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Stability and bifurcations in time-delay systems:
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B8000CPB Bah́ıa Blanca, Argentina

Received (to be inserted by publisher)

The goal of this article is to introduce a hybrid technique, combining two existing methods con-
veniently, to analyze stability and bifurcations of equilibrium points and periodic orbits in delay-
differential equations of retarded type. One method is called the frequency-domain approach,
an analytical tool based on control theory allowing to detect and represent periodic solutions
emerging from Hopf bifurcations, via Fourier series and harmonic balances. The second one,
the so-called semi-discretization method, provides a numerical scheme to approximate the mon-
odromy operator of a periodic solution, thus permitting to establish stability and bifurcations
of limit cycles as well as analyzing equilibrium points. It is shown that a proper combination of
these methods provides a straightforward strategy to study both local and global bifurcations in
time-delay systems. The usefulness of the proposed approach is shown by three examples, where
the results are compared with those given by the software Dde-Biftool.
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1. Introduction

In the usual framework of control systems, time-
delays have negative effects. They can cause loss of
stability, simple or multiple oscillations, and more
complex dynamics. Those behaviours are commonly
avoided in practical situations by the implementa-

tion of sufficiently fast controllers. However, in ap-
plications where the system dynamics is rapid com-
pared with the control response, and time-delays
cannot be neglected, the mathematical treatment
of the resulting model is challenging. On the other
hand, there are special control schemes which rely
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on the intentional occurrence of a time-delay, for ex-
ample in Pyragas control [Pyragas, 1992]. Concern-
ing the equilibrium points stability, as the number
of eigenvalues of the linearized system is infinite,
the system is prone to suffer instabilities when one
or more parameters vary. Another difficulty lies on
detecting the appearance of oscillatory phenomena.
In this direction, it is possible to track of Tsyp-
kin’s pioneer contributions [Tsypkin, 1946] using
the Nyquist stability criterion.

There is a methodology to detect the appear-
ance of a smooth oscillation when a bifurcation
parameter is varied, based on the theory of feed-
back control [Mees, 1981]. This approach relies on
the Graphical Hopf Bifurcation Theorem (GHBT),
which is an alternative to the classical Hopf bi-
furcation theorem. The GHBT was developed for
ordinary differential equations (ODEs) in the first
instance [Mees & Chua, 1979; Mees, 1981], and
then it was extended to delay-differential equa-
tions (DDEs) in [Moiola & Chen, 1996] and mainly
in [Gentile et al., 2019].

As mentioned previously, some control schemes
have been designed using delayed versions of the
state variables, for example, to control chaotic dy-
namics [Pyragas, 1992; Nakajima, 1997]. Those
techniques have an enormous advantage, this is, the
experimental realization is very simple, and they do
not require a precise model of the system. Moreover,
the stabilization of the erratic dynamics into a peri-
odic orbit immediately follows after a correct tuning
of the delay parameter. A canonical example is the
Rössler oscillator, in which the chaotic behaviour
can be controlled using a simple feedback of de-
layed variables [Balanov et al., 2005]. In addition,
some systems become stable when several signals
with different time-delays are fed back [Kharitonov
et al., 2005].

Thus, time-delays contribute to stabilize or
destabilize the system, according to the specific ap-
plication. They can modify the stability of equilib-
rium points (as usual in classical control systems)
but also the properties of periodic orbits, for ex-
ample, when an oscillation of a specific amplitude
and frequency is desired. In the latter case, the sta-
bility of the periodic solution is difficult to be de-
termined analytically, since the monodromy oper-
ator is needed, which in turn requires the expres-
sion of the periodic solution itself. In this sense, a
well known technique using Tchebyschev polynomi-
als can be seen in [Butcher & Mann, 2009]. Consid-
ering the mentioned difficulties, the main idea of

this article is to combine two techniques to study
the stability of limit cycles. One of them is the al-
ready mentioned GHBT in DDEs, which provides
an approximate expression of the periodic solution,
whose accuracy depends on the number of harmon-
ics employed in its Fourier representation [Moiola
& Chen, 1996; Gentile et al., 2019]. The second
technique is called semi-discretization, which con-
sist of considering a discrete time scale that only af-
fects the delayed terms of the equation, and leaving
the non-delayed variables in their original form [In-
sperger & Stépán, 2011]. It will be shown that the
combination of both approaches is very effective for
the determination of the stability of the periodic
orbits. The results will be illustrated via three ex-
amples, two of them correspond to systems where
the Pyragas [Pyragas, 1992] control strategy is em-
ployed, and the third one is a modified van der Pol
oscillator.

