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Abstract—In this paper we analyse the effect of interference
from WiFi network transmissions on the Doppler velocity es-
timates of C-band weather radars using the Staggered Pulse
Repetition Time (SPRT) mode, and we propose a method to
mitigate this effect.

Starting from a simplified signal model, we obtain closed form
expressions of how interference affects two of the simplest and
most widely used estimation methods, from which we derive
our proposal. Through numerical simulations we analyze the
performance of the different methods when using this simplified
model and a more realistic and accepted signal model for the
meteorological target. The proposed method achieves perfor-
mance improvement for low Signal-to-Noise Ratios (SNR), both in
conditions without interference and with moderate interference.

Index Terms—Weather Radar, WiFi Interference, Doppler
Velocity Estimation, Staggered-PRT

I. INTRODUCTION

A Weather Radar (WR) operates by transmitting short

duration pulses modulated onto a high frequency carrier, and

receiving the signals due to backscatter of each propagating

pulse from present targets. The time interval between two

successive pulses is called Pulse Repetition Time (PRT). In

this interval, N complex samples of the received signal are

taken at the output of the radar quadrature receiver followed

by matched filter. Each sample is associated with the target’s

range, and the N samples corresponding to consecutive pulses

can be arranged in consecutive columns of a data matrix [1].

Since in each scan the WR rotates in the azimuthal direction

as it transmits pulses and receives the reflected signal, each

row of the data matrix corresponds to observations made at

the same range by different pulses. Because the WR motion is

slow relative to the PRT and because the antenna beamwidth is

narrow but not zero, a set of a few, say M , consecutive samples

from each of these rows correspond to approximately the

same region of space. This set defines the Coherent Processing

Interval (CPI) [2].

One of the observables of interest in WR is the mean

Doppler velocity, vp, associated with the radial velocity of

the scatterers (hydrometeors). The estimation of vp, as well as
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other meteorological observables, is carried out by processing

the samples corresponding to each CPI [2].

Two parameters of interest are the maximum radial velocity,

va, and the maximum range Ra, that the radar can unam-

biguously observe. For the uniform-PRT mode of operation,

i.e. when the radar transmits pulses every Tu seconds, Ra is

proportional to Tu while va is inversely proportional to Tu.

So, increasing va necessarily implies decreasing Ra [2].

An alternative to increase va without reducing Ra is to

use the Staggered-PRT (SPRT) mode of operation, in which

the radar varies the time interval between successive pulses.

Although there are other proposals such as [3], a two-PRT

configuration is normally used, in which the PRT alternates

between T1 and T2. For this SPRT mode, Ra is proportional

to the minimum between T1 and T2, while va is inversely

proportional to the difference between T1 and T2. Generally,

these values are chosen as T1 = n1 Tu and T2 = n2 Tu, where

n1 and n2 are two coprime integers.

Using the SPRT strategy implies that estimates of the

autocorrelation in the lag Tu or the Doppler spectrum cannot

be obtained directly. Therefore, the classical Doppler velocity

estimation techniques based on Pulse-Pair Processing (PPP) or

Spectral Processing (SP) summarized in [4] cannot be used.

Instead, it is simple to obtain estimates of the autocorrelation

in the lags T1 and T2. Two possible methods based on these

estimates are the PPP extension for the staggered case (SPPP)

presented in [5], and the Dealising Method (DA) presented in

[6], the details of which we will delve into in Section II. SPPP

performs poorly in terms of Root-Mean-Square Error (RMSE),

while DA achieves much better performance by adding very

little complexity.

One of the factors that affects the operation of WRs is the

electromagnetic interference produced by other communica-

tion systems [7]. In particular, for C-band radars, such as those

installed in Argentina [8], the main sources of interference

are Wireless/Radio Local Area Networks (WLAN/RLAN) [9],

[10], [11]. Most of these devices comply with the IEEE 802.11

standard and are commonly called WiFi transceivers [12].

