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A B S T R A C T   

The exponential growth of herbicide-resistant weeds poses enormous challenges to the sustainability of food 
systems. While great efforts in weed management are being performed at the plot level, the influence of the 
landscape context on the presence of herbicide-resistant weeds remains largely unknown. We tested these ideas 
through a large-scale sampling on two of the most important crops globally: maize and soybean. In Argentina, we 
co-developed with farmers the sampling of 2846 soybean and 1539 maize fields (covering an area of 159 million 
ha) and measured the presence of herbicide-resistant weeds, landscape context (field size, edge density, natural 
habitat size), management variables (e.g. fertilization), crop variety, farm identity and region. We found that 
smaller fields, with higher edge density, and neighboring larger natural habitats were associated to a lower 
presence of herbicide-resistant weeds. These results were not confounded with the influence of some other 
management variables (e.g. fertilization), crop variety, farm or region. Landscape design is an important, but 
underrepresented, management tool that could help to achieve a sustainable control of weeds.   

1. Introduction 

Herbicide-resistant weeds have spread worldwide at exponential 
rates and present one of the most critical challenges for extensive agri
culture nowadays (Heap, 2014; Heap and Duke, 2018; Scursoni et al., 
2019). Synthetic herbicides were introduced into agroecosystems 70 
years ago and continue today as the main strategy to control weeds 
(Heap, 2014; Heap and Duke, 2018; Vila-Aiub, 2019). Herbicide resis
tance emerges as predictable result of selection by repeated and intense 
use of herbicides (Dixon et al., 2021; Heap, 2014; Hicks et al., 2018). 
This is the case for large-scale monocultures, which have dominated 
agricultural landscapes, replacing more diverse farming systems and 
relying on high amounts of herbicides (Gage et al., 2019; Ramankutty 

et al., 2018). 
There are many alternatives to herbicides by which farmers may 

reduce the spread of herbicide-resistant weeds (Beckie, 2006; Heap, 
2014; Scursoni et al., 2019). Solutions at the landscape scale belong to 
the least studied (Seppelt et al., 2020), but have enormous potential 
(Dauer et al., 2009). Since agricultural landscapes are being designed 
with increasing size of crop fields, they may enhance the spread of 
herbicide resistance in comparison to more diverse and complex land
scapes. This could be explained by multiple hypotheses. For example, as 
resistance-inducing mutations are often linked to fitness costs in 
herbicide-untreated conditions (e.g., diversion of resources from 
reproduction to defense; Vila-Aiub, 2019), more diverse and complex 
landscapes could promote the outcross of weeds inside crop fields with 
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those outside crop fields and thus reduce the spread of 
herbicide-resistant traits. Also, as weed community composition inside a 
crop field changes with distance to field edge (Bourgeois et al., 2020), 
smaller fields neighboring large natural and semi-natural habitats can 
act as barriers to the spread of herbicide-resistant traits. Here, we tested 
these ideas through a large-scale sampling on two of the most important 
crops globally: maize and soybean. 

2. Methods 

In Argentina, we performed an extensive, standardized protocol on 
1539 maize and 2846 soybean fields covering an area of almost 1.6 
million km2 (159 million ha; Fig. 1). The data were gathered and sys
tematized in collaboration with CREA (https://www.crea.org.ar/), a 
non-profit civil association integrated by more than 2000 farming 
companies that share farming experiences and knowledge. The data are 
stored as CREA DAT (https://www.crea.org.ar/dat-crea/), a unified 
agricultural database to analyze the main productive variables. For each 
field, we gathered data on the presence of herbicide-resistant weeds 
(two categories: present or absent), field size (ha), spatial location 
(latitude and longitude), region (11 regions were considered according 
to CREA database), farm identity, crop variety, N fertilization (kg ha− 1), 
and P fertilization (kg ha− 1). When working with such a large number of 

sampling sites, collection of seeds and assaying of resistance frequency is 
impossible. Therefore, herbicide-resistant weeds were classified as 
“present” when at least one dominant and uncontrolled weed population 
of the herbicide-targeted species has been documented to evolve resis
tance. This is a valid estimate because samplings were performed after 
herbicide applications and because, where herbicide-resistant weeds 
were present, we commonly observed more than one species of 
herbicide-resistant weeds. Sampling effort was the same in small and 
large fields. Most growers use similar standard methods of weed control 
based on the use of herbicides (and no tillage), mainly glyphosate, 
irrespective of field size. However, we could not measure the amount of 
glyphosate used in each of the 4385 sampled fields. The historical land 
use and management intensity was accounted for in the statistical ana
lyses through several other proxies (see below). 