2. Stability of limit cycles and
equilibrium solutions

It is considered the following nonlinear, delay-
differential equation of the retarded type

ẋ(t) = f(x(t), x(t− τ);µ), (1)

where x ∈ Rn is the vector of state variables,
ẋ = dx/dt, τ ∈ R+ is the time-delay, µ ∈ Rp is a
vector of parameters and f : Rn ×Rn ×Rp −→ Rn
is a smooth nonlinear function. The focus is on de-
tecting the qualitative changes in the structure of
solutions of (1) as long as the delay τ and the vec-
tor µ are varied. The stability of a (non constant)
periodic solution x̃(t) (that can also depend on µ)
of (1) of period T can be established by means of
the linear time periodic DDE

ẏ(t) = L0(t, µ)y(t) + L1(t, µ)y(t− τ), (2)

where

L0(t, µ) =
∂f

∂x

∣∣∣∣
x=x̃

, L1(t, µ) =
∂f

∂x(t− τ)

∣∣∣∣
x=x̃

.

(3)
Notice that L0 and L1 in (2-3) are T−periodic ma-
trices in the variable t. In the following τ ≤ T must
be assumed. The evolution of an arbitrary initial
condition x(t) = φ(t), t ∈ [−τ, 0] under the equa-
tion (2) in the interval [T − τ, T ] (or in any interval
of length T ) must be observed.

On the other hand, the stability of an equilib-
rium x∗ of (1) satisfying 0 = f(x∗, x∗;µ), can be
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also deduced from (2) but evaluating the expres-
sions in (3) at the constant solution x∗ instead of
x = x̃(t). In this case, L0 = L0(µ) and L1 = L1(µ),
i.e., they become matrices only dependent on µ. The
equilibrium point x∗ is asymptotically stable if and
only if the characteristic equation∣∣∣λIn − L0(µ)− L1(µ)e

−λτ
∣∣∣ = 0, (4)

has all its eigenvalues in the open left-half of the
complex plane, where In denotes the n × n iden-
tity matrix. A stability change takes place if a root
of (4) crosses to the right-half plane (while others
remain in the left-half), when τ or other parameter
is varied. If a pair of complex conjugate roots cross
the imaginary axis, a periodic solution may appear
via a Hopf bifurcation.

3. The frequency-domain approach

Let us express (1) as a feedback system

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t), (5a)

y(t) = −Cx(t), (5b)

u(t) = g(y(t), y(t− τ);µ) = g(Y ;µ), (5c)

where matrices A0, A1 are of size n× n, B is n× p
and C is m×n, which can obviously depend on the
parameter µ. Equation (5a) is a linear system with
input u = g(Y, µ) ∈ Rp defined through (5b-5c).
Then, g is a feedback function that concentrates
all the nonlinear terms and may depend on both
delayed and non-delayed variables. On the other
hand, after applying the Laplace transform, the lin-
ear part is represented by the transfer function

G∗(s) =

[
G(s)

G(s)e−sτ

]
,

with

G(s) = C
[
sIn −A0 −A1e

−sτ ]−1
B, (6)

where the dependence of G∗ on τ and µ is omit-
ted for short. Notice that the output of this linear
subsystem is Y = [y(t) y(t− τ)] ∈ R2m. Formula-
tion (5a-5c) is the most general scheme that can be
thought for delayed equations of retarded type, in
which the delayed terms appear in both linear and
nonlinear subsystems. The appearance of matrix A1

can be avoided absorbing all the delayed terms in
the nonlinear function g, as shown in [Gentile et al.,
2019]. This setting becomes much simpler if the de-
layed terms affect only the nonlinearity (A1 = 0),
they only appear as linear terms (thus, they do not

appear in the feedback, i.e., g = g(y(t);µ)) or the
non-linearity depends on delayed terms only (thus,
the feedback only includes delayed versions of the
variables, i.e., g = g(y(t− τ);µ)).

