi ∈ approximate
POF, we obtain the same ranking of solutions.

Proof of Proposition 1. Let us assume that the ideal I+ = (I+1 , . . . , I+m ) and nadir I− = (I−1 , . . . , I−m )
solutions are the true solutions of a real MOP. Using the L1 distance in TOPSIS method, the ranking of
solutions zi ∈ approximate POF can be calculated by solving (8).

S(zi) =
LI−

1 (zi)

LI+
1 (zi) + LI−

1 (zi)
(8)

We consider now the distance between a solution zi and the z−, z+, I−, I+ solutions defined in
Equation (9)–(12) and the distance between the z−, I− solutions defined in Equation (13).

Lz−
1 (zi) =

m

∑
j=1

wj

∣∣∣z−j − ei
j

∣∣∣ = m

∑
j=1

wj(z−j − ei
j) =

m

∑
j=1

wjz−j −
m

∑
j=1

wjei
j (9)

Lz+
1 (zi) =

m

∑
j=1

wj

∣∣∣ei
j − z+j

∣∣∣ = m

∑
j=1

wj(ei
j − z+j ) =

m

∑
j=1

wjei
j −

m

∑
j=1

wjz+j (10)

LI−
1 (zi) =

m

∑
j=1

wj

∣∣∣I−j − ei
j

∣∣∣ = m

∑
j=1

wj(I−j − ei
j) =

m

∑
j=1

wj I−j −
m

∑
j=1

wjei
j (11)

LI+
1 (zi) =

m

∑
j=1

wj

∣∣∣ei
j − I+j

∣∣∣ = m

∑
j=1

wj(ei
j − I+j ) =

m

∑
j=1

wjei
j −

m

∑
j=1

wj I+j (12)

Lz− I−
1 =

m

∑
j=1

wj

∣∣∣I−j − z−j
∣∣∣ = m

∑
j=1

wj(I−j − z−j ) =
m

∑
j=1

wj I−j −
m

∑
j=1

wjz−j = C1 (13)

where C1 is a constant.

Furthermore, when
m

∑
j=1

wjei
j is isolated and solved in (9) and subsequently replaced in (11),

Equation (14) is obtained.

LI−
1 (zi) = Lz−

1 (zi)−
m

∑
j=1

wjz−j +
m

∑
j=1

wj I−j (14)

If we now consider Equations (13) and (14), we obtain (15).

LI−
1 (zi) = Lz−

1 (zi) + C1 (15)

On the other hand, if we consider Equations (11) and (12), we have:

LI+
1 (zi) + LI−

1 (zi) =
m

∑
j=1

wj I−j −
m

∑
j=1

wj I+j = C2 (16)

where C2 is a constant.
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Finally, if we take into account Equations (15) and (16) and subsequently replace them in (8),
we obtain (17), which implies ∀ zi ∈ approximate POF. Using the L1 distance to the approximate-
POF-based ideal (z+) and nadir (z−) solutions and the L1 distance to the ideal (I+) and nadir (I−)
solutions in TOPSIS method, we obtain the same ranking of solutions, even when said ideal I+ and
nadir I− solutions are unknown.

S(zi) =
LI−

1 (zi)

LI+
1 (zi) + LI−

1 (zi)
=

Lz−
1 (zi) + C1

C2
(17)

To make using Equations (9)–(17) more intuitive, Figure 3 illustrates the distances ziz−, zi I−

and z− I− with p = 1, 2, ∞ metric. Assuming that nadir I− solution is known, it can be seen
that Equation (15) is satisfied (and therefore proposition 1) if, and only if p = 1 metric is used
in Equations (9)–(17), find below the details of the calculation. In addition, note that, using any of the
other Pareto front zi solutions, the results are similar and distance z− I− is a constant (C1).

p = 1 : Lziz−
1 + Lz− I−

1 = (3 + 2) + (1 + 4) = 10 = Lzi I−
1 = (4 + 6) = 10

p = 2 : Lziz−
2 + Lz− I−

2 =
√
(32 + 22) +

√
(12 + 42) = 7.73 6= Lzi I−

2 =
√
(42 + 62) = 7.21

p = ∞ : Lziz−
∞ + Lz− I−

∞ = 3 + 4 = 7 6= Lzi I−
∞ = 6

0 1 2 3 4 5 6
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8

 

 

z
i

z
−

I
−approximate POF
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p=2 metric

p=∞ metric

Figure 3. Distances ziz−, zi I− and z− I− with p = 1, 2, ∞ metric.

Consequently, in convex problems, the method may be useful in providing an important clue to
a DM in his/her final decision, especially when the true Pareto front of a multi-objective real-world
problem is not available.

Finally, it should be highlighted that, in the proof of Proposition 1, Equations (9)–(16), all the sums
go up to a value m (objectives) and the methodology is therefore clearly applicable (at stage MCDM)
in many objective optimization problems.

4. Results

In this section, we first apply the proposed methodology in this study to the bi-objective welded beam
design problem. The objectives of the design are to minimize the cost of fabrication and to minimize
the deflection. This problem is well-studied in both mono- [55–57] and multi-objective [52,54,58–60]
literature. In the optimization stage, the NSGA-II, GWASF-GA and MOEA/D algorithms and the
g-NSGA-II and WASF-GA algorithms (that include DM’s partial-preferences as a reference point) were
implemented with binary coding. In addition, tournament selection, uniform crossover and bitwise
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mutation were used. The crossover probability was set to 0.8 and the mutation rate to 1/n where
n = 120 is the string length; each variable (four design variables) uses 30 bits (eight decimal place
precision). A population of sizes of N = 50 and N = 100 individuals and a maximum number of
G = 100 generations were used. The hypervolume metric presented in [61] was used as a comparison
measure between algorithms (see Figure 4). The reference point considered for the calculation of
hypervolume was (100.0, 0.1), which guarantees that it is dominated by all the solutions generated
at the end of the evolution of the algorithms. Besides, the best cost objective value obtained by the
algorithms were compared in terms of statistical results and number of function evaluations (i.e.,
NFEs = N × G). Each algorithm was independently run 100 times for each test instance in the
same initial conditions, from a randomly generated population. In the decision-making stage, when
solving Equations (7) and (8), and to avoid any influence from the scale of measurement chosen for the

various objectives, the objectives were normalized [7] using the procedure |zi − min zi|
|max zi − min zi| with zi ∈

approximate POF.

