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highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species,
primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural prac-
tices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect
pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes
of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment
(2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to
4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models
to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in
Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to
increase across all Asian regions. In each of the respective regions, we also examined the number of studies since
2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive
update on the status of knowledge on pesticide impacts on different pollinating insects from literature published
during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides
and highlight some regional and international conservation efforts and initiatives that address pesticide reduc-

tion and/or elimination.

1. Introduction

The area of land under agriculture has expanded over recent decades
in response to growing food demands (Ramankutty et al., 2018).
Continuation of this trend is projected to lead to an additional land
demand of 1510 Mha by 2030 (Lambin et al., 2013; Lambin and Mey-
froidt, 2011). In parallel, the per capita availability of agricultural land
has been shrinking (FAO, 20202), mostly in the developing world. This
demand for additional land and pressure to maintain agricultural output
have driven the need to intensify agricultural production, with some
regions undergoing more intensive agriculture relative to others (Zabel
et al., 2019). Various environmental and economic shocks to food sys-
tems due to recent and ongoing geo-political turmoil (e.g., the Russian-
Ukrainian war impacts on food, fuel, and fertilizer) and effects of climate
change (e.g., droughts worldwide) have further added to this pressure.
With increasing intensification, there has been concomitant growth in
the use of agrochemicals particularly pesticides3 (i.e., insecticides, her-
bicides, and fungicides), although there is considerable variation in
pesticide use across regions (Pellegrini and Fernandez, 2018).

Worldwide, pesticides (along with other facets of land-use change
and land-management intensification) are well established as being
among the principal anthropogenic pressures linked to loss of insect
populations (Osterman et al., 2019; Sanchez-Bayo and Wyckhuys, 2019;
Straw et al., 2021, 2022; Straw and Brown, 2021a, 2021b; Dicks et al.,
2021; Linguadoca et al., 2022; Tamburini et al., 2021a; although not all
studies found negative effects, e.g., Tamburini et al., 2021b; Schwarz
et al., 2022). Pesticide impacts on pollinating insects in particular have
been reported consistently over recent decades both through empirical
studies, meta-data analyses and syntheses (Cecala and Wilson Rankin,
2021; Douglas et al., 2022; Gill and Raine, 2014; IPBES, 2016; Kenna
et al., 2019; Main et al., 2020; Raine and Rundlof, 2024; Rundlof et al.,
2015; Stanley et al., 2016). Despite this scientific focus, various gaps in
our understanding of pesticides’ lethal and sub-lethal impacts on insect

2 Retrieved January 2023 from https://www.fao.org/sustainability/news
/detail/en/c/1274219/

3 FAO defines a pesticide as “Pesticide means any substance or mixture of
substances intended for preventing, destroying or controlling any pest,
including vectors of human or animal disease, unwanted species of plants or
animals causing harm during or otherwise interfering with the production,
processing, storage, transport or marketing of food, agricultural commodities,
wood and wood products or animal feedstuffs or substances which may be
administered to animals for the control of insects, arachnids or other pests in or
on their bodies. The term includes substances intended for use as a plant growth
regulator, defoliant, desiccant or agent for thinning fruit or preventing the
premature fall of fruit, and substances applied to crops either before or after
harvest to protect the commodity from deterioration during storage and
transport.” (FAO, 2006 - International Code of Conduct on the Distribution and
Use of Pesticides. https://www.fao.org/3/bt565e/bt565e.pdf)

pollinators remain and were identified by the IPBES assessment on
Pollinators, Pollination and Food Production (IPBES, 2016, ibid. p.64).
Considering the crucial role of pollinating insects in plant reproduction
and the fact that approximately 85 % of the main crop types around the
world depend on insect pollination to varying degrees (Klein et al.,
2007; Aizen et al., 2019), bridging these knowledge gaps is crucial to
inform a more comprehensive pesticide risk assessment framework for
safeguarding pollinating insects across the globe.

One major knowledge gap is the extent of regional variation of
pesticide use and availability of standardized and/or accurate data for
pesticides in different parts of the world (Dicks et al., 2021). To date
research on pesticides and their impacts has been predominantly done in
Europe and North America, with relatively little information from other
world regions where conventional intensification of agriculture has
gained momentum over the past half a century (Kuyper and Struik,
2014; Pretty et al., 2006). Given the inter-regional variation in levels of
agricultural intensification and agrochemical use, the intensity and
magnitude of pesticide application and associated risks are also likely to
vary between regions. A recent expert-elicitation analysis in which ex-
perts scored the severity and magnitude of pressures on pollinators
(Dicks et al., 2021) concluded that pesticides were among the most
important causes of pollinator decline globally, but with variation in
that pressure across regions. This risk to pollinators is likely growing in
many world regions. This is because the latest generation of pesticides
have been reported to have a greater Total Applied Toxicity (TAT)." A
recent meta-analysis of 381 pesticides used over the last twenty-five
years that considered 1591 substances with specific acute toxicity
threshold values for eight non-target species groups showed a marked
increase in total applied toxicity (TAT) of insecticides since 2005 (Schulz
et al.,, 2021). This study concluded that these increased toxicities are
being driven by use of certain insecticides, such as highly toxic pyre-
throids and neonicotinoids (Schulz et al., 2021).

In addition to the aforementioned regional variation, there is also a
major bias in the selection of non-target species for pesticide-impact
studies. The greatest focus has been on the western honey bee (Apis
mellifera) (Dirilgen et al., 2023) as a model species, and to a lesser extent,
on a few species of, often managed, bumble bees (Bombus spp. e.g.,
Tamburini et al., 2021a; Wintermantel et al., 2022) and stingless bees
(Bernardes et al., 2018b; da Costa Domingues et al., 2020; De Oliveira
Ferreira et al., 2020; Farder-Gomes et al., 2021a, 2021b). Relatively
little is known about pesticide impacts on most wild, unmanaged bee
species and of those that exist, these mainly focus on the Megachilid bee
Osmia spp. (Al Naggar and Paxton, 2021; Ii and Rangel, 2018; Mallinger

* Total applied toxicity (TAT) per species group, substance is calculated by
multiplying the annually applied amount (i.e., mass) of individual pesticides
with the reciprocal of the pesticide and species group-specific Regulatory
Threshold Limits (RTL) per substance/, species group/, and year.
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et al., 2015; Milone et al., 2021; Park et al., 2015; Rundlof et al., 2015;
Schwarz et al., 2022; Williams et al., 2015; Woodcock et al., 2017; Zhu
et al., 2014) and Megachile rotundata (Ansell et al., 2021; Piccolomini
etal., 2018; Pitts-Singer and Barbour, 2017). In addition, still fewer have
studied pesticide impacts on non-bee insect pollinators (Pisa et al., 2015;
Serrao et al., 2022; Uhl and Briihl, 2019).