When the WR antenna beam is pointed in the direction

where there is any WiFi transceiver operating in the same

band, the WiFi signal is picked up by the radar, and appears



as additive interference that affects as many samples in the

range dimension (consecutive elements of a column of the

data matrix) as the duration of the WiFi frame [11]. There

are different approaches to deal with this problem, from the

identification and removal of the problematic sources, to alter-

natives of signal processing for the detection and mitigation

of the effects on the observables [7].

In [10] the authors focus on analysing the effect of interfer-

ence in estimation algorithms based on polarimetric observ-

ables. In [13] the authors carried out a study that quantifies

the effect of interference in the estimation of polarimetric

products, for a WR that operates in uniform-PRT mode. In [14]

the authors present a more detailed analysis of the effect of

the WiFi interference on the Doppler velocity estimation using

PPP, also for the uniform-PRT mode of operation. Considering

a simplified signal model that assumes a zero spectral width,

[14] show that the interference can produce hops of va module

in the velocity estimates, and derive the probability of this

velocity hop, which depends on Interference-to-Signal power

Ratio (ISR).

Regarding the detection and/or mitigation of the effect of

interference on products, in [15] the authors study and measure

WiFi signals looking for distinctive characteristics of those of

WR, with the aim of improving and developing recognition

techniques, while in [16] and [17] the authors present two

separate identification methods based on fuzzy logic, and

[17] also proposes a spatial filter to replace the contaminated

pulses. In [18] the author proposes a 2D interference filtering

algorithm, using the range/pulse domains, while in [9] and [19]

the authors propose filtering techniques based on the wavelet

transform and other discrete filters.

In this work we analyse the effect of interference on the

estimation of velocity using SPPP and DA methods in a WR

that operates in SPRT mode; and we propose a novel and

simple method to mitigate this effect. The method, that we

call Weighting DA (WDA), consists of combining the two

DA estimates with the appropriate weights. The simplicity of

the method is due to the fact that on the one hand it is based

on simple estimators with low computational cost and on the

other hand it does not require identifying or removing the

interfered samples to perform the mitigation.

In Section II we present an overview of the radar received

signal model and the formulation of the SPPP and DA velocity

estimation methods. In section III, starting from a simple

interference model, we mathematically analyze its effect on

the estimates and derive our mitigation proposal. In Section

IV we analyze the performance of the different methods,

including our proposal, through numerical simulations. Finally,

in Section V we draw the conclusions.

II. PROBLEM STATEMENT

The signal received by a WR in a particular CPI can be

described by

z[m] = p[m] + i[m] + n[m], (1)

where p[m] is the meteorological target component, i[m] is

the interference component, and n[m] is the noise component.

In our analysis, we consider that there is no clutter in the

CPI under test, and that n[m] is Additive White Gaussian

Noise (AWGN). These are common assumptions in velocity

estimation methods.

To simplify the notation, we consider m to be the index of a

fictitious uniformly-sampled at Tu signal, i.e. m is an integer

ranging from 0 to M − 1. Actually, we only have the samples

corresponding to the staggered sampling instants, that is

m ∈ {0, n1, n1+n2, 2n1+n2, 2n1+2n2, . . . M−1} . (2)

We define K1 as the number of pair of samples that are T1

apart, and K2 as the number of pair of samples that are T2

apart. We consider K1 = K2 = K , then M−1 = (n1+n2)K .

A. Estimation Methods

The autocorrelation estimates in lags T1 and T2 are

R̂zz(T1) =
1

K

K−1
∑

k=0

z[k nT +n1] z
∗[k nT ] (3)

R̂zz(T2) =
1

K

K−1
∑

k=0

z[k nT +n1+n2] z
∗[k nT +n1], (4)

where nT , n1+n2.

In the SPPP method [5] the Doppler velocity estimator is

v̂(SPPP)
p = κ R̂zz(T2)/R̂zz(T1) (5)

where κ is a constant of proportionality and · denotes the

argument, interpreted in the interval (−π, π].