The (possible) equilibrium points Y ∗ of (5a-5c)
are the solutions of G∗(0)g(Y ∗;µ) = −Y ∗ and the
stability of Y ∗ is studied via the generalized Nyquist
criterion. Let

J =

[
∂g

∂y(t)

∂g

∂y(t− τ)

]∣∣∣∣
Y=Y ∗

,

then the characteristic equation in the frequency
domain reads

|λI2m −G∗(s)J | = 0.

The eigenvalues λ1, λ2, ..., λ2m of G∗(s)J (also
known as characteristic functions) depend on the
complex variable s as well as the parameter µ and τ .
Let s = iω, ω ∈ R, then for fixed values of µ and τ ,
the geometrical locus of each λj can be traced out in
the complex plane. Now, allowing a parameter vari-
ation, a stability change in Y ∗ is produced when
a distinguished eigenvalue λ̂(s) equals −1 for some
s = iω0 with τ = τ∗ and µ = µ∗. If ω0 ̸= 0, a Hopf
bifurcation may occur, and the GHBT establishes
sufficient conditions for the appearance of a peri-
odic solution branch related to this stability change
of Y ∗. The basic scheme allows an approximation of
the periodic solution with two harmonics. To build
the approximate expression, one needs to obtain
both amplitude and frequency estimates. They can
be found from the intersection between the loci of
the characteristic function (λ̂) and the one associ-
ated with −1 + ξ1θ

2 in the complex plane, i.e., the
method has a graphical interpretation. Here, ξ1 ∈ C
is an auxiliary quantity that will be defined in short
and θ ∈ R+ is a measure of the amplitude of the
sought periodic solution. In other words, one needs
to solve

λ̂(iω) = −1 + ξ1(ω)θ
2, (7)

for θ and ω, where the quantity ξ1 is given by

ξ1(ω) = −u
TG∗(iω)p1(iω)

uT v
, (8)

being u and v the left and right eigenvectors, re-
spectively, of matrix G∗(iω)J associated with the

eigenvalue λ̂(iω), and

p1(iω) = D2 v⊗ V02 +
1

2
D2 v̄⊗ V22 +

1

8
D3 v⊗ v⊗ v,

(9)
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where (̄·) represents the complex-conjugate and ⊗
is the tensor product operator. Also

D2 =
∂2g

∂Y 2

∣∣∣∣
Y=Y ∗

, D3 =
∂3g

∂Y 3

∣∣∣∣
Y=Y ∗

,

are the (matrix) high-order derivatives of g and

V02 = −1
4H

∗(0)D2v⊗v̄, V22 = −1
4H

∗(2iω)D2v⊗v,
(10)

are the zeroth and second-order harmonics
of the Fourier representation, with H∗(s) =
[I2m +G∗(s)J ]−1G∗(s) being the closed-loop trans-
fer function of the linearized system. Finally, the
second-order approximation of the periodic solution
reads

y(t) ≃ Re

{
2∑

k=0

Yk exp(ikωt)

}
,

where Y0 = θ2 V02, Y1 = θv, Y2 = θ2 V22, being θ
and ω the solution pair of (7).

In addition, more accurate approximations,
that include more harmonics can be built
up [Moiola & Chen, 1996], which are usually com-
pared with the results given by the package Dde-
Biftool [Engelborghs et al., 2001]. It is important
to point out that the GHBT has local validity, i.e.,
the obtained results become less accurate as long as
the parameter value departs from the critical bifur-
cation value, worsening the predicted results. More-
over, the GHBT provides an expression for the first
curvature coefficient (also know as the first Lya-
punov focal value) σ1 of the emerging cycle

σ1 = −Re

(
uTG∗(iω0)p1(iω0)

uTG∗′(iω0)Jv

)
, (11)

where G∗′(iω0) = dG∗/ds|s=iω0 . If σ1 is negative
(positive), then the orbit is stable (unstable).