Relatively little research has been dedicated to assessing impacts of
different classes of pesticides (but see Tosi and Nieh, 2019; Schwarz
et al., 2022; Tamburini et al., 2021a; Tamburini et al., 2021b; Tosi et al.,
2022). Most attention involving pesticide impacts on pollinators have
tended to focus on insecticides, with relatively less known about how
herbicides, fungicides, and especially acaricides and their co-
formulants, impact pollinator health (Straw et al., 2022). Research
conducted on the different insecticide classes has also been skewed, with
most recently a focus on neonicotinoids (a family of systemic in-
secticides), largely stimulated by prominent societal and political debate
(Godfray et al., 2015; Pisa et al., 2015). In addition, published studies
have tended to report mostly on lethal toxicity endpoints, with less in-
formation available on sublethal impacts of pesticide exposure (Gill and
Raine, 2014; Siviter et al., 2018a; Siviter et al., 2018b; Tosi et al., 2022;
Tosi and Nieh, 2019). It is also extremely important to understand the
synergistic impacts of different pesticide classes, including insecticides,
herbicides, and fungicides, as well as their co-formulants and ‘inert’
ingredients (Mullin, 2015; Straw et al., 2022), and how these interact
with other stressors, such as pathogens (Gonzalez-Varo et al., 2013;
Grassl et al., 2018; O’Neal et al., 2018; Schwarz et al., 2022; Siviter
et al., 2021; Tamburini et al., 2021a, 2021b; Tosi and Nieh, 2019; Tosi
et al.,, 2022). Investigating these interactions is crucial for pollinator
survival, and we are only now beginning to understand some of these
complex dynamics. Even more scant, are studies examining the effect of
different pesticide classes and their interaction with other factors, such
as availability of flower/nutritional food resources (see Tosi et al., 2017;
Klaus et al., 2021; Wintermantel et al., 2022). There is also little infor-
mation on the long-term and cumulative effects impacting on different
life-stages and castes (Tosi and Nieh, 2019).

In this paper, we first compare trends in the use of pesticides (in-
secticides, herbicides, fungicides) across different global regions from
the 1995 to 2020 using the latest available global data from FAOSTAT”
(countries with non-availability or inconsistency in data, either in one or
both the years, have been excluded). We then use Automatic autore-
gressive integrated moving average (Auto ARIMA) models (Hyndman
and Khandakar, 2008) to provide a forecast of likely trends in pesticide
use (insecticides, herbicides, fungicides) in different global regions up to
2030.

We then highlight literature published since the 2016 IPBES polli-
nation assessment that examines the effects of pesticides on diverse
pollinator species. Literature since 2016 till 2022 was searched
exhaustively in Scopus and Google Scholar using strings of relevant key
words, and based on these analyses, we finish by discussing the future
research trajectory and highlight a few global policy and conservation
initiatives addressing pesticide use.

2. Trends of pesticide use across global regions

Pesticide use (insecticides, herbicides, and fungicides) has varied
markedly across different countries, even within a global region, over
the last two decades. The intensity of pesticide impact depends on
application rate (kg/ha) and the toxic load of different pesticide for-
mulations (Douglas et al., 2022). It is therefore prudent to consider both
elements when judging the risk from pesticide use, particularly given the
shift towards low application rate-high toxicity pesticides. However, for
the purpose of this paper, we are limited to a focus on the application
rate to understand variations in pesticide use since toxicity load

5 Retrieved January 2023 from https://www.fao.org/faostat/en/#data
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assessments for important pollinator species are not available in most
global regions. The maps portrayed in Fig. 1 compare these changes in
application rates for insecticides (Fig. 1a), herbicides (Fig. 1b) and
fungicides (Fig. 1¢) over a span of twenty-five years i.e., 1995 to 2020.

Dark grey shading indicates no available data.

As reflected in the maps, between 1995 and 2020, there were visible
increases in application rates of all three pesticide classes in South
America and China. In Russia there has been an increase also. In South
America, the increase can be attributed to rapid expansion of intensive
farming in the last decades and either a lack of pesticide use regulation
or its implementation (Ziniga-Venegas et al., 2022). In China, the
visible growth in pesticide use between 1995 and 2020 is due to strong
state drive for agricultural industrialization (Xu et al., 2008). Russia saw
steep falls in pesticide use (Oldfield, 2000) as the government withdrew
support immediately after privatization of the collective farms following
the dissolution of the Soviet state in the early 1990s (Mathijs and
Swinnen, 1998). In the last two decades, changes to Russian state policy
led to a rise in pesticide use (Zhilkin and Grigoryev, 2023).

To predict the future growth trends in pesticide use using time series
data Autoregressive Integrative Moving Average (ARIMA) model
(Hyndman and Khandekar 2008) was used. FAOSTAT? data was used for
the analysis. ARIMA forecasting model is a combination of Autore-
gressive models and moving average models and is widely used for
forecasting time series data (Awan and Aslam, 2020). We used the
Automatic ARIMA version (Auto ARIMA) (Hyndman and Khandakar,
2008) for the analyses (Supplementary Note 1). The ARIMA time series
forecast plots below show the future trends in pesticide use in different
global regions (Fig. 2a - c). The best selected models and parameters
justifying these selected models are provided in Supplementary Table 2.

2.1. Trends in insecticide use

Between 1995 and 2020, there has been a substantial increase in the
total insecticide application rate across the world (Fig. 1a), but with
substantial regional variation. An increase between 1000 and 3000 %
was seen in countries such as Bhutan, Cambodia, Tajikistan, and
Armenia in Asia; Mauritania, Nigeria, and Somalia in Africa; and
Lithuania, Latvia, Austria, and Germany in Europe (Supplementary
Table 1). In many other countries, insecticide use has grown over 100 %
during this period (Supplementary Table 1). In 15 countries across
different world regions, insecticide use has risen between 500 and 1000
%. They include Mozambique, Ghana, Botswana, Uganda, and
Seychelles in Africa; Chile, Comoros and Ecuador in South America,
Myanmar in Asia, and the Russian Federation in Europe (Supplementary
Table 1). In yet another 28 countries, insecticide use has increased by
100 to 400 % (Supplementary Table 1). Pressure to intensify land pro-
ductivity and greater availability of inexpensive insecticides are pre-
sumably some of the factors driving the rampant rise of insecticide use in
most of these countries. In contrast, there has been a reduction in
insecticide use in several developing and developed economies across
different global regions, examples include India, Bhutan, Malaysia,
Indonesia, Vietnam, United Kingdom, Norway, Australia, New Zealand
and Cote d’Ivoire (Fig. 1a; Supplementary Table 1).

Insecticide application has increased between 1995 and 2020 and is
expected to go up significantly in Africa and South America between
2020 and 2030 (Fig. 2a). All Asian regions except West Asia are expected
to show a declining trend. In the rest of the regions evaluated, the pre-
sent rate of insecticide use is predicted to remain stationary. It is note-
worthy, however, that within different regions there are country-specific
values of application rate that are greater than the regional median
values (Supplementary Fig. 1a) attributable to country-specific factors,
whereas the countries where a reduction is seen may be due to the
introduction of insecticidal toxin producing GM crops (Brookes, 2020,

6 Retrieved January 2023 from https://www.fao.org/faostat/en/#data
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Fig. 1. Maps showing pesticide use in 1995 and 2020 for a) insecticides b) herbicides and c) fungicides. Colour gradients represent application rates (kg/ha per year)

with warm colours indicating higher usage.