In addition, we used Argentina’s national Crop Data Layer (de 
Abelleyra et al., 2019) to quantify the landscape composition and 
configuration in circular sectors of a 1500 m radius around each field, as 
many weed seeds disperse at least 500 m from source populations (e.g., 
Dauer et al., 2007). The average distance between maize fields was 
551.5 km (SD 321.78 km). Of the total number of point pairs (1,332, 
528), only 0.26% were less than 3 km apart. In the case of soybean 
fields, the average distance was 506.8 km (SD 335.4 km). Of the total 
number of point pairs (4,131,375), only 1.1% were less than 3 km apart. 

Fig. 1. Herbicide-resistant weeds are influenced by the landscape context. The presence of herbicide-resistant weeds was surveyed in 1539 maize and 2846 soybean 
fields across the extensive agricultural region of Argentina (left side). Edge density was associated with a lower presence of herbicide-resistant weeds in both maize 
and soybean fields (right side). The dispersion plots on the right side show the proportion of fields with herbicide-resistant weeds calculated at an interval of 5 m ha− 1 

of edge density (this was performed just for graphical purposes, the mixed-effects models focus on the presence of herbicide-resistant weeds at each field, see 
Methods). The satellite images on the bottom right are centered on soybean fields and visualize a gradient of edge density. 
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For the landscape composition, we quantified the mean size of all patch 
areas of natural and semi-natural habitats (“natural habitats” hereafter), 
which include grasslands, wetlands, shrublands and forests. For the 
landscape configuration, we quantified edge density (m ha− 1) as the sum 
of the lengths (m) of all edge segments in the landscape, divided by the 
total landscape area (ha). 

The presence of herbicide-resistant weeds was modeled through a 
generalized linear mixed-effects approach in R assuming a binomial 
error distribution (R version 3.6.3, glmmTMB package, glmmTMB 
function Brooks et al., 2017, R Core Team, 2020). We established 
separate models for maize and soybean. All models considered region, 
farm identity, and crop variety as non-nested random-effects (i.e. 
random intercepts) to account for spatial, environmental, genetic, and 
management influence on weed resistance. For fixed-effects, we esti
mated two models. The first included field size, edge density, natural 
habitat size, and their interactions as fixed-effects. From this model, we 
performed multi-model inference based on Akaike’s Information Crite
rion (AIC) (Harrison et al., 2018). Minimum adequate models were 
selected after evaluating the models resulting from all possible combi
nations of the predicting variables and their interactions (MuMIn 
package, dredge function) (Bartón, 2019). Relative importance values 
were calculated for each predictor by summing the Akaike weights over 
all models that include the predictor (MuMIn package, importance 
function). The predictor variable with the largest relative importance 
value is estimated to be the most important for explaining variance in 
the response variable. 

For the second model, fixed-effects included the predictors of the 
minimum adequate model plus N fertilization and P fertilization, which 
are important co-variables related to management and environmental 
conditions. Similar parameter estimates of our focused predictors (i.e. 
field size, edge density, and natural habitat size) between the first and 
the second model imply that their impacts are not confounded by other 
management and environmental variables (note that all models 
included the above-described random effects as a complementary way to 
account for spatial, environmental, genetic, and management variables). 
We tested statistical model assumptions using the DHARMa package 
(Hartig, 2021). No spatial autocorrelation was found in the residuals of 
the models (gstat package, variogram function). Variance inflation fac
tors (VIFs) among all predictors (field size, habitat size, edge density, N 
fertilization, P fertilization) were always lower than 1.8 in both maize 
and soybean databases. 

3. Results and discussion 

We found that 22% of the 1539 maize fields and 20% of the 2846 
soybean fields had herbicide-resistant weeds. Such weeds have been a 
reality for farmers for decades. Associated yield reductions have been 
successfully overcome because the chemical industry provided until the 
late 80′s a steady supply of new herbicide sites of action to combat 
resistant weeds (Heap, 2014). However, this is no longer the case, as no 
new herbicide sites of action have been delivered to the market in over 
30 years (Heap, 2014; Heap and Duke, 2018). In particular, glyphosate 
resistance evolution has shown an alarming increase among weeds in 
recent years (Gage et al., 2019; Heap and Duke, 2018; Vila-Aiub, 2019). 
Genetically-modified glyphosate-resistant crops have enabled farmers to 
use glyphosate in broadcast post-emergence applications in maize, 
soybean, cotton, canola, sugar beet and alfalfa, making glyphosate the 
most widely used herbicide globally (Gage et al., 2019; Heap and Duke, 
2018). 

In our study, the main resistant weeds reported for maize and soy
bean were Amaranthus sp., Conyza sp., Echinocloa sp., Chloris sp., Tri
chloris sp., and Sorghum halepense (Table 1). These six genii account for 
63.8% and 72.6% of all records of main resistance occurrence in maize 
and soybean, respectively (Table 1). In total, Argentina has almost 30 
weed species with resistance to different herbicides (http://www. 
weedscience.org/). The majority is resistant to glyphosate, due to the 

high dependence of maize and soybean crop systems on this herbicide 
(Scursoni et al., 2019). 