In two of the examples analyzed in this arti-
cle, systems of the form (1) that can be represented
as (5a-5c) with p = m = 1, (called SISO: single
input - single output) will be considered. In this
simplified setting, some expressions become simpler
than in the general case. For example, the use of the
augmented transfer function G∗(s) is not needed,
the loop gain is simply G(s)J that become scalar,
the eigenvectors of G(s)J are u = v = 1, and (8)
reduces to

ξ1(iω) = −G(iω)
{
D2(V02 +

1
2V22) +

1
8D3

}
, (12)

where G(s) is given by (6) and now results

σ1 = Re

(
ξ1(iω0)

G′(iω0)J

)
. (13)

4. Stability and bifurcations of
limit-cycles

Once that the appearance of a limit cycle x̃(t) in (1)
via a Hopf bifurcation is determined, its stability is
given by (11) in the most general case. However,
this information is limited since it provides the sta-
bility at the birth of the cycle, but it may change
as the periodic solution grows in amplitude when
the parameter keeps varying. Thus, as long as the
parameter values depart from the critical one, the
stability of x̃(t) of principal period T can still be
studied from (2). In order to solve this equation
with initial data x(t) = φ(t), t ∈ [−τ, 0] and an-
alyze the stability of x̃(t), the monodromy opera-
tor U , should be obtained. Under the considered
hypothesis, result that U is compact, its spectrum
σ(U) has the origin as an accumulation point and
also 1 ∈ σ(U). The spectrum of U is conformed by
the Floquet multipliers of the periodic solution, and
the one placed at point 1 is called the trivial multi-
plier µ0 [Diekmann et al., 1995]. Since in practice, it
is not possible to obtain the analytical expression of
U , an approximant ”monodromy” matrix U (which
shares the main stability properties with U) will be
constructed. It means that the information about
the relevant Floquet multipliers of U (those closer
to the unit circle) will be found directly through
the eigenvalues of U. The periodic solution is un-
stable when at least one of these eigenvalues lies
outside of the unit circle. If the cycle is stable but
after a parameter variation one eigenvalue crosses
the circle through the point 1 (respectively, −1) a
fold (flip, respectively) bifurcation takes place. Al-
ternatively, if a couple of complex-conjugate eigen-
values cross the circle as the parameter varies, a
Neimark-Sacker bifurcation occurs, giving place to
the appearance of quasi-periodic solutions. In or-
der to obtain the mentioned matrix U, the semi-
discretization method described below will be used.

5. The semi-discretization method

The stability properties of equilibrium points and
periodic solutions of differential equations with one
or more delays can be determined by the method
completely detailed in [Insperger & Stépán, 2011].
Consider again (2) where L0 and L1 are n× n con-
tinuous matrices with T−periodic coefficients in the
variable t. The case in which L0 and L1 are constant
matrices (but they still depend on the parameter
vector µ) allows to study the stability of equilib-
rium points, as described in Section 2. By consid-
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ering the variation of two scalar parameters (two
components of µ) or one scalar parameter and the
time-delay, it is possible to obtain stability charts
in different planes, distinguishing regions where the
equilibrium is stable or unstable.

Once that the stability chart of an equilibrium
point is determined, its boundaries usually repre-
sent Hopf bifurcation curves. In order to study the
stability of a limit cycle emerging from such a point
in (1), its approximate expression obtained with the
GHBT described in Section 3 can be employed and
replaced in (2), converting L0(t, µ) and L1(t, µ) in
T -periodic matrices. It is also possible to detect bi-
furcations of the limit cycle under some parameter
variation, and hence construct secondary bifurca-
tion curves.

In order to introduce the method in a sim-
ple setting, fixed values of the parameter vec-
tor µ as well as the single time-delay τ are as-
sumed. The general formulation can be found in [In-
sperger & Stépán, 2011]. Suppose that L1(t, µ) =
M(t, µ)D(µ) where M and DT are matrices of
size n × 1. A partition on the interval [0, T ] =

∪p−1
i=0 [ti, ti+1] is taken, thus h = T

p is the width
of any sub-interval Ii of this partition. Starting
from (2) and for each Ii, the matrices L0(t) and
L1(t) are approximated by their mean values, and
the vector of delayed state variables is replaced by
some expression depending on t resulting from a lin-
ear interpolation, according to a first-order scheme.
First, if t ∈ Ii one gets