2022). The continued analysis and accurate mapping of insecticide
trends rely on the accessibility of pesticide usage data (in general) at
relevant scales, including at field-level (Douglas et al., 2022).
Furthermore, patterns in the use of specific insecticide families have
not remained uniform during this period. While insecticide application
has declined or is predicted to remain stationary till 2030 in Europe,
there was significant growth in the use of neonicotinoids (until the EU
2018 ban’ on their use in most outdoor situations). It must be noted that
neonicotinoids are highly toxic to insects, so transition from other
chemistries to neonicotinoids may reduce application rates but may
greatly increase applied toxicity. For example, in the UK between 1994
and 2018, although use of some major insecticide families e.g., organ-
ophosphates, carbamates or pyrethroids either remained constant or
declined, there was a marked rise in neonicotinoid use. However, a
drastic drop in neonicotinoid use in 2020 reflected change in EU pesti-
cide regulatory policy, much of which the UK retained even after its exit
from the EU.° In India, however, although the proportion of neon-
icotinoid use in relation to total insecticide use has risen steadily over a
five-year period (2016-2021) (Fig. 3b), older generation insecticides,

7 Retrieved May 2023 from https://food.ec.europa.eu/plants/pesticides/app
roval-active-substances/renewal-approval/neonicotinoids_en
8 Retrieved April 2023 from https://www.hse.gov.uk/pesticides/brexit.htm.

like organophosphates, still constitute a major share of total insecticide
use. Similar patterns may be found in other developing world regions
too. A closer look at the total pesticide use data also reveals intra-
regional variations. For example, in Africa the countries showing the
largest increase in insecticide use include Gambia followed by Tanzania
and Ghana, in Central America, Nicaragua and Costa Rica saw the
largest increases, in South America, the largest increase was in Ecuador,
followed by Bolivia, and in South Asia, the largest increase has been in
Nepal, followed by Bangladesh (where there has been an 89 % increase
in total insecticide use between 1995 and 2018, and particularly 118 %
increase in pyrethroid use). In contrast, total insecticide use has fallen by
49 % in neighboring India. In South-East Asia, the largest increase has
occurred in Myanmar, followed by Indonesia. In the European conti-
nent, use of insecticide has been highest in the Russian Federation.

However, it is important to note that the quantities of insecticides
used is only indicative of the overall risk to non-target insects. For a
thorough assessment, it would be important to consider the respective
toxicities of different active ingredients and potential levels of exposure
of different insect species (varying in their susceptibility) in different
global regions (Mallinger et al., 2015; Uhl and Briihl, 2019; DiBartolo-
meis et al., 2019).
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2.2. Trends in herbicide use

Herbicides account for 47.5 % of all pesticide usage worldwide (De
et al., 2014; Grube et al., 2011; Sharma et al., 2019). Of various herbi-
cides, glyphosate has been the most used across the world (Box 1). Its use
in combination with genetically modified crops has further increased
and expanded its application (Benbrook, 2012; Perry et al., 2016).
However, as with insecticides, the application rate of herbicides across
different global regions has not been uniform (Fig. 1b; Supplementary
Table 1). The causes for this trend vary by region. For example, in South
America there has been a wide-scale shift to no-tillage practices from
670,000 ha of no-till in the MERCOSUR countries (Brazil, Argentina,
Paraguay, and Uruguay) in 1987 to over 30 million hectares in 2002.
This increase in no-tillage practices combined with new and more effi-
cient no-tillage seeding technology led to an increase in herbicide use to
regulate weeds (Derpsch et al., 2008; Knapp and van der Heijden, 2018;
Speratti et al., 2015). Countries like Honduras and Peru recorded over
1000 % growth in herbicide use and there have been over 500 % in-
crease in Bolivia, Brazil, Ecuador and Uruguay (Supplementary Table 1).
Outside of South America, other regions have also seen a substantial
increase in herbicide use. In Africa there have been between 500 % to
over 3000 % increase in Madagascar, Malawi, Mozambique, Seychelles,
Somalia, Botswana, Gambia, Ghana, and Nigeria (Supplementary
Table 1). Increases of similar magnitude in other Asian countries have
been recorded in Tajikistan, Cambodia, Myanmar, Bangladesh,
Maldives, Nepal, Armenia and Azerbaijan (Supplementary Table 1).
Decline of agricultural labour in rural areas due to migration of people to
cities has been cited as a reason for large scale adoption of herbicide in
different parts of the world including in Asia and Africa (Gianessi and
Williams, 2011; Hossain, 2015; Peterson et al., 2018). In North America,
Canada showed over 200 % increase in herbicide use; in European
countries, there has been an increase of between 100 % and 500 % in
herbicide use that include Russia, Turkey, Spain, Serbia, Portugal,
Albania, Estonia, Latvia, Lithuania and Poland (Supplementary Table 1).
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Box 1. Data Source Antier et al., 2020a

Glyphosate is an organophosphorus systemic herbicide introduced first as Roundup(R) by Monsanto Inc. (Soares et al., 2021). Since its first
commercialization in 1974, glyphosate- based herbicides (GBH) - sold under various brand names, has become one of the most sold herbicides
in over 100 different countries (Benbrook, 2016) and its use has risen steadily. In the USA, glyphosate use in the agricultural sector rose 300-fold
from 0.36 million kg in 1974 to 113.4 million kg in 2014 (Benbrook, 2016). In Europe, of the seven countries for which glyphosate use data is
available between 2011 and 2017, France used the maximum amount allowable followed by Germany (Soares et al., 2021). However, between
2013 and 2017, Norway registered maximum use followed by Turkey and the UK (Antier et al., 2020b - ENDURE 2020 report").

Figure Box 1. Percentage glyphosate growth in the EU countries between 2013 and 2017. Overall, 21 EU countries for which data was accessible
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Growth in herbicide use in Canada has been potentially linked to the use
of genetically modified corn, soya, and canola (Bacon et al., 2023).
Historically, with non-GMO crops, farmers had to carefully time and
control herbicide application to avoid harming crop productivity.
However, the introduction of herbicide-tolerant GMOs, such as those
resistant to glyphosate, allowed farmers to spray glyphosate-based
herbicides (GBHs) directly on crops without damaging them. This shift
led farmers to apply herbicides throughout the growing season, rather
than just before planting or after harvest, significantly increasing overall
herbicide use as they targeted weeds more frequently (Clapp, 2021).
Since 1980, US total herbicide use continued to increase even though
glyphosate use itself leveled off due to the glyphosate-alternatives being
available (1980-2005). Although, after 2005, herbicide use increased
significantly in the United States (Clapp, 2021). A major reason for this
increasing trend in the United States has been the cultivation of genet-
ically modified (GM) crops, a trend also seen in Canada (see above). In
the USA, herbicide-resistant crop technology was associated with a 239
million kilogram (527 million pound) increase in herbicide use between
1996 and 2011 (Benbrook, 2012); the overall effect has been an increase
in total pesticide use of around 183 million kgs (404 million pounds, c. 7
%) (ibid.).

Time series trends (1995-2020 forecasted up to 2030) show signif-
icant increasing trends in Africa, Central Asia, and South America.

Eastern Asian countries on the other hand show a declining trend
(Fig. 2b). Again, in several countries in a specific region, the use rate
exceeds the regional median value (Supplementary Fig. 1b).

The status and trends of herbicide use should not be examined
separately from the sharp rise in herbicide tolerant weeds — since both
issues are tightly linked. Since 1991, 500 weed species have been
recorded to be tolerant to herbicides worldwide (Supplementary Fig. 3).
It is expected that this will lead to desperate and therefore increased use
of more and more non-effective herbicides and also new products
consequently increasing the vulnerability of pollinators.