On the other hand, from R̂z(T1) and R̂z(T2) two ambiguous

estimators of the velocity can be obtained as

v̂p1
= κ1 R̂zz(T1) (6)

v̂p2
= κ2 R̂zz(T2) (7)

where κ1 and κ2 are also constants of proportionality. DA [6]

is based on that these two estimates could be aliased, but each

of these aliases can take on values in a small (and different)

finite set of possible values, so the aliasing term can be inferred

and reversed based on both estimates. In this sense, v̂p2
can be

used as additional information to disambiguate v̂p1
, obtaining

an unambiguous estimator

v̂(DA1)
p = v̂p1

+ daf1(v̂p1
, v̂p2

); (8)

or v̂p1
can be used as additional information to disambiguate

v̂p2
obtaining other unambiguous estimator

v̂(DA2)
p = v̂p2

+ daf2(v̂p1
, v̂p2

), (9)

where daf1(·) and daf2(·) denote functions that choose the

ambiguity factors to make the corrections.



III. EFFECT OF INTERFERENCE AND PROPOSAL FOR

MITIGATION

For the analytical deduction of the effect of the interference

on the velocity estimation we start from a Simple Model of

the meteorological target component, given by

p[m] = Ae−j(αvpm+φ), (10)

where A is a constant associated with the power backscattered

by the target, α , 4πTu/λ, being λ the wavelength, vp is the

radial velocity of the target, and φ = 4πr/λ is a constant

phase term proportional to the distance r between radar and

target.

Since the interference affects the signal in the range dimen-

sion, it affects a few samples in each CPI, and so we consider

the model

i[m] = Bejθδ[m−mℓ], (11)

where B and θ are amplitude and phase factors, δ[·] denotes

the Kronecker delta and mℓ is an integer that takes values in

the set (2) and that indicates the interfered pulse.

For simplicity in the deduction we firstly consider that the

Signal-to-Noise Ratio (SNR) is high enough to neglect the

noise component (n[m] = 0). Replacing (10) and (11) in (1)

and then in (3) and (4) we obtain

R̂zz(T1) = A2e−jαn1vp +
AB

K
e∓j(αvp(mℓ±n1)+φ+θ) =

= A2e−jαn1vp

(

1 +

√
ISR

K
e∓j(θ+φ+αvpmℓ)

)

(12)

R̂zz(T2) = A2e−jαn2vp

(

1 +

√
ISR

K
e±j(θ+φ+αvpmℓ)

)

(13)

where ISR = B2/A2. The factor outside parentheses is what

we would obtain in the case z[m] = p[m] (ISR = 0), and

the term that adds to one into parentheses appears due to

interference (the only one of the cross products that survives

in the sums when applying the delta property). In (12) the ∓
is “−” if mℓ = knT and “+” if mℓ = knT + n1. In (13) the

± is “+” if mℓ = knT and “−” if mℓ = knT +n1. Whatever

the case, it can be seen that the terms into parentheses in (12)

and (13) are complex conjugates. If we denote

D ejβ , 1 +

√
ISR

K
e∓j(θ+φ+αvpmℓ) (14)

we arrive at

R̂zz(T1) = A2 D e−j(αn1vp−β) (15)

R̂zz(T2) = A2 D e−j(αn2vp+β). (16)

Replacing (15) and (16) into (5) we obtain that the SPPP

estimate results

v̂(SPPP)
p = vp + 2β/α (17)

while replacing (15) and (16) into (8) and (9), and assumming

that β does not significantly affect the operation of daf1(·) and

daf2(·), we obtain that the estimates result

v̂(DA1)
p = vp − β/(n1α) (18)

v̂(DA2)
p = vp + β/(n2α). (19)

In (17), (18) and (19) we can see that the effect of

interference (throught β) is always to introduce an estimation

error. We can also see that for a given value of β, this error is

2n1 times smaller in magnitude for DA1 than for SPPP and

2n2 times smaller in magnitude for DA2 than for SPPP.