1 2 3 4 5 6

1

2

3

4

5

6

Hypervolume value=17

(6,6)

min. f
1
(x)

m
in

. 
f 2

(x
)

 

 

approximate POF

Reference point

Figure 4. Evaluation of the hypervolume value with respect to the given reference point (6,6) on
a two-objective minimization problem; larger hypervolume values indicate better quality of the
approximate POF.

In a second test case, we demonstrate the utility of the suggested approach, by adding to the
above mentioned problem the normal stress as a third objective function that should be minimized [54].
In this example, it was only considered the decision-making process. The TOPSIS [2] and ELECTRE
I [6] methodologies were compared. In the TOPSIS and ELECTRE I approaches, equal weights values
were assigned to all objective functions. Besides, a set of non-dominated solutions obtained in a
randomized trial of NSGA-II (N = 50, G = 500) was used for comparisons.

4.1. Bi-Objective Welded Beam Design Problem (Optimization)

This design problem [58] minimizes both the cost and the deflection due to load P. The two
objectives conflict since minimizing deflection will lead to an increase in manufacturing cost,
which mainly includes the set-up cost, material cost and welding labor cost. The design involves four
different design decision variables (h, l, t, b) (see Figure 5) and four nonlinear constraints: shear stress,
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normal stress, weld length and the buckling limitation. Formally, the bi-objective welded beam design
problem can be defined as follows:

min. f1(x) = 1.10471h2l + 0.04811tb(14.0 + l)

min. f2(x) = δ(x) =
2.1952

t3b
s.t. g1(x) = 13600− τ(x) ≥ 0

g2(x) = 30000− σ(x) ≥ 0

g3(x) = b− h ≥ 0

g4(x) = Pc(x)− 6000 ≥ 0

h, b ∈ [0.125, 5]

l, t ∈ [0.1, 10]

where

τ(x) =

√
(τ′(x))2 + (τ′′(x))2 + lτ′(x)τ′′(x)√

0.25(l2 + (h + t)2)

τ′(x) =
6000√

2hl

τ′′(x) =
6000(14 + 0.5l)

√
0.25(l2 + (h + t)2)

2 [0.707hl(l2/12 + 0.25(h + t)2)]

Pc(x) = 64746.022(1− 0.0282346t)tb3

σ(x) =
504000

t2b

(18)

Figure 5. Welded beam design problem.

Firstly, NSGA-II, GWASF-GA and MOEA/D (other metaheuristic methods could have been used)
were used to find the approximate Pareto fronts and then compared the results using the hypervolume
metric. Table 1 shows the mean, standard deviation, best and worst hypervolume indicators achieved,
over 100 independent runs. It can be seen that the NSGA-II and GWASF-GA algorithms attain the best
performance. Figures 6 and 7 show a more detailed comparison between the algorithms from Table 1
with N = 100 and G = 100. Figure 6 shows the box plots based on the hypervolume approximation
metric. We can see that the best median value and the lowest dispersion value are obtained with
NSGA-II and GWASF-GA. In addition, in Figure 7 (left) that presents the evolution of the average
hypervolume per generation and in Figure 7 (right) that shows the evolution of the standard deviation
hypervolume, it is observed that the NSGA-II and GWASF-GA algorithms obtain similar values which
are significantly better than the values achieved by MOEA/D.
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Table 1. Comparison and statistical results of the mean, standard deviation values (upper), and the
best and worst hypervolume values (lower), respectively, for NSGA-II, GWASF-GA and MOEA/D,
over 100 runs.

N = 50 N = 100

NSGA-II 9.4734–0.1142 9.5643–0.0830
9.6612–9.2145 9.6658–9.2703

GWASF-GA 9.5067–0.1166 9.5717–0.0854
9.6653–9.1825 9.6721–9.2619

MOEA/D 9.1202–0.3977 9.1455–0.3495
9.6594–7.7837 9.6549–8.3405
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Figure 6. Box-plots based on the hypervolume metric for NSGA-II, GWASF-GA and MOEA/D
(N = 100).
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Figure 7. Evolution of the average hypervolume (left); and evolution of the standard deviation
hypervolume (right) for NSGA-II, GWASF-GA and MOEA/D (N = 100).

Moreover, various MOEAs have been applied to the problem (18) by different researchers. Table 2
shows the statistical results of the best objective cost, the mean value and the standard deviation
value obtained in this work with NSGA-II (NFEs =5000 and 10,000), GWASF-GA (NFEs =5000
and 10,000) and MOEA/D (NFEs =5000 and 10,000) with those attained by other bi-objective
metaheuristics. It can see that GWASF-GA (NFEs =10,000) has the best objective cost followed
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by NSGA-II (NFEs =10,000) and MOWCA (NFEs =15,000). In addition, it can be noted in Table 2
that GWASF-GA with NFEs =10,000 (N = 100 and G = 100) reaches the best mean value (3.5657).

Table 2. Comparison and statistical results of the best objective cost, mean and standard deviation,
respectively, found by different MOEAs (NA, not available).

Algorithms NFEs Best Mean Std. Dev.