2.3. Trends in fungicide use

Fungicide use has generally increased across different global regions
but non-uniformly within specific regions. In several countries e.g.,
Yemen, Nepal, Bhutan, Bangladesh in Asia, Chile in South America,
Mozambique, Somalia, Ghana, and Nigeria in Africa this growth has
been of the magnitude of several thousand percent (Fig. 1c, Supple-
mentary Table 1). In 30 countries, fungicide use increased between 500
and 1000 % (Supplementary Table 1), while another 38 countries saw
increased growth between 100 and 500 %. The time series forecast
models (Fig. 2c) based on existing data identify Africa, South America,
South-East, East and West Asia as global regions that will see significant
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increase in fungicide use up to 2030.
3. Impacts of pesticides on pollinators

Pesticides can have both lethal and sublethal effects on pollinators,
either directly or indirectly via effects on habitat, nesting and forage
resources (IPBES, 2016). The following sections primarily cover infor-
mation on the direct lethal and sublethal impacts on bees of insecticides,
herbicides, and fungicides. Most of this reviewed evidence is from an-
alyses published after the IPBES, 2016 assessment (albeit sometimes
containing evidence from before that date but republished in data syn-
theses). The literature following 2016 up to 2022 was exhaustively
searched using relevant search strings in Scopus and Google Scholar.

3.1. Insecticides

3.1.1. Lethal toxicity

Studies and syntheses reporting lethal impacts on bees (Delkash-
Roudsari et al., 2020; Douglas et al., 2020; Lunardi et al., 2017; Lundin
et al., 2015; Nowakowski and Pywell, 2016; Tosi et al., 2022; Yao et al.,
2018) have predominantly focused (and continue to do so) on the
managed western honey bee Apis mellifera (e.g., US EPA Ecotox data-
base”), and only on a restricted number of insecticides (IPBES, 2016).
However, there have been recent moves to assess lethal endpoints (e.g.,
LD50, % mortality and survival) for other bee species, including Asian
honey bee A. cerana and other solitary bees (e.g., Megachilids) and
stingless bee species (e.g., Meliponini) (Barbosa et al., 2015; Dorneles
et al., 2017; Jacob et al., 2019a, 2019b; Ma et al., 2022; Soares et al.,
2015; Otesbelgue et al., 2018; Padilha et al., 2020). During 2016-2022
there have been increasing numbers of studies on A. cerana. For
instance, cytochrome P450 monooxygenases (P450s) are known to be
instrumental in metabolic detoxification of insecticides (Lu et al., 2021).
A P450 mediated detoxification system has been found in A. mellifera
(Berenbaum and Johnson, 2015; du Rand et al., 2015). It has recently
been reported that like its European congener counterpart, A. cerana
also has a P450 enzyme mediated detoxification system, and at least four
regulatory genes have also been identified (Zhang et al., 2019). There
are findings, however, to suggest that A. cerana might be more sensitive
to neonicotinoid-mediated acute toxicity (estimated by LD50) compared
to A. mellifera (Li et al., 2017a; Yasuda et al., 2017). Li et al. (2017b)
attribute this to differences in innate immune responses of the two
species. It has also been suggested that the differences in sensitivity of
the two species may vary according to the structure of different neon-
icotinoid insecticides, but not with body mass of bees (Yue et al., 2018).
A more recent study (Linguadoca et al., 2022) has shown intraspecific
variation in sensitivity to different families of insecticides and although
body weight partially explained these variations it is possible that
sensitivity may vary according to sex and caste.

Studies on the Megachilids are rather skewed towards Osmia spp. and
Megachile spp. (Fig. 4, Supplementary Table 3) (Boff et al., 2021; Cen-
trella et al., 2020; Claus et al., 2021; Fortuin et al., 2021; Kopit et al.,
2022; Mokkapati et al., 2021; Song et al., 2021a; Song et al., 2021b;
Stuligross and Williams, 2020; Stuligross and Williams, 2021; Tomé
et al., 2017). However, the reports mostly deal with neonicotinoids, and
lethal endpoint studies for the older generation insecticides (e.g., or-
ganophosphates or organochlorines) are still lacking despite their
ongoing large-scale use in many developing regions.

The cumulative number of studies reporting lethal endpoints for
stingless bees has also grown since the IPBES report (2016) (Brigante
et al., 2021), with lethal endpoints for nine species of stingless bees
reported between 2016 and 2022 from Brazil alone (Supplementary
Table 3). This is an important development since the stingless bees
(Meliponines) take about twice as long to reach worker adulthood from
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egg compared to the honey bees, which makes stingless bee broods
potentially more vulnerable to insecticide exposure (Cham et al., 2018).
This makes risk assessment standards for the Meliponine bees based on
the life cycle of the honey bees less accurate. More information coming
out on the stingless bees is therefore most useful for evolving their risk
assessment standard.

There remains a need in many global regions to move pesticide risk
assessment beyond A. mellifera as a single focal species considering the
significant life-history trait differences among various bee species. This
is supported by reports of lethal impacts on bumble bees in temperate
regions (Banks et al., 2020; Ellis et al., 2017; Linguadoca et al., 2022;
Minnameyer et al., 2021; Mobley and Gegear, 2018) and stingless bees
of the tropics (Bernardes et al., 2018; Brigante et al., 2021; Dorneles
et al., 2017; De Oliveira Ferreira et al., 2020; Piovesan et al., 2020).
While the breadth of evidence on lethal impacts on multiple bee species
is growing, there remains a general lack of knowledge of lethal intra-
specific pesticide impacts on different sexes, castes, and life-stages of the
test species. Moreover, most risk assessments used by regulators (and
sometimes by researchers) are conducted over short time periods (e.g.,
10 days) and so fail to assess the potential for cumulative impacts
resulting in lethal effects (Simon-Delso et al., 2018).

The lethal risk to bees from the full array of available pesticides has
also not been fully considered. Notably, the so-called “safer” insecticides
of either natural origin (e.g., plant or soil bacterium-based insecticides
such as Azadirachtin, Spinosad, Avermectin) or the growth regulators (e.
g., Novaluron) have equally proven to be harmful to solitary and
stingless bees (Supplementary Fig. 2). Out of 12 studies (Supplementary
Table 4) published between 2016 and 2022 that reported impacts of a
natural origin insecticide, eight have reported lethal non-target toxicity
for such insecticides (Aratjo et al., 2019a, 2019b; Brigante et al., 2021;
De Oliveira Ferreira et al., 2020; Gémez-Escobar et al., 2018, Marques
et al., 2020; Piovesan et al., 2020; Tomé et al., 2015b). Further work is
needed to understand the contribution to lethal impacts (direct and
synergistic) in bees of so called ‘inert ingredients’ in insecticides added
as co-formulants along with the active ingredients (Straw et al., 2022).

3.1.2. Sublethal toxicity

A number of important studies on the sublethal impact have come
out during 2016 and 2022 on various species including on previously
less studied species like the Asian honey bee Apis cerana (adults and
brood) and other species from regions outside the Western world. Many
of these studies include impacts of non-neonicotinoid insecticides e.g.,
on olfaction, on microbiome, p450 mediated detoxification, visual
acuity, and homing (Li et al., 2017b; Ma et al., 2019; Tan et al., 2017;
Yang et al., 2019; Zhang et al., 2019).

A few studies have shown that insecticide mixtures, including co-
formulants, used in intensively managed agricultural landscapes can
adversely affect the A. cerana olfaction (Chakrabarti et al., 2015) and
vision (Chakrabarti et al., 2019) in the field. Kumar et al. (2022) found
increased apoptotic cell death in the brain tissue could be responsible for
these effects. Further information about effects of neonicotinoid in-
secticides on homing behaviour has also emerged (Tosi et al., 2017).