ẏ(t) = L0iy(t) +MiD (βi,0y(ti−r) + βi,1y(ti+1−r)) ,
(14)

where

L0i =
1

h

∫ ti+1

ti

L0(s)ds, Mi =
1

h

∫ ti+1

ti

M(s)ds

and r is the natural number or 0, given by r =[
τ
h + 1

2

]
where [ ] represents the entire part of a

real number. From now on, it is noted yi = y(ti) for
clearness. Then, in (2), one can approximate

y(t− τ) ≈ y
(
ti +

h
2 − τ

)
= βi,0yi−r + βi,1yi+1−r,

where

βi,0(t) =
(i−r+1)h−(t−τ)

h , βi,1(t) =
(t−τ)+(r−i)h

h ,

because if t ∈ Ii, thus (t − τ) ∈ [ti−r, ti+1−r] and
a linear interpolation between the values yi−r and
yi+1−r is used to represent y(t− τ). This procedure
explains (14). Thus, the solution of the discrete sys-
tem with initial values yi and yi−r, yi+1−r can be

found analytically in Ii = [ti, ti+1] as

yi+1 = Piyi +Ri,0 yi−r +Ri,1 yi+1−r, (15)

where Pi = eL0ih, is the matrix exponential L0ih
and, assuming that det(L0i) ̸= 0 the following ex-
pressions are found

Ri,0 =
[
1
h

(
Jn(L0

−1
i (−τ+rh−h)+L0

−2
i

)
+L0

−1
i

]
Mi,
(16)

Ri,1 =
[
1
h(Jn(L0

−1
i (τ − rh)− L0

−2
i )− L0

−1
i

]
Mi,
(17)

where Jn = In − eL0ih. If det(L0i) = 0, then Ri,0
and Ri,1 are found by numeric integration. Then,
(15) is written as

zi+1 = Gizi, (18)

where zi =
[
y
(j)
i yi−1 yi−2 · · · yi+1−r yi−r

]T
is a

augmented vector of states and y
(j)
i represents the

components of the vector y(t) in (14) and Gi is the
block matrix

Gi =


Pi 0 · · · Ri,1 Ri,0
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0

 . (19)

Since T = ph, after p iterations of (18) with
initial value z0, the monodromy map zp = Uz0 is
attained, where

U = Gp−1Gp−2 · · ·G0, (20)

is an (n + r) × (n + r) matrix representing the
monodromy operator of (14), which in turn is
a finite-dimensional approximation of the infinite-
dimensional monodromy operator U of (2). So, if
its eigenvalues lie inside of the unit circle of the
complex plane, then (14) is asymptotically stable.
Under certain conditions, this discretization tech-
nique preserves the asymptotic stability in retarded
DDEs, as shown in [Hartung et al., 2006]. Thus, the
stability charts of (14) provide approximate stabil-
ity charts of the corresponding periodic system (2).

In summary, the stability charts of equilibrium
points in DDEs will be found, assuming constant
matrices in (2). In the other hand, the case of time-
periodic matrices emerge when the linearized equa-
tion of a nonlinear DDE about a periodic solu-
tion is computed. The asymptotic stability of the
linearized equation determines the stability of the
limit cycle of the corresponding nonlinear system.
Moreover, if this periodic solution is the result of
a Hopf bifurcation, an approximate expression can
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be built via the frequency-domain approach, to ob-
tain a system like (2). Then, its stability can be de-
termined thanks to the semi-discretization method.
By tracking the loci of the eigenvalues of the mon-
odromy matrix (the Floquet multipliers of the cy-
cle) as a parameter is varied, the secondary bifur-
cations can be detected.

6. Examples

6.1. Tesi’s system with delayed
control

Consider the system introduced in [Tesi et al., 1996]
with a feedback term as proposed by Pyragas [1992],
given by

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −x1 − 1.2x2 + µx3 + x21 + k(x1 − x1τ ),

(21)

where µ ∈ R and x1τ = x1(t − τ), k, τ > 0. The
equilibrium points result with x∗2 = x∗3 = 0 and
x∗1 = 0 or x∗1 = 1. The stability of these points is
studied via the linearized equation (2) with

L0 =

 0 1 0
0 0 1

−1+k+2x∗1 −1.2 µ

 , L1 =

 0 0 0
0 0 0
−k 0 0

,
given in (3), where x∗1 = 0 or x∗1 = 1, depending
upon the considered point.

Q

Fig. 1. Stability chart of the trivial equilibrium of system
(21) in the (µ, τ) plane with k = 0.5. This equilibrium is
asymptotically stable in the shaded region. The results ob-
tained by semi-discretization technique and those of Dde-
Biftool (dots) are indistinguishable. At a particular point
denoted as Q = (−1, 1), a periodic solution emerging from
a Hopf bifurcation will be approximated.