NSGA-II [58] 10,000 2.7900 NA NA
paε-ODEMO [59] 15000 2.8959 NA NA

MOWCA [60] 15,000 2.5325 NA NA
M20-CSA [52] 12,000 7.9669 NA NA
MOCCSA [52] 12,000 13.6193 NA NA
MOCSA [52] 12,000 3.6842 NA NA

NSGA-II Present study 5000 2.5279 4.5480 1.2005
NSGA-II Present study 10,000 2.5257 3.6236 0.8807

GWASF-GA Present study 5000 2.5313 4.231306 1.2324
GWASF-GA Present study 10,000 2.4553 3.5657 0.9138
MOEA/D Present study 5000 2.5835 8.0708 4.0780
MOEA/D Present study 10,000 2.6263 7.8712 3.5982

Secondly, a similar study to the previous one using the g-NSGA-II and WASF-GA algorithms
(although other metaheuristic methods with DM’s partial-preferences could have been used) was
performed considering three different reference points (DM’s partial-preferences) (4, 0.003), (15, 0.0025)
and (30, 0.001), infeasible and feasible (see Figure 8). The hypervolume metric of the region of interest
defined in [43] was used as a comparison measure for the two algorithms.

Table 3 presents the mean, standard deviation, best and worst hypervolume indicators achieved,
over 100 independent runs, by the g-NSGA-II and WASF-GA algorithms. It can be perceived that the
values obtained can be quite different depending on the reference point used. For example, when the
reference point was set to (4, 0.003) (non-feasible), the performances obtained for both, g-NSGA-II
and WASF-GA, were similar (see also Figures 8–10). On the other hand, when the reference point was
(30, 0.001) (feasible), g-NSGA-II and WASF-GA also had similar results, although g-NSGA-II had a
slightly better performance of the hypervolume metric (Figure 11 and Table 3) and better distribution
of the approximate Pareto front’s solution set (Figure 8). However, the values in Table 3 show that the
WASF-GA algorithm obtained superior performance than g-NSGA-II when the reference point was set
to (15, 0.0025) (see also Figures 8, 9 and 12).

Table 3. Comparison and statistical results of the mean, standard deviation values (upper), and the
best and worst hypervolume values (lower), respectively, for three different DM’s partial-preferences
(4, 0.003), (15, 0.0025) and (30, 0.001) for g-NSGA-II and WASF-GA.

N = 50 N = 100 N = 50 N = 100 N = 50 N = 100
(4, 0.003) (15, 0.0025) (30, 0.001)

g- NSGA-II 4.420–0.079 4.451–0.032 3.833–0.297 3.988–0.264 3.059–0.293 3.177–0.103
4.459–3.936 4.460–4.162 4.221–3.410 4.224–3.411 3.306–1.978 3.306–2.980

WASF-GA 4.382–0.135 4.450–0.020 4.085–0.116 4.156–0.075 3.065–0.050 3.101–0.031
4.459–3.843 4.459–4.342 4.204–3.645 4.206–3.933 3.136–2.898 3.139–3.002
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Figure 8. DM’s partial-preferences (4, 0.003), (15, 0.0025) and (30, 0.001) and the respective approximate
POF with the hypervolume indicator closest to the average value of hypervolume after 100 runs for
g-NSGA-II and WASF-GA (N = 100).
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Figure 9. Box-plots based on the hypervolume metrics (4, 0.003) (left), (15, 0.0025) (middle) and
(30, 0.001) (right) for g-NSGA-II and WASF-GA (N = 100).
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Figure 11. Evolution of the average hypervolume (left); and evolution of the standard deviation
hypervolume (right) for g-NSGA-II, WASF-GA, DM’s partial-preferences (30, 0.001) (N = 100).

0 50 100
1

1.5

2

2.5

3

3.5

4

4.5

Generations

H
y
p
e
rv

o
lu

m
e
 a

v
e
ra

g
e

 

 

g−NSGA−II

WASF−GA

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generations

H
y
p
e
rv

o
lu

m
e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

 

 

g−NSGA−II

WASF−GA

Figure 12. Evolution of the average hypervolume (left); and evolution of the standard deviation
hypervolume (right) for g-NSGA-II, WASF-GA, DM’s partial-preferences (15, 0.0025) (N = 100).

4.1.1. Bi-Objective Welded Beam Design Problem (Decision)

In this section, the second stage (CL) is executed. Now, TOPSIS (other method supporting DM
could have been used) is used to rank the solutions and to determine the best TOPSIS decision (rank-1
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solution). The L1 and L2 metrics in TOPSIS model were utilized. In addition, the approximate Pareto
front with the hypervolume indicator closest to the average value of hypervolume after 100 runs
was adopted for comparisons and for each algorithm (see Figure 13, left and right (with logarithmic
scale to appreciate de nadir solution)). As expected, the appearance of the approximate set of Pareto
optimal solutions changes with the trial and the employed algorithm. Therefore, the choice of the
DM is conditioned by the quality of the POF achieved. The best known ideal and nadir values
(2.3810, 0.000439) and (333.9095, 0.0713), respectively [54], of the problem (18) were used in the
experiments (see Figure 13, right).
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Figure 13. Approximate POF with the hypervolume indicator closest to the average value of
hypervolume after 100 runs (left); and the same data drawn with logarithmic scale (right) for NSGA-II,
GWASF-GA and MOEA/D (N = 100).

First, POF resulting from the NSGA-II, GWASF-GA and MOEA/D algorithms were considered.
Tables 4 and 5 give the eight best solutions ranked from best to worst. The first two columns represent
the coordinates of the solutions in the objective space, the third and fourth columns give the distances
of the solutions regarding the z+ and z− and the I+ and I− solutions, the fifth column gives the
similarity values Sz+z− and SI+ I− according TOPSIS method and the last two columns show the
ranking of solutions regarding both the z+ and z− and the I+ and I− solutions. The results in Table 4
show that, by using L1 metric in the TOPSIS model, with respect to both the ideal z+ and nadir z−

solutions of the approximate POF obtained by the algorithms and the I+ and I− solutions of the real
POM, the ranking of the proposal solutions bears the same ranking. However, when L2 metric is used,
the ranking of the proposed solutions differs (see the last two columns of the Table 5).
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Table 4. TOPSIS ranking results with L1 metric for NSGA-II, GWASF-GA and MOEA/D (N = 100).