Several recent studies highlight sublethal behavioural impacts on
bumble bees (Bombus spp.) (Crall et al., 2019; Lamsa et al., 2018; Leza
et al., 2018; Muth and Leonard, 2019; Minnameyer et al., 2021; Siviter
et al., 2021; Stanley et al., 2016; Tasman et al., 2020; Crall et al., 2018;
Raine and Rundlof, 2024). Behavioural impacts include sleep disorder,
foraging demotivation, sub-optimal foraging decisions and within-
colony nursing behaviour (Chole et al., 2022; Lamsa et al., 2018;
Siviter et al., 2021; Tasman et al., 2020).

Several studies also report sublethal physiological impacts of neon-
icotinoids on bumble bees. Such physiological impacts include ther-
moregulation (Crall et al., 2018), sperm gland physiology (Minnameyer
etal., 2021) and nutritional distress (Linguadoca et al., 2022). However,
anumber of studies have also reported no significant impacts of different
insecticides including neonicotinoids on A. mellifera or Bombus terrestris
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(Osterman et al., 2019; Schwarz et al., 2022; Siviter et al., 2019; Straw
and Brown, 2021b).

Lehmann and Camp (2021) provide a systematic review of the effects
of pesticide exposure on solitary bees with a rise in the number of
publications over the last decade, which peaked post-2015. Although
the review deals with only a few species of commercially available
solitary bees (Megachile rotundata, Nomia melanderi, four species of
Osmia and Eucera pruinose), it considers several studies on impacts of
organophosphates, carbamates, and neonicotinoids. Most of these
studies involve adults, with few or no studies on immature life stages.
Comparison of the sub-lethal sensitivities of different solitary species to
different pesticide classes remains a knowledge gap, although Ansell
et al. (2021) found M. rotundata to be more sensitive to a neonicotinoid
compared to organophosphate and pyrethroid. M. rotundata lacks the
P450 enzyme detoxification system (Hayward et al., 2019) found in
Apis, with implications for future regulatory guidelines of a pesticide risk
assessment framework. In a major systematic review and meta-analysis,
Siviter et al. (2018c¢) found significant negative effects of insecticides on
learning and memory (i) at field realistic dosages, (ii) under both chronic
and acute application, and (iii) for both neonicotinoid and non-neoni-
cotinoid insecticide groups. Although the impacts of neonicotinoids are
well documented, the mechanistic framework of the possible mode of
their action is still being understood. Pamminger et al. (2018) suggested
that there might be a close ontogenic association between the haemo-
cytes of the insect immune system and the nervous systems and that this
connection makes the immune system of pollinators and other insects
inherently susceptible to interference by neurotoxins such as neon-
icotinoids at sublethal doses. Raine and Rundlof (2024) review pesticide
exposure, exposure pathways and impacts (lethal and sublethal) on non-
Apis bees since honey bees and other bees differ in biology, foraging and
nesting behaviour and degree of sociality; this review highlights those
environmental risk assessments (ERAs) that did not consider non-Apis
bees. Raine and Rundlof (2024) point out there are other regulation and
policy tools beyond ERAs that can consider the pesticide threat to bees.

Insecticides of natural origins have been reported to inflict sublethal
effects also on several stingless and solitary bee species (Supplementary
Table 4). For some stingless bees, these insecticides have been shown to
be as harmful as neonicotinoids in producing aberrations in learning,
development, or physiology (Bernardes et al., 2017, 2018; Marques
et al., 2020; Piovesan et al., 2020; Tomé et al., 2015a). Challa et al.
(2019) reported impacts of a few widely-used biopesticides, e.g., Aza-
dirachtin, Anonnin, Beauveria bassiana and Bt var. on Asiatic honey
bees, Apis cerana, and found them to impair foraging rate and foraging
speed.

3.2. Herbicides

Herbicides constitute almost half of the total global volume of pes-
ticides used (Sharma et al., 2019). Herbicides can indirectly affect the
bees’ nutrition and survival by decreasing the non-crop forage resources
both in the crop and in adjacent non-cultivated habitats (Belsky and
Joshi, 2020; Bohnenblust et al., 2016; Jacobson et al., 2018). However,
in comparison to insecticides, the direct lethal or sublethal impact of
herbicides on the pollinators have been less studied, though in recent
years, papers on herbicide impacts are increasing. Our literature search
revealed 22 studies between 2017 and 2021 that showed sublethal and
lethal impacts of herbicides on bees (Fig. 5, Supplementary Table 5).
Herbicides - either used as a single chemical or as multiple herbicide
mixture - have been reported to be directly harmful in 75.0 and 88.9 %
studies (Iwasaki et al., 2020). Between 2016 and 2022, 24 studies were
published including four comprehensive reviews (Battisti et al., 2021;
Belsky and Joshi, 2020; Cullen et al., 2019; Iwasaki et al., 2020). More
than half of the studies are from South America (Brazil, Argentina, and
Colombia) while six are from North America (USA, Canada), three from
China and a single study from Africa (Ghana). All these studies reported
lethal and sublethal effects of herbicides (Fig. 5, Supplementary
Table 5); mostly involving glyphosate, which a meta-analysis involving
17 studies and 34 data sets on A. mellifera, and a few stingless bee species
showed mortality in bees (Battisti et al., 2021).

3.2.1. Lethal toxicity

One of the better studied herbicides is glyphosate, exposure to which
has been shown to negatively affect both larval and adult A. mellifera
survival (Battisti et al., 2021; Chaves et al., 2021; Dai et al., 2018; Faita
et al., 2020; Jumarie et al., 2017; Mengoni Gonalons and Farina, 2018;
Motta et al., 2020; Odemer et al., 2020; Tomé et al., 2020; Vazquez et al.,
2018). Glyphosate has been found to be lethal for Melipona quad-
rifasciata at the colony level as it kills all larvae within a few days (Seide
etal., 2018). Glyphosate has been reported to impact gut microbiota and
survival of the honey bees (Motta et al., 2020). A recent study has
however suggested that it is the surfactant, and not the active ingredient
glyphosate, that causes mortality in bumble bees (Straw et al., 2021),
further highlighting the need to focus research on disentangling the
toxicity of the different active ingredients and co-formulants of pesti-
cides and their combinations.

3.2.2. Sublethal toxicity

Farina et al. (2019) reports various sublethal adverse effects of
glyphosate on A. mellifera, including associative learning processes of
foragers, cognitive and sensory abilities of young hive bees and delayed



P. Basu et al.

Other non Apis
No of studies- 3

Bombus spp.

A.mellifera
No of studies- 17

Science of the Total Environment 954 (2024) 176656

Category
Behaviour
Colony
Genetic mechanism
Lethal toxicity

. Microbiome
. Physiology

A.cerana
No of studies- 1

o

25 50

7% 100

Percentage of papers

Fig. 5. Summary of publications from 2016 to 2022 reporting different lethal and sublethal impacts of herbicides for different pollinator species or groups. The total
number of publications focusing on different bee taxa are reported, as well as the percentages of publications within each taxa focusing on different impacts.

brood development. Vazquez et al. (2020) reported A. mellifera foragers
showing reduced body and muscle movement including antennal ac-
tivity from exposure to as little as 50 ng of glyphosate, with implications
for foraging orientation capacity. During 2016 and 2022, more studies
on non-Apis bees have further underscored the adverse sub-lethal direct
impacts of glyphosate (Aratjo et al., 2021; Graffigna et al., 2021; Nocelli
et al., 2019; Seide et al., 2018; Straw et al., 2021). A few studies have
also reported adverse effects of glyphosate on the bee gut microbiome,
increasing potential vulnerability to pathogen infection (e.g., increased
worker bee mortality subsequently exposed to the pathogen Serratia
marcescens (Motta et al., 2018)). Glyphosate has been shown to nega-
tively impact bumble bees thermoregulation (Weidenmiiller et al.,
2022).

