5th Conference on Impedance-Based Cellular Assays # Determining Mammalian Cells State by Fractal Micromotion Acerbo, Esteban; Bellotti, Mariela I. and Bonetto, Fabián J. Universidad Nacional de Cuyo- Instituto Balseiro, San Carlos de Bariloche, Rio Negro, Bariloche. Universidad Nacional de Rio Negro- Sede Andina- Carrera de Medicina, San Carlos de Bariloche, Rio Negro, Bariloche # Objective Study the evolution of the experimental cell culture impedance signal, in only one frequency, as a fractal geometric structure. Test if the fractal dimension is a characteristic value of the cellular state by two independent experiments. #### **Motivation** To obtain information of the impedance fluctuations associated with the cell micromotion, and see if this is complementary to the culture impedance spectrum. #### What is a fractal? - A structure composed of smaller parts that resemble the whole. - For these structures the fractal dimension can be calculated. - For mathematical fractals can me analytically calculated. - For natural fractal structures can be estimated. - The dimension is a characteristic of the structure. Romanesco broccoli structure (2D natural fractal). # Electrical Cell-Substrate Impedance Sensing technique Non invasive technique that focus in the study of the spectral impedance of a culture. - We used normal MDCK type II cells. - Cultivated over Biophysics 96W1E electrodes. Bare (without cells) and covered electrodes impedance spectrums. #### Micromotion - When sampled rapidly the impedance signal of a confluent culture show fluctuations over time. - The fluctuations are associated to cell micromotion over the electrode. - The evolution presents fractal behaviour. - Then the fractal dimension (FD) can be estimated. - For signals FD = 1 indicates a flat line and FD = 2 indicates white noise influence. # Fractal dimension algorithms - Higuchi. - Rescaled Range. - Multiresolution Box-counting. - Multiresolution Length-based. # Validation of the algorithms The algorithms were validated using topological functions of FD manipulable. The conditions for a correct estimations were also studied. # Experimental signal processing - 1. The signal is segmented and treated as independent signals. - 2. Each segment is rescaled and the FD is calculated. - 3. An statistical value of the FD is associated to the cell state. #### Measurements To study the exciting frequency dependency measurements were made at 1 kHz or 64 kHz for different cell states. #### Characterization - Bare electrode. - Starting point of culture fractal behaviour characterization. - Normal culture: Seeding and confluent culture. - We used MDCK type II normal cells. #### Experiments - Electrically wounded and healed culture. - The wound is generated by applying 5 V_{rms} at 40 kHz for 30" to the culture. - Experimental oncological drug administration. - This drug induced cell death between a 24 hs window. #### Results All the statistical estimations are summarized in this two tables. You are invited to see and discuss every estimation by the poster. Table 1: Resistance's over time signal fractal dimension estimation table for different culture states. | Cell status | Freq. | HI. | MR. BC. | MR. LB. | RS. | |-------------------------------|------------|-------------------|-------------------|-------------------|-----------------| | Bare electrode A | $_{ m LF}$ | 1.997 ± 0.001 | 2.012 ± 0.002 | 2.012 ± 0.002 | 1.72 ± 0.03 | | Bare electrode A | $_{ m HF}$ | 2.000 ± 0.001 | 2.009 ± 0.001 | 2.001 ± 0.001 | 1.84 ± 0.02 | | Bare electrode B | $_{ m LF}$ | 1.999 ± 0.001 | 2.012 ± 0.001 | 2.012 ± 0.001 | 1.75 ± 0.03 | | Seeding process | $_{ m LF}$ | 1.57 ± 0.13 | 1.67 ± 0.11 | 1.67 ± 0.11 | 1.72 ± 0.02 | | Confluent culture | $_{ m LF}$ | 1.76 ± 0.05 | 1.77 ± 0.04 | 1.77 ± 0.04 | 1.65 ± 0.03 | | Confluent culture | $_{ m HF}$ | 1.95 ± 0.03 | 1.97 ± 0.02 | 1.97 ± 0.02 | 1.61 ± 0.02 | | Wounded culture (healing) | LF | 1.29 ± 0.12 | 1.43 ± 0.13 | 1.43 ± 0.13 | 1.70 ± 0.04 | | Healed confluence (Recently) | $_{ m LF}$ | 1.68 ± 0.04 | 1.72 ± 0.03 | 1.72 ± 0.03 | 1.68 ± 0.03 | | Healed confluence (Post 24hs) | $_{ m LF}$ | 1.48 ± 0.06 | 1.53 ± 0.06 | 1.53 ± 0.06 | 1.56 ± 0.04 | | Pharmacological assay | LF | 1.56 ± 0.05 | 1.59 ± 0.05 | 1.59 ± 0.05 | 1.58 ± 0.04 | | Pharmacological assay | $_{ m HF}$ | 1.71 ± 0.12 | 1.81 ± 0.09 | 1.81 ± 0.09 | 1.64 ± 0.04 | Table 2: Capacitance's over time signal fractal dimension estimation table for different culture states. | Cell status | Freq. | HI. | MR. BC. | MR. LB. | RS. | |-------------------------------|---------------------|-------------------|-------------------|-------------------|-----------------| | Bare electrode A | LF | 1.987 ± 0.001 | 2.007 ± 0.001 | 2.007 ± 0.001 | 1.79 ± 0.04 | | Bare electrode A | $_{ m HF}$ | 1.998 ± 0.001 | 2.008 ± 0.001 | 2.008 ± 0.001 | 1.76 ± 0.02 | | Bare electrode B | LF | 1.994 ± 0.001 | 2.009 ± 0.001 | 2.009 ± 0.001 | 1.75 ± 0.02 | | Seeding process | LF | 1.51 ± 0.06 | 1.64 ± 0.04 | 1.64 ± 0.04 | 1.74 ± 0.02 | | Confluent culture | $_{ m LF}$ | 1.46 ± 0.04 | 1.44 ± 0.03 | 1.44 ± 0.03 | 1.41 ± 0.04 | | Confluent culture | $_{ m HF}$ | 1.92 ± 0.06 | 1.95 ± 0.05 | 1.95 ± 0.05 | 1.65 ± 0.02 | | Wounded culture (healing) | LF | 1.31 ± 0.12 | 1.42 ± 0.13 | 1.42 ± 0.13 | 1.63 ± 0.08 | | Healed confluence (Recently) | $_{ m LF}$ | 1.44 ± 0.05 | 1.40 ± 0.04 | 1.40 ± 0.04 | 1.39 ± 0.02 | | Healed confluence (Post 24hs) | $_{ m LF}$ | 1.38 ± 0.04 | 1.37 ± 0.04 | 1.37 ± 0.04 | 1.39 ± 0.02 | | Pharmacological assay | $_{ m LF}$ | 1.48 ± 0.04 | 1.46 ± 0.03 | 1.46 ± 0.03 | 1.45 ± 0.02 | | Pharmacological assay | $_{ m HF}$ | 1.68 ± 0.05 | 1.80 ± 0.04 | 1.80 ± 0.04 | 1.66 ± 0.05 | ### Summary - Bare electrode and normal culture - The bare electrode impedance evolution presented white noise influence, FD ~ 2. - The FD discriminates at 1 kHz between a bare electrode and a confluent one, FD ~ 1.7. - This did not differ at high excitation frequencies (64 kHz), FD ~ 2. #### Wound-Healing assay - A wounded culture fractal behaviour differ from bare electrodes, even with similar spectral impedance. - The confluent fractal dimension was re-obtained after cicatrization at 1kHz. #### Drug assay The fractal dimension was reduced after the drug administration, in both high and low excitation frequencies. This change was not detected in the spectral impedance. #### Conclusions - The fractal dimension is a valid value to detect certain process of the cellular culture. - Not all the algorithms are sensible to the same changes in cell state. - Most processes were detected estimating the resistance fractal dimension. - The estimation depends of the used excitation frequency. #### Line of work continuation - Simulate the culture influence in the bare electrodes signal, as a low pass filter. - Try other signal processing tools to detect culture changes (using the same dataset). - Study if other drugs administration are reflected in the fractal dimension. # Thanks for listening