NSGA-II Cost Deflection Lziz+
1 Lziz−

1 Sz+z− Rankz+z− RankI+ I−

9.3441 0.0019 0.0190 0.1023 0.8436 1 1
8.7703 0.0020 0.0190 0.1022 0.8431 2 2
10.520 0.0017 0.0191 0.1022 0.8428 3 3
8.3866 0.0021 0.0192 0.1020 0.8418 4 4
10.854 0.0016 0.0192 0.1020 0.8418 5 5
9.7900 0.0018 0.0192 0.1020 0.8416 6 6
8.9661 0.0020 0.0193 0.1019 0.8406 7 7
8.2575 0.0022 0.0194 0.1018 0.8398 8 8

NSGA-II Cost Deflection Lzi I+
1 Lzi I−

1 SI+ I− RankI+ I− Rankz+z−

9.3441 0.0019 0.0208 0.9792 0.9792 1 1
8.7703 0.0020 0.0209 0.9791 0.9791 2 2
10.520 0.0017 0.0209 0.9791 0.9791 3 3
8.3866 0.0021 0.0211 0.9789 0.9789 4 4
10.854 0.0016 0.0211 0.9789 0.9789 5 5
9.7900 0.0018 0.0211 0.9789 0.9789 6 6
8.9661 0.0020 0.0212 0.9788 0.9788 7 7
8.2575 0.0022 0.0213 0.9787 0.9787 8 8

GWASF-GA Cost Deflection Lziz+
1 Lziz−

1 Sz+z− Rankz+z− RankI+ I−

9.4910 0.0019 0.0189 0.0755 0.8002 1 1
9.3520 0.0019 0.0189 0.0755 0.8002 2 2
9.3810 0.0019 0.0189 0.0755 0.7999 3 3
9.8331 0.0018 0.0189 0.0755 0.7993 4 4
9.1265 0.0019 0.0189 0.0755 0.7993 5 5
10.220 0.0017 0.0190 0.0754 0.7991 6 6
10.521 0.0017 0.0191 0.0753 0.7980 7 7
10.515 0.0017 0.0191 0.0753 0.7978 8 8

GWASF-GA Cost Deflection Lzi I+
1 Lzi I−

1 SI+ I− RankI+ I− Rankz+z−

9.4910 0.0019 0.0207 0.9793 0.9793 1 1
9.3520 0.0019 0.0207 0.9793 0.9793 2 2
9.3810 0.0019 0.0207 0.9793 0.9793 3 3
9.8331 0.0018 0.0208 0.9792 0.9792 4 4
9.1265 0.0019 0.0208 0.9792 0.9792 5 5
10.220 0.0017 0.0208 0.9792 0.9792 6 6
10.521 0.0017 0.0209 0.9791 0.9791 7 7
10.515 0.0017 0.0209 0.9791 0.9791 8 8

MOEA/D Cost Deflection Lziz+
1 Lziz−

1 Sz+z− Rankz+z− RankI+ I−

10.754 0.0016 0.0127 0.0703 0.8471 1 1
10.913 0.0016 0.0128 0.0703 0.8464 2 2
10.689 0.0017 0.0128 0.0702 0.8462 3 3
11.059 0.0016 0.0128 0.0702 0.8457 4 4
11.236 0.0016 0.0129 0.0701 0.8446 5 5
11.384 0.0015 0.0130 0.0701 0.8439 6 6
11.571 0.0015 0.0131 0.0699 0.8423 7 7
10.575 0.0017 0.0131 0.0699 0.8422 8 8

MOEA/D Cost Deflection Lzi I+
1 Lzi I−

1 Sz+z− RankI+ I− Rankz+z−

10.754 0.0016 0.0210 0.9790 0.9790 1 1
10.913 0.0016 0.0211 0.9789 0.9789 2 2
10.689 0.0017 0.0211 0.9789 0.9789 3 3
11.059 0.0016 0.0211 0.9789 0.9789 4 4
11.236 0.0016 0.0212 0.9788 0.9787 5 5
11.384 0.0015 0.0213 0.9787 0.9787 6 6
11.571 0.0015 0.0214 0.9786 0.9786 7 7
10.575 0.0017 0.0214 0.9786 0.9786 8 8
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Table 5. TOPSIS ranking results with L2 metric for NSGA-II, GWASF-GA and MOEA/D (N = 100).

NSGA-II Cost Deflection Lziz+
2 Lziz−

2 Sz+z− Rankz+z− RankI+ I−

9.3441 0.0019 0.0190 0.1031 0.8441 1 1
10.520 0.0017 0.0191 0.1035 0.8439 2 4
9.7900 0.0018 0.0192 0.1030 0.8428 3 3
10.854 0.0016 0.0194 0.1035 0.8424 4 7
8.7703 0.0020 0.0193 0.1028 0.8416 5 2
8.9661 0.0020 0.0196 0.1025 0.8396 6 5
11.246 0.0016 0.0198 0.1034 0.8394 7 10
8.3866 0.0021 0.0198 0.1025 0.8383 8 6

NSGA-II Cost Deflection Lzi I+
2 Lzi I−

2 SI+ I− RankI+ I− Rankz+z−

9.3441 0.0019 0.0208 0.9792 0.9792 1 1
8.7703 0.0020 0.0210 0.9791 0.9790 2 5
9.7900 0.0018 0.0211 0.9789 0.9789 3 3
10.520 0.0017 0.0213 0.9791 0.9788 4 2
8.9661 0.0020 0.0212 0.9788 0.9788 5 6
8.3866 0.0021 0.0213 0.9789 0.9787 6 8
10.854 0.0016 0.0215 0.9789 0.9785 7 4
8.2575 0.0022 0.0216 0.9787 0.9784 8 11