It is important to remark that the derivation is valid for

mℓ 6= 0 and mℓ 6= M − 1. In case mℓ = M − 1 the term

due to interference in (12) vanishes (does not appear in the

sum). In the same way, in case that mℓ = 0 the term due to

interference in (13) vanishes. In the first case, the interference

does not affect the DA1 estimation. In the second case, the

interference does not affect the DA2 estimation. In either case,

the magnitude of the error in SPPP estimation is halved.

A. Mitigation Proposal

From (18) and (19) we can see that a simple way to cancel

the effect of interference is by combining both estimators with

the appropriate weights. Thus, the estimator of our proposal,

Weighting DA (WDA) is

v̂(WDA)
p =

n1

n1 + n2
v̂(DA1)
p +

n2

n1 + n2
v̂(DA2)
p . (20)

We can see that under the conditions in which the model

is valid, replacing (18) and (19) into (20), the WDA estimate

results v̂
(WDA)
p = vp.

We can note that for the cases mℓ = 0 or mℓ = M − 1 this

error cancellation does not occur. However, in these cases the

magnitude of the WDA error will be 2(n1 + n2) times less

than the SPPP error, and therefore it is still the best alternative.

B. Realistic Considerations

First of all, although we did not incorporate the effect of

noise in the derivation of the method, we will incorporate it

to analyze performance.

Secondly, although the proposed model allows for mathe-

matical development, it is unrealistic for modeling the behavior

of the meteorological target. As an alternative, we will model

p[m] as a complex normal random process with Gaussian

Power Spectral Density (PSD), given by [2]

Sp(v) = S0/(
√
2πσp) e

−(v−vp)
2/(2σ2

p) (21)

where σp is the spectral width [m/s] of the phenomenon.

IV. RESULTS

A. Simple Model

In order to analyse the performance of the method applied

to the Simple Model, we conducted a total of I = 1 × 105

Monte-Carlo simulations with the value vp = 0.4 va. We

considered the case n1 = 2, n2 = 3 and K = 15, resulting

in M = 76, which are typical values of use in practice.



(a)

(b)
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Fig. 1: RMSE (in logarithmic scale) vs SNR for the four

methods considering the simple model. The dotted line corre-

sponds to the case without interference, while the solid line

corresponds to the case with ISR = 5 dB (a), ISR = 10 dB (b)

and ISR = 15 dB (c).

In each realization we took φ and θ as realizations of two

independent random variables with continuous uniform distri-

bution between 0 and 2π, and mℓ also random with discrete

uniform distribution among the possible index values of (2)

excluding extremes. We analysed four ISR situations: without

interference, ISR = 5 dB, ISR = 10 dB and ISR = 15 dB;

and values of SNR between 5 dB and 30 dB. We took RMSE

as metric of performance.

Fig. 1 shows the RMSE over the estimates of the I real-

izations versus SNR. To better appreciate the details we plot

the RMSE normalized to va on a logarithmic scale (we will

refer to the unit of this scale as “dBe”). Each color refers to

one of the four methods, as specified in legends. The dashed

lines in the three sub-figures correspond to the case without

interference, while solid lines correspond to the case ISR = 5
dB in Fig. 1(a), ISR = 10 dB in Fig. 1(b) and ISR = 15 dB

in Fig. 1(c).

When the interference is not present we observe that the per-

formance of the four methods enhance as the SNR increases,

as is expected, and that the WDA method is consistently the

best. For example, for SNR = 20 dB WDA is 15.5 dBe (≈ 35
times) better than SPPP and 7.8 dBe (≈ 6 times) better than

the second best, DA2. These differences remain practically the

same for almost the entire range of SNRs, except for very low

SNRs. This allows us to conclude that WDA filters noise in

the way we expected it to filter out interference.