3.3. Fungicides

Fungicides thought to be safe for pollinators are now increasingly
seen to cause both lethal and sublethal effects on bees (Fisher et al.,
2021a, 2021b, 2021c). Our search revealed 23 studies published be-
tween 2016 and 2022 (Fig. 6, Supplementary Table 6) that reported
lethal toxicity and sublethal impacts on physiology and behaviour.
Single fungicide chemicals can be directly harmful to bees by altering
metabolism, reproduction, and food consumption (Mao et al., 2017) or
indirectly by increasing insecticide toxicity (Sgolastra et al., 2017;
Tsvetkov et al., 2017). Eleven studies in in the years encompassing our
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study (2016-2022) have also shown synergistic effects of fungicides
used in combination (Supplementary Table 6).

3.3.1. Lethal toxicity

Several studies and reviews in during 2016-2022 have found that
fungicides alone can affect bee survival for both larval and adult stages
(Fisher et al., 2021a; Fisher et al., 2021b, 2021c; Jaffe et al., 2019;
Tamburini et al., 2021a; Wu et al., 2022) (Fig. 6, Supplementary
Table 6). Various fungicides that are responsible for causing lethal
toxicity include Difenoconazole (Almasri et al., 2021; Leite et al., 2022),
Boscalid, and Pyraclostrobin combination (Fisher et al., 2021a, 2021b),
Amistar (Straw and Brown, 2021a) and Propiconazole (Han et al.,
2019).

3.3.2. Sublethal toxicity

Fungicides used in combination with other insecticides have been
found to interfere with the detoxifying mechanisms in bumble bees
(Raimets et al., 2018), but this was not the case in other studies (Schwarz
et al., 2022; Tamburini et al., 2021a, 2021b). Non-Apis bees e.g., Osmia
spp. and the stingless bees have been shown to be more sensitive to the
synergistic actions of fungicides than A. mellifera (Azpiazu et al., 2021;
Brigante et al., 2021; da Costa Domingues et al., 2020; Iverson et al.,
2019; Sgolastra et al., 2017 but see Schwarz et al., 2022; Wade et al.,
2019; Wernecke et al., 2019). Fungicide used as a co-formulant has been
shown to have physiological impacts (Straw and Brown, 2021a).
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Fig. 6. Summary of publications from 2016 to 2022 reporting different lethal and sublethal impacts of insecticides for different pollinator species or groups. The total
number of publications focusing on different bee taxa are reported, as well as the percentages of publications within each taxa focusing on different impacts.
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However, Robinson et al. (2017) reported no impact of fungicide on
A. mellifera, Bombus terrestris and Osmia bicornis.

4. Advancement of knowledge and existing gaps

Our understanding of the effects of pesticides on pollinators,
particularly bees, was the focus of our review. New information is
emerging from other global regions beyond North America and Europe,
as well as on previously under-researched species of pollinators. How-
ever, the overall geographic skew in information towards the developed
economies remains and fewer pesticide impact studies on pollinators are
being done in major world regions where pesticide use has been un-
dergoing dramatic changes. To compound the challenges faced with
pesticide use and potential impacts on pollinators, in low and lower-
middle income countries there is a lack of information and data on
pesticide application rates leading to underestimation of actual usage
(Shattuck et al., 2023). Even in high income countries, such as the
United States, pesticide use data used to include pesticides applied as
seed treatments, but this is no longer the case (Hitaj et al., 2020).

Fig. 7 a - c illustrates the extent of differences in insecticide, herbi-
cide, and fungicide usages in different countries between 1995 and 2020
overlayed with the number of studies available for different regions.
Russia, Australia, Canada, Central and West Asian countries, and several
countries in Africa have experienced many fold increases in insecticide
use over the last twenty-five years, but with almost no studies on
pollinator impacts in recent years till 2022. However, many studies have
appeared from countries with large increases in insecticide use e.g.,
Brazil, USA, and China since 2016. Most South American countries, USA
and Canada, Russian Federation, several African countries, and coun-
tries in the Central and West Asia regions have experienced large scale
growth in herbicide use. Although relatively fewer in number compared
to insecticide impact studies, most studies on herbicide impacts are
again from South America (Brazil and Argentina) and the USA. There is,
however, an overall lack of studies from most areas with substantial
herbicide usage growth around the world. For fungicides too, there is no
information from most world regions with substantial growth in fungi-
cide usage.

Focus of studies on different bee taxa also vary across different global
regions (Fig. 8a — c). For example, insecticide, herbicide, and fungicide
impact studies from South America are predominantly on Meliponine
bees while studies on Megachilid bees are mostly from North America.
Studies on Osmia sp. are predominantly from Europe. Studies on
A. cerana are expectedly from Eastern Asia. Studies on Bumble bees are
major focus in Europe.

Information on effects of diverse groups of insecticides other than the
neonicotinoids are also emerging. Comparative studies on effects of a
specific pesticide on different bee species, different pesticides on several
species, or effects of a single chemical or in synergy with other chemicals
including co-formulants have emerged (Siviter et al., 2021). The
“inactive” or “inert” pesticide ingredients (formulation ingredients or
adjuvant components) can also have a negative impact on pollinators
and are currently understudied in most lab and field tests (Mullin, 2015;
Straw et al., 2022). There are some key insights, too, that should inform
future risk assessment frameworks; that the so-called ‘safer insecticides’
of natural origin can have similar adverse impacts as neonicotinoids is
revealing (e.g., Bernardes et al., 2017, 2018). Equally notable are the
adverse impacts on bees of some of the new generation of insecticides e.
g., Sulfoxaflor (Siviter et al., 2019, 2020). The vulnerability of solitary
species of the Megachilidae family owing to the lack of the detoxifying
P450 enzyme system that both A. mellifera and A. cerana possess is also
alarming (Haas et al., 2022). However, information on Megachilids is
almost exclusively from North America or UK/Europe, and nothing is
known about these species in other parts of the world. Similarly, there is
no information on any species from the entire Halictidae, Colletidae and
Andrenidae families. Another large gap in our understanding is that of
pesticide impacts on non-bee pollinators e.g., Dipterans and
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Lepidopterans, which are well known to be important crop and wild
flower pollinators (IPBES, 2016; Rader et al., 2020). Research conducted
on these groups tends to be from a pest control point of view, and on how
effective pesticides are in dealing with them. There are some exceptions,
for example investigations into whether herbicide impacted Monarch
butterflies in the USA (see Agrawal, 2019 for a brief synthesis). There is
also a little to no information on insecticide impacts at the level of
ecological communities, and how these may influence ecological net-
works. We need to understand how insecticides affect pollinator com-
munities and their complex interactions in food webs at different scales
and at field realistic exposures. In reality this may involve understanding
how a mix of different pesticides impact bees in interaction with other
global change drivers such as climate change (Dirilgen et al., 2023).

Reports on herbicide impacts are mostly from the Global North. Even
though information is now emerging from a wider geographic region
(Supplementary Table 5), there remains a general lack of data from Asia
and Oceania. Information on herbicides is also still heavily biased to-
wards effects on A. mellifera and up to 66 % of studies in one review
focused mostly on glyphosate (Dirilgen et al., 2023; Cullen et al., 2019).
Future research should disentangle the toxic effects of individual and
combinations of active ingredients as a recent review showed that for
140 active ingredients examined, data of impacts on bees are still
generally lacking (Iwasaki and Hogendoorn, 2021). Finally, as a recent
systematic review has highlighted, we also need to understand a great
deal more about how different fungicides cause harm to different
pollinator species in synergy with active ingredients of insecticides and
herbicides (Dirilgen et al., 2023).