GWASF-GA Cost Deflection Lziz+
2 Lziz−

2 Sz+z− Rankz+z− RankI+ I−

9.4910 0.0019 0.0189 0.0767 0.8023 1 2
9.3520 0.0019 0.0189 0.0768 0.8022 2 1
9.3810 0.0019 0.0189 0.0767 0.8020 3 3
9.8331 0.0018 0.0189 0.0765 0.8014 4 5
9.1265 0.0019 0.0191 0.0768 0.8010 5 4
10.220 0.0017 0.0190 0.0763 0.8006 6 6
10.521 0.0017 0.0192 0.0760 0.7988 7 9
10.515 0.0017 0.0192 0.0760 0.7987 8 10

GWASF-GA Cost Deflection Lzi I+
2 Lzi I−

2 SI+ I− RankI+ I− Rankz+z−

9.3520 0.0019 0.0207 0.9793 0.9793 1 2
9.4910 0.0019 0.0207 0.9793 0.9793 2 1
9.3810 0.0019 0.0207 0.9793 0.9793 3 3
9.1265 0.0019 0.0208 0.9792 0.9792 4 5
9.8331 0.0018 0.0209 0.9792 0.9791 5 4
10.220 0.0017 0.0210 0.9792 0.9790 6 6
8.7400 0.0020 0.0210 0.9791 0.9790 7 9
8.4192 0.0021 0.0212 0.9790 0.9788 8 11

MOEA/D Cost Deflection Lziz+
2 Lziz−

2 Sz+z− Rankz+z− RankI+ I−

11.059 0.0016 0.0132 0.0709 0.8429 1 5
11.236 0.0016 0.0132 0.0708 0.8428 2 7
11.384 0.0015 0.0132 0.0707 0.8427 3 9
10.913 0.0016 0.0133 0.0711 0.8426 4 3
10.754 0.0016 0.0133 0.0712 0.8422 5 1
11.571 0.0015 0.0132 0.0705 0.8418 6 11
11.724 0.0015 0.0133 0.0704 0.8415 7 12
11.874 0.0015 0.0133 0.0703 0.8410 8 13

MOEA/D Cost Deflection Lzi I+
2 Lzi I−

2 SI+ I− RankI+ I− Rankz+z−

10.754 0.0016 0.0214 0.9790 0.9786 1 5
10.689 0.0017 0.0215 0.9789 0.9785 2 9
10.913 0.0016 0.0216 0.9789 0.9784 3 4
10.575 0.0017 0.0217 0.9786 0.9783 4 14
11.059 0.0016 0.0217 0.9789 0.9783 5 1
10.469 0.0018 0.0219 0.9783 0.9781 6 18
11.236 0.0016 0.0219 0.9788 0.9781 7 2
10.387 0.0018 0.0220 0.9782 0.9780 8 21
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Note that the best solution (rank-1) is referred to in this paper as the TOPSIS decision. Logically,
this solution does not change when L1 metric is used (see Figures 14–16 (left) and Table 4). Nevertheless,
this is not always the case when using the metric L2 (see Figures 14–16 (right) and Table 5).
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Figure 14. TOPSIS decision with L1 (left) and L2 (right) metrics on the approximate POF with the
hypervolume indicator closest to the average value of hypervolume after 100 runs for NSGA-II
(N = 100).
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Figure 15. TOPSIS decision with L1 (left) and L2 (right) metrics on the approximate POF with the
hypervolume indicator closest to the average value of hypervolume after 100 runs for GWASF-GA
(N = 100).
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Figure 16. TOPSIS decision with L1 (left) and L2 (right) metrics on the approximate POF with the
hypervolume indicator closest to the average value of hypervolume after 100 runs for MOEA/D
(N = 100).

Finally, when DM’s partial-preferences were introduced into the algorithms, the results were
very similar to those presented above. In order not to be redundant, only WASF-GA results (DM’s
partial-preferences: 15, 0.0025) are shown. The results of the last two columns of Table 6 show that,
by using L1 metric in the TOPSIS model, the ranking of the proposal solutions bears the same ranking.
However, when L2 metric is used, the ranking of the proposed solutions differs (see the last two
columns of Table 7). Figure 17 (left) also shows that the TOPSIS decision (rank-1 solution) does not
change when L1 metric is used, and this is not the case when using the metric L2 (Figure 17, right).

Table 6. TOPSIS ranking results with L1 metric for WASF-GA, DM’s partial-preferences (15, 0.0025)
(N = 100).

WASF-GA Cost Deflection Lziz+
1 Lziz−

1 Sz+z− Rankz+z− RankI+ I−

9.3174 0.0020 0.0076 0.0112 0.5954 1 1
9.7537 0.0019 0.0076 0.0112 0.5954 2 2
9.8696 0.0019 0.0076 0.0112 0.5947 3 3
9.1067 0.0020 0.0076 0.0111 0.5943 4 4
9.6178 0.0019 0.0076 0.0111 0.5935 5 5
10.224 0.0018 0.0077 0.0111 0.5919 6 6
8.9470 0.0021 0.0077 0.0111 0.5911 7 7
10.314 0.0018 0.0077 0.0112 0.5909 8 8

WASF-GA Cost Deflection Lzi I+
1 Lzi I−

1 SI+ I− RankI+ I− Rankz+z−

9.3174 0.0020 0.0213 0.9787 0.9787 1 1
9.7537 0.0019 0.0213 0.9787 0.9787 2 2
9.8696 0.0019 0.0214 0.9786 0.9786 3 3
9.1067 0.0020 0.0214 0.9786 0.9786 4 4
9.6178 0.0019 0.0214 0.9786 0.9786 5 5
10.224 0.0018 0.0214 0.9786 0.9786 6 6
8.9470 0.0021 0.0214 0.9786 0.9786 7 7
10.314 0.0018 0.0214 0.9786 0.9786 8 8
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Table 7. TOPSIS ranking results with L2 metric for WASF-GA, DM’s partial-preferences (15, 0.0025)
(N = 100).