For the case with interference, comparing the same method,

i.e. lines of the same color, with and without interference,

we observe that the performance degrades, and that this

degradation is worse as ISR increases. The performance of

all methods is quite similar for low SNR, being the same for

high ISR. This performance becomes better as SNR increases,

being this enhancement more noticeable for WDA than for

the others, and reaching a SNR value where the normalized

RMSE becomes apparently constant. The point where this

trend changes depends on the ISR. For SNR = 20 dB the

enhancement of the methods against SPPP is quite similar to

the enhancement for the case without interference: WDA is

16.3 dBe (≈ 43 times) better than SPPP and 8.6 dBe (≈ 7.2
times) better than the second best, DA2. That is, WDA gets a

little extra 0.8 dBe improvement over DA2.

B. Gaussian PSD Model

In order to analize the performance in this situation we

conducted another set of I = 1×105 Monte-Carlo simulations

generating p[m] as realizations of a random process with PSD

given by (21) following the procedure of [20]. We test five

spectral width cases, σp = 0.5 m/s, σp = 1 m/s, σp = 1.5 m/s,

σp = 2 m/s, and σp = 2.5 m/s. We set the other parameters

with the values used in the simulations of Section IV-A.

Fig. 2 shows the RMSE over the estimates of the I realiza-

tions versus SNR, for the case σp = 1.5 m/s. As previously,

each color refers to one of the four methods, the dashed lines

correspond to the case ISR = 0, and solid lines correspond to

the case with ISR = 5 dB in Fig. 2(a), ISR = 10 dB in Fig.

2(b) and ISR = 15 dB in Fig. 2(c).

For the case without interference we observe that for the

region of low SNR the performance of the four methods

enhances as the SNR increases, but there is a value of SNR

(around 20 ∼ 25 dB) beyond which the RMSE remains

approximately constant. This is reasonable, and is due to

the conjuction of the very randomness of the process that is

trying to be observed and the limitations of the statistic used

to observe it. Also, we can see that WDA performs better
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Fig. 2: RMSE (in logarithmic scale) vs SNR for the four meth-

ods considering the gaussian PSD model with σp = 1.5 m/s.

The dotted line corresponds to the case without interference,

while the solid line corresponds to the case with ISR = 5 dB

(a), ISR = 10 dB (b) and ISR = 15 dB (c).

than the other methods in the entire SNR range, although

this improvement is more noticeable for low SNR values.

Although due to space limitations the graphs are not shown,

this behaviour is similar for the other analysed spectral widths.

For example, for SNR = 20 dB and σp = 0.5 m/s, WDA is

5.5 dBe (3.5 times) better than SPPP, but only 0.6 dBe (1.15
times) better than the second best, DA2. For SNR = 20 dB

and σp = 2.5 m/s, WDA is 2.1 dBe (1.6 times) better than

Fig. 3: RMSE enhancement of WDA over DA2 (in logarithmic

scale) vs SNR considering Gaussian PSD model with different

σp values. The dotted line corresponds to the case without

interference, while the solid line corresponds to the case with

ISR = 5 dB.

SPPP, but only 0.2 dBe (1.05 times) better than the second

best, DA2. In any case, and considering that the model differs

substantially from the one used in the deduction, we can

conclude that in this situation WDA is the best of the methods.

For the case with interference we observe, that the perfor-

mance almost always degrades and that this degradation is

worse as ISR increases. We can see that for ISR = 5 dB (Fig.