Mixed-effects models showed that maize fields in landscapes with 
higher edge density and larger adjacent natural habitats had a lower 
presence of herbicide-resistant weeds (Fig. 1, Table 2). On the contrary, 
larger field sizes were associated with a greater presence of herbicide- 
resistant weeds (Table 2). These effects were consistent between 
models with and without co-variables reflecting the independent (not 
confounded) effects of edge density, natural habitat size, and field size 
from other spatial, environmental, genetic and management variables 
relevant to weed management (Table 2). Soybean fields showed similar 
results (Fig. 1, Table 2): the presence of herbicide-resistant weeds was 
lower in landscapes with higher edge density but increased with field 
size. However, in this case no association with natural habitat size was 
found. Again, co-variable inclusion did not alter effects for edge density 
and field size substantially (Table 2). 

Diverse and complex landscapes could reduce the spread of 
herbicide-resistant weeds because of multiple reasons. For example, 
first, given that weed community composition inside a crop field 
changes with distance to field edge (Bourgeois et al., 2020), smaller 
fields neighboring large natural and semi-natural habitats can act as 
barriers to the spread of herbicide-resistant traits. Second, given that 
there are fitness costs of herbicide resistance mutations in the absence of 
herbicide applications (Vila-Aiub, 2019), greater outcross between 
weeds inside and outside crop fields may be promoted by more diverse 
landscapes with more edges and interactions with neighbor fields, thus 
reducing the spread of herbicide-resistant traits. If the amount of natural 
habitat is increased, weeds face more complex fitness landscapes with 
alternating selection targets. An implementation with a simultaneous 
reduction of field size could therefore provide an effective natural 
control mechanism for herbicide-resistant weeds. Third, it may be 
possible that doses of glyphosate are lower in more diverse and complex 
landscapes, however, we found no confounding effects with several 
other variables that might be associate to glyphosate use, including N 
fertilization, P fertilization, crop variety, farm or region. Overall, our 
results can be seen as a starting point for discussing how future studies 
could be targeted to elucidate alternative explanations for the reduction 
of herbicide-resistant weeds in more complex landscapes. These could 
include a population genomics study of species with contrasting biology 
(Dixon et al., 2021), sampling of vegetation in habitats neighboring 
fields with analysis of effects of landscape features at nested spatial 
scales (Bourgeois et al., 2020) or more comprehensive analysis of 
components of the interaction with field management (Hicks et al., 
2018). 

Table 1 
Frequency of weed species reported as the most dominant, second-most domi
nant, and third-most dominant in maize and soybean fields of Argentina.  

Weed species Dominant Second-most 
dominant 

Third-most 
dominant 

Overall 
presence 

Maize fields     
Amaranthus sp. 24.7% 16.1% 24.1% 64.9% 
Conyza sp. 9.7% 26.3% 31.0% 67.0% 
Echinocloa sp. 11.2% 4.2% 6.9% 22.3% 
Chloris sp./ 

Trichloris sp. 
9.4% 14.4% 3.4% 27.2% 

Sorghum 
halepense 

8.8% 3.4% 13.8% 26.0% 

Others 36.2% 35.6% 20.8%  
Soybean fields     
Amaranthus sp. 40.7% 12.2% 4.3% 57.2% 
Conyza sp. 11.5% 36.7% 25.7% 73.9% 
Echinocloa sp. 8.6% 10.0% 4.3% 22.9% 
Chloris sp./ 

Trichloris sp. 
6.0% 9.6% 17.1% 32.7% 

Sorghum 
halepense 

5.8% 7.8% 2.9% 16.5% 

Others 27.4% 23.7% 45.7%   
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The increase in herbicide reliance over the last decades exerted one 
of the strongest selection pressures ever experienced by weeds, which 
has inevitably led to the evolution of herbicide-resistance in an 
increasing list of weed species (Dauer et al., 2009; Vila-Aiub, 2019). 
While herbicide mixtures and herbicide rotations may slow the evolu
tion of herbicide resistance, these practices are only delaying the inev
itable when herbicides are the sole weed control strategy (Gage et al., 
2019; Hicks et al., 2018). Our results suggest that landscape design 
could be an important, complementary management tool to achieve a 
sustainable control of weeds. Agricultural landscapes could be designed 
with smaller agricultural fields, more edges, and natural habitats, with 
co-benefits for biodiversity and yield stability (Seppelt et al., 2020). 
Unfortunately, the opposite trend has been observed in most agricultural 
landscapes during the past decades (Ramankutty et al., 2018). The po
tential to control herbicide-resistant weeds might provide an important 
incentive to halt current destruction of natural habitats and design more 
diversified agricultural landscapes. 
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