WASF-GA Cost Deflection Lziz+
2 Lziz−

2 Sz+z− Rankz+z− RankI+ I−

9.7537 0.0019 0.0078 0.0120 0.6054 1 2
9.8696 0.0019 0.0078 0.0119 0.6048 2 5
9.6178 0.0019 0.0080 0.0122 0.6035 3 3
9.3174 0.0020 0.0083 0.0126 0.6034 4 1
9.1067 0.0020 0.0086 0.0129 0.6034 5 4
10.224 0.0018 0.0077 0.0115 0.6004 6 7
10.118 0.0018 0.0078 0.0116 0.5986 7 9
10.314 0.0018 0.0077 0.0115 0.5985 8 10

WASF-GA Cost Deflection Lzi I+
2 Lzi I−

2 SI+ I− RankI+ I− Rankz+z−

9.3174 0.0020 0.0213 0.9787 0.9787 1 4
9.7537 0.0019 0.0214 0.9787 0.9786 2 1
9.6178 0.0019 0.0214 0.9786 0.9786 3 3
9.1067 0.0020 0.0214 0.9786 0.9786 4 5
9.8696 0.0019 0.0214 0.9786 0.9786 5 2
8.9470 0.0021 0.0215 0.9786 0.9785 6 9
10.224 0.0018 0.0215 0.9786 0.9785 7 6
8.8117 0.0021 0.0215 0.9786 0.9785 8 10

0 10 20 30 40 50

−2

0

2

4

6

8

10

12

14

16

x 10
−3

z
+

I
+

DM
z

−

Cost

D
e
fl
e
c
ti
o
n

 

 

Approximate WASF−GA POF

Approximate Ideal−Nadir solutions

Ideal solution (Deb et al. 2010)

TOPSIS decision L1 (z
+
 − z

−
)

TOPSIS decision L1 (I
+
 − I

−
)

DM’ partial−preferences

0 10 20 30 40 50

−2

0

2

4

6

8

10

12

14

16

x 10
−3

z
+

I
+

DM
z

−

Cost

D
e
fl
e
c
ti
o
n

 

 

Approximate WASF−GA POF

Approximate Ideal−Nadir solutions

Ideal solution (Deb et al. 2010)

TOPSIS decision L2 (z
+
 − z

−
)

TOPSIS decision L2 (I
+
 − I

−
)

DM’ partial−preferences

Figure 17. TOPSIS decision with L1 (left) and L2 (right) metrics on the approximate POF with the
hypervolume indicator closest to the average value of hypervolume after 100 runs for WASF-GA, DM’s
partial-preferences (15, 0.0025) (N = 100).

4.2. Three-Objective Welded Beam Design Problem (Decision)

In this section, problem (18) is redefined considering normal stress σ(x) as a third objective
function to be minimized. The new mathematical description of the problem [54] is formulated below.
By including normal stress as a third objective, the decision-making process in the objective space is
even more difficult (see Figure 18).
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min. f1(x) = 1.10471h2l + 0.04811tb(14.0 + l)

min. f2(x) = δ(x) =
2.1952

t3b

min. f3(x) = σ(x) =
504000

t2b
s.t. g1(x) = 13600− τ(x) ≥ 0

g2(x) = 30000− σ(x) ≥ 0

g3(x) = b− h ≥ 0

g4(x) = Pc(x)− 6000 ≥ 0

h, b ∈ [0.125, 5]

l, t ∈ [0.1, 10]

where

τ(x) =

√
(τ′(x))2 + (τ′′(x))2 + lτ′(x)τ′′(x)√

0.25(l2 + (h + t)2)

τ′(x) =
6000√

2hl

τ′′(x) =
6000(14 + 0.5l)

√
0.25(l2 + (h + t)2)

2 [0.707hl(l2/12 + 0.25(h + t)2)]

Pc(x) = 64746.022(1− 0.0282346t)tb3

(19)

In this problem, the methodology proposed in this paper was implemented in the following way.
After a set of Pareto-optimal solutions was obtained by a MOEA (a set of potential solutions obtained
in a randomized trial of NSGA-II with N = 50 and G = 500 was used for comparisons, see Figure 18),
the TOPSIS and ELECTRE I methodologies were used to determine the most attractive solution for a
DM. The results shown in Tables 8 and 9 do not differ much from those obtained for the problem (18)
with two objective functions. With respect to both the ideal z+ and nadir z− solutions and the I+ and
I− solutions, the ranking of solutions does not change if the L1 metric is used in the TOPSIS method;
this cannot be stated for using L2 metric.

Table 8. TOPSIS ranking results with L1 metric for NSGA-II.