5. Towards a comprehensive pesticide risk assessment
framework

In a first ever global analysis of pesticide pollution risk, with 92
active pesticide ingredients across 168 countries, Tang et al. (2021)
found that 31 % of countries with agricultural land are at high risk from
pesticide pollution and of those countries, 34 % are found in biodiversity
rich areas. The most vulnerable areas include South Africa, China, India,
Australia, and Argentina. A key outcome of our analysis shows pesticide
use has been growing in these regions too. A number of regions where
pesticide use has been increasing overlap with regions of high to
moderately-high bee diversity (Orr et al., 2021), therefore, increasing
the potential risk to bee pollinators. Regulatory regimes vary greatly
across global regions and the majority of toxicity assessment protocols
with respect to pollinators are conducted using Apis mellifera and do not
include assays of sublethal effects, although solitary bees are now
included in European risk assessment protocols (European Food Safety
Authority, 2013). Different bee species have different vulnerabilities to
pesticides (and their combinations) because of their different life-history
and ecological traits (described above in Section 3); therefore, it is
important to broaden our scientific knowledge on the risk profile for
different taxonomic and functional groups of pollinators (Raine and
Rundlof, 2024). A deeper knowledge base can then inform the devel-
opment of a more inclusive risk assessment framework that builds on the
European example (Uhl and Briihl, 2019; European Food Safety Au-
thority, 2013).

Importantly, assessment frameworks essentially also do not include
ecosystem level studies. For example, few consider the ecological
context and landscape heterogeneity in which pollinators are exposed to
pesticides (e.g., multicounty comparisons of field-realistic exposure to
neonicotinoid-treated oilseed rape crops - Woodcock et al., 2017).
Because of a lack of different foraging resources, pollinators in simple
landscapes dominated by few plant species may well experience poorer
nutrition and be less resilient to pesticide effects than those existing
within more plant diverse systems (Crone et al., 2022). However, while
there is potential for semi-natural habitat or flower plantings to dilute
the risk to foraging pollinators of exposure to pesticides, the evidence is
not yet conclusive (Obregon et al., 2021; Park et al., 2015; Rundlof et al.,



P. Basu et al. Science of the Total Environment 954 (2024) 176656

Number of studies worldwide

e 1
e 2
e 3
e 4
® 38
® 16
@ 21
@

-89 ' 2922
Insecticide use rate (kg/ha) difference (%) 1995-2020

Number of studies worldwide

o 1
e 2
® 5
@ s

63522
Herbicide use rate (kg/ha) difference (%) 1995-2020

Number of studies worldwide

13653
Fungicide use rate (kg/ha) difference (%) 1995-2020

Fig. 7. Differences (% change) in use rates (kg/ha) between 1995 and 2020 for a) insecticides, b) herbicides and c¢) fungicides. Circles on the maps indicate the
number of papers (scaled by the number) published during 2016 and 2022.

12



P. Basu et al.

a)

100%
90%
[ — 0%
29 0k
3E -
w“ g 0%
o3 wx
2% =
S § 20%
Es
0%
bini hilini Osmini  Apis cerana Apis
mellifera
M Eastern Asia M Europe B Northern America
W South America M South-eastern Asia W Western Asia
b)
¢ _ 100%
T§ 8%
G E
< £ 0%
$T 40%
£ E 20%
T c 0%
a o
Bombini  Megachilini Meliponini Apiscerana Apis
mellifera
M Africa M Australia M Eastern Asia
M Europe M Northern America ™ South America
c
) .00%
T, %
ifom
s o 0%
YT so%
T2 0%
S °§° 30%
£ m
a o 10%
0%
Bombini  Meliponini  Osmini  Apiscerana Apis
mellifera
mEasternAsia mEurope m Northernamerica ® South America

Fig. 8. Percentage of studies on impact of a) insecticide, b) herbicide and c)
fungicide for different bee taxa across different global regions dur-
ing 2016-2022.

2022). Further research is needed in this area, such as the optimal
amount or spatio-temporal configurations of semi-natural to cropped
habitats in order to diminish pesticide exposure risks and support
pollinator nutritional resources.

6. An outlook on pesticide policies

Various policies in the last decade have focused on reducing (i.e.,
involving appropriate use of pesticide application) or eliminating the
use of pesticides. Existing efforts to monitoring and track pesticide use,
such as the US Geological Survey’s National Pesticide Use Maps (USGS)
are in danger of being limited or reduced due to budgetary constraints
(Gewin, 2023). Policies or legislation that reduce or fully discontinue the
use of pesticides should provide users with safe and effective alternative
pest control strategies (Jactel et al., 2019) — which may not currently
exist or accessible information about these alternatives may be limited.
Moreover, current pesticide risk assessments, which are defined by
metrics such as LC50 or LD50, and guidance on recommended use, can
be disconnected from real-world situations, such as ecological contexts
and management legacy effects. This disconnect can create ambiguity
for decision-making or policymaking (Siviter et al., 2023). An example is
the use of alternative “safer” pest control strategies being complicated
by the detection of residues from banned pesticides (and their potential
impacts) long after their use has stopped (Siviter et al., 2023; Winter-
mantel et al., 2020). There are many other strategies outside of “safe”
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pesticides which includes integrated pest and pollinator management
(IPPM) - promoting insecticide treatments with low bee toxicity (Leach
et al., 2022). More detailed discussions regarding pollinators, pollina-
tion services and pesticide policies have been reviewed elsewhere (Dicks
et al., 2016; Gemmill-Herren et al., 2021; Hipolito et al., 2021; Galetto
et al., 2022). Below we provide some illustrative examples of regional
and global efforts towards safeguarding pollinators from pesticide use.

A new deal for pollinators: a revision of the EU Pollinator Initiative.

In 2013, Europe restricted the use of three neonicotinoids (clothia-
nidin, imidacloprid and thiamethoxam) in seed coating in order to
protect wild pollinators and managed honey bees foraging on flowering
crops. In 2018, the European Union then extended this to a ban on these
three neonicotinoids. The European Commission released the initial EU
Pollinator Initiative in 2018 and more recently, a communication from
the European Commission (January 2023)'? on the revision of the EU
Pollinator Initiative. The second objective of the revised EU Pollinator
Initiative is: Improving pollinator conservation and tackling the causes
of their decline — the protection of pollinators from pesticides falls under
this objective. The specific target is to “reduce the risk and use of pes-
ticides and the use of more hazardous pesticides by 50% by 2030
explicitly written in the EU Farm to Fork Strategy'' and the EU Biodi-
versity Strategy for 2030.'? In addition, the Nature Restoration Law was
formally adopted by the European Council (June 2024), and Article 10
of this regulation has specific text to put “in place in a timely manner
appropriate and effective measures” to reverse the decline of pollinator
populations by 2030. Additional text on specifies “...prohibiting the use
of pesticides in ecologically sensitive areas'>...”