2(a)) WDA mitigates the effect of interference, i.e. it reaches

a performance similar to the case without interference, in the

region of moderate to high SNR. We can also observe that

for ISR = 10 dB (Fig. 2(b)) the improvement of WDA is not

so appreciable (it achieves a slightly better performance than

DA2) while for ISR = 15 dB (Fig. 2(c)) it becomes slightly

worse than DA2 (although all the curves are very similar). This

behaviour is similar for the other tested spectral widths. For

example, for SNR = 20 dB, ISR = 5 dB and σp = 0.5 m/s,

WDA is 5.4 dBe better than SPPP, but only 0.4 dBe better

than the second best, DA2. For SNR = 20 dB, ISR = 5 dB

and σp = 2.5 m/s, WDA is 5.7 dBe better than SPPP, but only

0.8 dBe better than the second best, DA2.

To complement this analysis Fig. 3 shows the differences

in RSME of WDA method versus DA2 method (the second

best) as a function of SNR for the different tested spectral

widths. In all cases we observe that there is an improvement

of WDA over DA2, and that this depends on σp. For the case

ISR = 0 (dashed lines) the improvement is more noticeable

for low to moderate SNR values, while for the case ISR = 5
dB (solid lines) it is more noticeable for moderate to high SNR

values. With regard to interference mitigation, the behavior for

σp ≥ 1 m/s is as expected, as the width increases we move

further away from the simplified model (zero width). However,

the behavior for the width σp ≥ 0.5 m/s is counter-intuitive

in this sense, and should be studied in more detail.

V. CONCLUSIONS

In this work we addressed the study of the effect of WiFi

interference on the Doppler velocity estimation in observations



of weather radar that operates in SPRT mode. Based on a

simplified model of the signal, which could be considered

valid for a point target, and neglecting the effect of noise,

we obtained closed form expressions of how the interference

added to a sample in the CPI affects the estimates made by

the SPPP and DA methods.

Based on the expressions of how the interference affects the

two possible DA estimates, which we called DA1 and DA2, we

obtained our mitigation proposal that consists of combining

these estimates with the appropriate weights, and which we

called Weighting DA (WDA). It is important to highlight that

WDA does not require detecting and/or excluding interfered

samples.

We tested by simulation the performance in terms of RMSE,

considering this simple signal model and different ISRs, but

adding AWGN noise with different SNRs. We observed that

WDA performs better than all other methods in all situations,

obtainig improvements of 7.8 and about 8.5 in logarithmic

scale over the second best, DA2, in situations without and

with interference, respectively. In summary, WDA achieves a

substantial improvement in reducing the effect of noise, but a

slight improvement in reducing the effect of interference.

We also tested by simulation the performance in terms of

RMSE, modelling the meteorological target signal term as a

random process with Gaussian PSD, which is a more realistic

and widely accepted model. We observed that WDA achieves

a slight improvement in situations without interference and

low to moderate SNRs, and in situations of moderate ISR and

moderate to high SNRs, for all considered spectral widths.

The behavior observed considering both models seems to

indicate that WDA is better at dealing with relatively low-

intensity random signals that add up across all samples (such

as noise) than with relatively high-intensity signals that add

up in a single sample (such as interference). A possible cause

could be the effect of the cross products of the noise and

interference terms, which we did not include in the deduction,

and which become considerable when the interference is high.

Another possible explanation, which should be studied in

more detail, is that the interference may be causing DA1 or

DA2 (or both) to fail in the disambiguation stage, an effect

that cannot be later reversed by WDA. A further improvement

may require improving the DA1 and DA2 methods (in wich

WDA is based) with the consequent increase in complexity.

Furthermore, in cases of high interference, it would be easier

to detect and exclude the interfered samples.

It is important to note that although the more realistic model

differs substantially from the simple model (and so far we

have not been able to obtain closed expressions of the effect

of interference in this model), WDA seems to be a low-cost

alternative to improve RMSE in cases with moderate and

without interference.

As future work we are interested in analysing the effect

of interference in other more complex estimation methods,

such as Magnitude Deconvolution [21] or Multi Pulse Pair

Processing [22], and also include the effect of noise and/or a

more realistic signal model in the mathematical formulation.

We are also interested in analyzing other interference patterns

such as those presented in [13].
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