NSGA-II Cost Deflection Stress Lziz+
1 Lziz−

1 Sz+z− Rankz+z− RankI+ I−

23.7093 0.0007 1596.7010 0.0281 0.2655 0.9043 1 1
28.0821 0.0006 1338.5632 0.0290 0.2646 0.9013 2 2
19.1353 0.0009 2007.9248 0.0291 0.2645 0.9010 3 3
22.9850 0.0008 1734.4095 0.0294 0.2642 0.9000 4 4
26.5692 0.0007 1476.5583 0.0295 0.2641 0.8997 5 5
26.1854 0.0007 1507.1893 0.0295 0.2641 0.8996 6 6
17.2381 0.0010 2235.0525 0.0302 0.2634 0.8971 7 7
30.7015 0.0006 1260.3816 0.0306 0.2630 0.8957 8 8

NSGA-II Cost Deflection Stress Lzi I+
1 Lzi I−

1 SI+ I− RankI+ I− Rankz+z−

23.7093 0.0007 1596.7010 0.0291 0.9609 0.9706 1 1
28.0821 0.0006 1338.5632 0.0300 0.9600 0.9697 2 2
19.1353 0.0009 2007.9248 0.0301 0.9599 0.9696 3 3
22.9850 0.0008 1734.4095 0.0304 0.9596 0.9693 4 4
26.5692 0.0007 1476.5583 0.0305 0.9595 0.9692 5 5
26.1854 0.0007 1507.1893 0.0305 0.9595 0.9692 6 6
17.2381 0.0010 2235.0525 0.0312 0.9588 0.9684 7 7
30.7015 0.0006 1260.3816 0.0317 0.9583 0.9680 8 8
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Figure 18. TOPSIS decision with L1 (top) and L2 (bottom) metrics and ELECTRE I decision on the
approximate POF achieved in a random run for NSGA-II (N = 50).

Table 9. TOPSIS ranking results with L2 metric for NSGA-II.

NSGA-II Cost Deflection Stress Lziz+
2 Lziz−

2 Sz+z− Rankz+z− RankI+ I−

19.1353 0.0009 2007.9248 0.0339 0.3584 0.9137 1 1
17.2381 0.0010 2235.0525 0.0344 0.3541 0.9115 2 2
23.7093 0.0007 1596.7010 0.0371 0.3660 0.9080 3 6
22.9850 0.0008 1734.4095 0.0369 0.3633 0.9077 4 4
21.7416 0.0009 1948.9974 0.0370 0.3590 0.9065 5 5
17.1718 0.0011 2418.4668 0.0371 0.3505 0.9044 6 3
15.0645 0.0011 2599.6250 0.0379 0.3472 0.9017 7 7
26.1854 0.0007 1507.1893 0.0407 0.3675 0.9003 8 8

NSGA-II Cost Deflection Stress Lzi I+
2 Lzi I−

2 SI+ I− RankI+ I− Rankz+z−

19.1353 0.0009 2007.9248 0.0353 0.9649 0.9647 1 1
17.2381 0.0010 2235.0525 0.0357 0.9637 0.9643 2 1
17.1718 0.0011 2418.4668 0.0382 0.9613 0.9617 3 6
22.9850 0.0008 1734.4095 0.0386 0.9647 0.9615 4 4
21.7416 0.0009 1948.9974 0.0386 0.9628 0.9615 5 5
23.7093 0.0007 1596.7010 0.0388 0.9661 0.9614 6 3
15.0645 0.0011 2599.6250 0.0388 0.9610 0.9611 7 7
26.1854 0.0007 1507.1893 0.0425 0.9648 0.9578 8 8

Finally, a study using the ELECTRE I method is included in this section. In a first step, all data
(see Columns 1–3 of Table 8 or Table 9 showing eight values out of fifty) were normalized, and equal
weights values were assigned to all objective functions. Then, the concordance and discordance
coefficients for all the pairs of solutions, according to the authors of [7,16], were calculated to obtain
the concordance matrix and discordance matrix. To finish, the aggregate dominance matrix (50 × 50)
(Table 10) was determinate by setting the threshold c for the concordance test to 0.1 and the threshold
d for the non-discordance test to 0.9. From the results in Table 10, it can be said that Solution 33
(9.22674, 0.00194, 4446.90136) (cost, deflection and normal stress, respectively) is better than all the
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others. A sensitivity analysis of the c and d values was carried out, and it was found that Solution 33
(9.226740, 0.001943, 4446.901367) is always represented (see Table 11).

Table 10. Aggregate dominance matrix (c = 0.1, d = 0.9).

Solutions

1 00000000000000000000000000000000000000000000000000
2 00000000000000000000000000000000000000000000000000
3 11000000000000000000000000000000000000000000000000
4 11000000000000000000000000000000000000000000000000
5 11110000000000000000000000000000000000000000000000
6 11111000000000000000000000000000000000000000000000
7 11111100000000000000000000000000000000000000000001
8 11111110000000000000000000000000000000000000000001
9 11111111000000000000000000000000000000000000000011

10 11111111100000000000000000000000000000000000000011
11 11111111110000000000000000000000000000000000000111
12 11111111110000000000000000000000000000000000000111
13 11111111111100000000000000000000000000000000000111
14 11111111111110000000000000000000000000000000000111
15 11111111111111000000000000000000000000000000001111
16 11111111111111100000000000000000000000000000011111
17 11111111111111110000000000000000000000000000111111
18 11111111111111111000000000000000000000000001111111
19 11111111111111111100000000000000000000000011111111
20 11111111111111111110000000000000000000000111111111
21 11111111111111111111000000000000000000000111111111
22 11111111111111111111100000000000000000001111111111
23 11111111111111111111110000000000000000001111111111
24 11111111111111111111111000000000000000111111111111
25 11111111111111111111111100000000000000111111111111
26 11111111111111111111111110000000000000111111111111
27 11111111111111111111111111000000000011111111111111
28 11111111111111111111111111100000000011111111111111
29 11111111111111111111111111110000000111111111111111
30 11111111111111111111111111111010000111111111111111
31 11111111111111111111111111110000000111111111111111
32 11111111111111111111111111111110001111111111111111
33 11111111111111111111111111111111011111111111111111
34 11111111111111111111111111111111001111111111111111
35 11111111111111111111111111100000000111111111111111
36 11111111111111111111111110000000000011111111111111
37 11111111111111111111111000000000000001111111111111
38 11111111111111111111110000000000000000111111111111
39 11111111111111111110000000000000000000001111111111
40 11111111111111111111000000000000000000101111111111
41 11111111111111111100000000000000000000000111111111
42 11111111111111000000000000000000000000000011111111
43 11111111111100000000000000000000000000000001111111
44 11111111111100000000000000000000000000000000111111
45 11111111000000000000000000000000000000000000011111
46 11111111000000000000000000000000000000000000001111
47 11111110000000000000000000000000000000000000000111
48 11111100000000000000000000000000000000000000000011
49 11000000000000000000000000000000000000000000000001
50 00000000000000000000000000000000000000000000000000
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Table 11. Sensitivity analysis to variations in the thresholds c and d.