6.1. International Code of Conduct on the Distribution and Use of
Pesticides

The International Code of Conduct on the Distribution and Use of
Pesticides (hereinafter referred to as the “Code of Conduct™), is a guid-
ance document developed jointly by FAO and the World Health Orga-
nization (WHO) and adopted by the FAO Council at the twenty-fifth
session of the FAO conference (1985)'* and was established to attempt
to standardize pesticide use and distribution across countries (WHO/
FAO, 2014). In addition, the Code of Conduct also develops guidelines
for pesticide management, registration, risk assessment, use and appli-
cations, and waste disposal among others (WHO/FAO, 2014). Although
this instrument is non-legally binding (i.e., a voluntary framework for
governments and other stakeholders), countries are “strongly encour-
aged to adopt the standards set out in the Code of Conduct”. In the last
survey results of countries (2018), pesticide legislation has been estab-
lished in 53 of 56 responding countries, but one-third of the responding
countries lack national guidelines on the pesticide registration process.
Given these results the FAO Pesticide Registration Toolkit'® was devel-
oped. In terms of management, policies on Integrated Pesticide Man-
agement exist in 35 of 51 responding countries and two-thirds of
responding countries report “major problems with pesticide resistance

10 Retrieved January 2023 from https://environment.ec.europa.eu/publicati
ons/new-deal-pollinators_en

1 Retrieved February 2023 from https://food.ec.europa.eu/horizontal
-topics/farm-fork-strategy_en

12 Retrieved February 2023 from https://environment.ec.europa.et/s
trategy/biodiversity-strategy-2030_en#:~:text=The%20EU’s%20biodiversity
%20strategy%20for,contains%20specific%20actions%20and%20commitments

3 Retrieved April 2024 from https://www.europarl.europa.eu/doceo/do
cument/TA-9-2024-0089_EN.html

14 Retrieved January 2023 from A revised version was adopted by the Hun-
dred and Twenty-third Session of the FAO Council (2002). https://www.fao.
org/3/y4544e/y4544e00.htm

15 Retrieved April 2023 from https://www.fao.org/pesticide-registration-too
lkit/en/
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in agriculture” (World Health Organization and Food and Agriculture
Organization of the United Nations, 2019).

6.2. International Pollinator Initiative

The Code of Conduct (see above) was not the only FAO-led global
initiative that involves pesticide management. FAO has had a close
collaboration with the Convention on Biological Diversity (CBD) in
facilitating implementation of CBD decisions related to the International
Pollinator Initiative (also known as the International Initiative on the
Conservation and Sustainable Use of Pollinators),'® recognizing the
need for more global coordination of pollinator-relevant policies
(Drivdal and van der Sluijs, 2021). Under the Plan of Action
(2018-2030) for pollinators, Element 1: Enabling policies and strategies,
activity Al.1 (Safeguard and promote wild and managed pollinators into
the broader policy agendas focused on sustainable development)
explicitly mentions strengthening the link between human health,
nutritious diets and pesticide exposure and reducing perverse incentives
relating to pesticide use. Activity A1.2 (Implement effective pesticide
regulation) is entirely dedicated to improving regulation of pesticide
use. Under Element 2: field-level implementation, activity A2.1 (Co-
design (with farmers, beekeepers, and land managers) and implement
pollinator-friendly practices in farms and grasslands) discusses imple-
menting pollinator-friendly practices around pesticide use. Under
Element 4: Monitoring, Research and Assessment, activity A4.2
(Research) mentioned the gaps in knowledge we have around pesticides
and potential cumulative/synergistic effects of pesticides with other
chemicals and/or pressures of pollinator loss.

6.3. Kunming-Montreal Global Biodiversity Framework

The Kunming-Montreal Global Biodiversity Framework, adopted in
December 2022, sets out four global overarching goals and twenty-three
action-oriented targets involving nature and ecosystem service conser-
vation to 2030; 196 Parties to the CBD adopted this framework. Of the
23 targets, Target 7 on pollution is most relevant to addressing the issues
regarding pesticide use. Target 7 states “Reduce pollution risks and the
negative impact of pollution from all sources, by 2030, to levels that are
not harmful to biodiversity and ecosystem functions and services,
considering cumulative effects, including: reducing excess nutrients lost
to the environment by at least half including through more efficient
nutrient cycling and use; reducing the overall risk from pesticides and
highly hazardous chemicals'’ by at least half including through inte-
grated pest management, based on science, taking into account food
security and livelihoods; and also preventing, reducing, and working
towards eliminating plastic pollution.” The final version of the adopted
text for this target changed from the more stringent ambitious goal for
pesticides from “Reduce pollution from all sources to levels that are not
harmful to biodiversity and ecosystem functions and human health ...
and pesticides by at least two thirds” in the first draft of the post-2020
global biodiversity framework'® to “reducing the overall risk....by at
least half” appearing in the approved version. The challenge for coun-
tries is now to implement a monitoring framework that can effectively
monitor the use of pesticides and “risk” using appropriate and specific,
measurable, achievable, relevant, and time-bound (SMART) indicators.
An expert meeting on developing a headline indicator 7.2 (under Target
7 on pollution) recommended Aggregated “Total Applied Toxicity (TAT)

16 CBD COP Decisions: V/5 and XIII/15 paragraph 1

17 Retrieved April 2024 from https://www.cbd.int/gbf/targets/7/ - the defi-
nition of “highly hazardous chemicals” agreed by CBD parties is — “they are
chemicals that pose a significant acute or chronic risk to the environment or
people.”

8 Retrieved January 2023 from https://www.cbd.int/doc/c/abb5/591f/
2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf
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is a suitable indicator for reducing the effects of pesticides on key
biota'®”, the deliberations on this headline indicator will be concluded
at the CBD’s sixteenth Conference of the Parties (October 2024).

7. Future research and policy needs

Although there has been a concerted effort to increase the basic in-
formation and accurate reporting of pesticides and impacts on pollina-
tors in regions outside of North America and Europe — many large gaps
still exist despite several major studies from some regions in Asia and
South America since 2016. Research on insecticides other than neon-
icotinoids has also gained some momentum and several studies have
looked into the impacts of a number of alternative “environmentally
safer” pesticides derived from plant products. More research is needed,
however, on a number of pyrethroid pesticides (O’Reilly and Stanley,
2023), sulfoximine-based insecticides (Tamburini et al., 2021b),
emerging active ingredients; biopesticides (Cappa et al., 2022) and
nanotechnology-based pesticides (Muneer et al., 2023). Research is also
needed regarding the synergistic impact of co-exposure to mixtures of
pesticides (insecticides, fungicides, herbicides, co-formulants) on polli-
nators. Similarly, we need to understand more about how the interplay
among multiple biotic stressors (bee forage and nutrition deficits,
pathogens, and parasites) and pesticides impact pollinators across life-
history stages, castes, or sexes. Studies that integrate assessment of the
impacts of pesticide exposure in laboratory, semi-field experiments and
under variable field or landscape contexts would be useful to provide a
more systemic assessment of risk from individual organism to popula-
tion scales. The lack of longer-term studies of the cumulative effects of
pesticide exposure on a range of pollinators (and other non-target or-
ganisms) make it impossible to forecast the temporal risk of pesticide use
for biodiversity and related ecosystem functions. There remains a clear
need to understand the ecosystem level consequences of impacts of
pesticides on pollinators and other non-target organisms. These might
include study of knock-on effects via ecological interaction networks for
wild plant reproduction and community dynamics or spillover impacts
of pesticide use from point (e.g., glasshouse horticulture) or diffuse
sources (e.g., open crop fields) on surrounding soil and water systems.
These knowledge gaps collectively represent a problem for the
achievement of sustainability goals and targets of national and inter-
national policies and multilateral environmental agreements (e.g.,
CBD).
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