c d Solutions

0.1 0.9 33
0.2 0.8 33–34

0.33 0.67 28–29–33–34

To conclude, the values of the solutions calculated by TOPSIS and ELECTRE I are shown
numerically in Table 12 and graphically in Figure 18. Table 12 shows that ELECTRE I obtained
a lower value of the cost function than obtained by TOPSIS. However, lower deflection and normal
stress values were achieved by TOPSIS. Besides, with the L1 metric, as demonstrated in Section 3,
TOPSIS guarantees that the proposed solution is classified with respect to both the ideal I+ and nadir
I− solutions even if these are not known. It could also be deduced from the results in Figure 18
that the solution achieved by ELECTRE I resides or is close to a knee region [62–68] where a small
improvement in one of the objectives leads to a significant degradation in at least one of the other
objectives, and therefore it may be of more interest to a DM than the solution calculated by TOPSIS.
In any case, the selection of the best MCDM method for a given problem can be a difficult task [69],
and it is not within the scope of this work.

Table 12. Results for the TOPSISL1 and ELECTRE I methods.

Cost Deflection Normal Stress

TOPSISL1 decision 23.709299 0.000696 1596.701050
ELECTRE I decision 9.226740 0.001943 4446.901367

5. Conclusions

Usually in the literature of Multi-objective Metaheuristics (MOMH), the background on Multiple
Criteria Decision-Making is ignored. This work is so rich not only in the classical aspects of MOMH
but also in the MCDM. In this context, this paper proposes and demonstrates the effectiveness of a
search procedure that brings together two independent technical stages of MOO and MCDM.

In the optimization stage, a variety of representative a posteriori algorithms, NSGA-II, GWASF-GA
and MOEA/D, and with DM’s partial-preferences, g-NSGA-II and WASF-GA, were used during the
optimization process, in order to obtain an approximate Pareto-optimal Front. An original comparison
of results based on hypervolume metric were performed on a welded beam engineering design referent
problem (two objective functions). This problem is characterized because there is no knowledge of
the ideal and nadir solutions. The obtained results clearly indicate that the NSGA-II and GWASF-GA
algorithms achieved similar and better performances than those obtained by the MOEA/D algorithm.
In addition, NSGA-II and GWASF-GA obtained the best results compared to other metheuristic
methods of the literature. When partial preferences were introduced into the algorithms, the results of
the comparisons between g-NSGA-II and WASF-GA were different depending on the used reference
point (DM’s partial-preferences). When the reference point was set to (15, 0.0025) (feasible) (towards
the POF area corresponding to well-balanced solutions), the best result was obtained by WASF-GA.
When the reference point was (30, 0.001) (feasible), g-NSGA-II and WASF-GA achieved similar
results, although g-NSGA-II had a slightly better performance of the hypervolume metric and better
distribution of the approximate Pareto solution set. Finally, when the reference point was set to
(4, 0.003) (no-feasible), the performances were similar for both algorithms.

In the decision analysis stage, the TOPSIS methodology is proposed. Although this method
requires knowledge of the ideal and nadir solutions of the MOP, in this work only approximate
Pareto-optimal fronts are studied and, therefore, the ideal and nadir solutions may not be known.
However, in this paper, it is shown that, by using the L1 distance metric in the TOPSIS method,
the classification of the proposed solutions has the same range. This is valid with respect to both the
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ideal and nadir solutions of the approximate POF obtained by the algorithms, and the true ideal and
nadir solutions of the POM. This cannot be stated by using L2 metric. For demonstration, a comparison
of L1 and L2 metrics in TOPSIS model was performed for the studied bi-objective welded beam
problem. Finally, a comparison (three objective functions) of the solutions proposed by TOPSIS and
ELECTRE I was carried out. The results show that a lower value of the cost function was obtained by
ELECTRE I. However, lower deflection and normal stress values were achieved by TOPSIS.

In our opinion, the proposed methodology in this work is a suggestive method for problems
similar to the one studied in this paper and it may be a useful tool and provide an important clue to a
DM in his/her final decision.
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Abbreviations

The following abbreviations are used in this manuscript:

MOP Multi-Objective Optimization Problem
MCDM Multiple Criteria Decision-Making
MOO Multi-Objective Optimization
MOMH Multi-Objective Metaheuristic
DM Human Decision-Maker
POF Pareto-Optimal front
MOEA Multi-Objective Evolutionary Algorithm
GFCL Generate First–Choose Later
NSGA-II Non-Dominated Sorting Genetic Algorithm-II
MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition
GWASF-GA Global Weighting Achievement Scalarizing Function Genetic Algorithm
WASF-GA Weighting Achievement Scalarizing Function Genetic Algorithm
g-NSGA-II Non-g-Dominated Sorting Genetic Algorithm
NFEs Number of Function Evaluations
TOPSIS Technique for Order Preference by Similarity to an Ideal Solution
ELECTRE ELimination Et Choix Traduisant la REalité
ODEMO Orthogonal Differential Evolution for Multiobjective Optimization
MOWCA Multi-Objective Water Cycle Algorithm
M2O-CSA Multi-Objective Orthogonal Opposition-Based Crow Search Algorithm
MOCSA Multi-Objective Crow Search Algorithm
MOCCSA Multi-Objective Chaotic Crow Search Algorithm
ANN Artificial Neural Network
MOMPC Multi-objective Model Predictive Control
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