In this example, it is taken x∗1 = 0 and the sys-
tem is discretized with µ = 1, k = 0.5, τ = 1 = T ,
and p = 10. Notice that the period T can be chosen
arbitrarily for the analysis of a constant solution.
Then, for this particular set of parameters, one has
h = T

p = 1
10 and r = [ τh + 0.5] = 10. Observe that

in this example L1 = M.D where MT = [0 0 − k]
and D = [1 0 0]. In this way, from the partition
[0, T ] = ∪9

i=0[ti, ti+1], the matrix Gi (19) results
of size 13 = 3 + 10, where n = 3 is the dimen-
sion of x, r = 10 and Gi(1 : 3, 1 : 3) = exp(L0),
Gi(4, 1 : 3) = [1 0 0], Gi(5 : 13, 4 : 12) = I9,
Gi(1 : 3, 12) = Ri,1 and Gi(1 : 3, 13) = Ri,0. Under
the successive application of Gi, one can obtain U
as in (20) and determine the stability charts of the
equilibrium point (x∗1, x

∗
2, x

∗
3) = (0, 0, 0). For exam-

ple, for a constant value of k (k = 0.5), the stability
region of the trivial equilibrium point in the (µ, τ)
parameter space can be achieved. On this regard,
consider µ ∈ [−4, 0], τ ∈ [0, 8] and a grid of 40×40
points to compute Gi as described in Section 5. No-
tice that the size of Gi also varies step by step con-
forming τ varies. The obtained stability region is
shown in Fig. 1, where the result agrees with the
equivalent given by Dde-Biftool.

The original model [Tesi et al., 1996] which has
only one real parameter and does not include any
delay, exhibits a supercritical Hopf bifurcation. So
it is interesting to observe the evolution of the sta-
bility charts of (21) at the equilibrium point while k
tends to 0, to recover the phenomena of the original
system. These results are shown in Fig. 2.

Fig. 2. Stability chart portions for the trivial equilibrium of
system (21) in the (µ, τ) plane for several values of k. These
curves approach to the line µ = − 5

6 , as k tends to 0, which is
the Hopf bifurcation condition for the original system [Tesi
et al., 1996]. The one for k = 0.5 corresponds to the chart
shown in Fig. 1.
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In order to represent (21) in the form (5a-5c),
the following matrices are considered

A0 =

 0 1 0
0 0 1
−1 −1.2 µ

 , A1 =

 0 0 0
0 0 0
−k 0 0

 ,
B =

[
0 0 1

]T
, C =

[
1 0 0

]
,

and u(t) = g(y(t)) = −ky(t) + y(t)2, with y = −x1.
Matrix G representing the linear part of the system
is

G(s) = C[sI3 −A0 −A1e
−sτ ]−1B =

1

∆(s)
,

where ∆(s) = s3−µs2+1.2s+ke−sτ+1. The equilib-
rium points in the frequency-domain representation
are given by the equation G(0)g(y) = −y, and the
solutions are y∗1 = 0 and y∗1 = −1. The stability of
the trivial equilibrium is determined by the char-

acteristic equation of G(s)J , where J = dg
dy

∣∣∣
y∗=0

=

[−k + 2y]y∗=0. Since it is a scalar matrix, the Hopf
bifurcation condition becomes

G(s)J = −1 ⇐⇒ s3−µs2+1.2s+ke−sτ+1−k = 0.

Amplitude and frequency estimates of the orbit
emerging from the Hopf bifurcation can be obtained
by solving (7) with λ̂(iω) = G(iω)J = −k/∆(iω)
and ξ given by (12). The Hopf bifurcation neces-

sary condition λ̂(iω) = −1 reads{
ω2µ+ k cosωτ + 1− k = 0,
−ω3 + 1.2ω − k sinωτ = 0.

(22)

If k = 0.5 and τ = 1, a Hopf bifurcation point re-
sults from (22) with µ0 = −1.0794 and ω0 = 0.8724.
Thus, one can choose the point Q = (−1, 1) shown
in Fig. 1 in order to compute the stability of the
periodic solution emerging from the aforementioned
Hopf point. Using a second-order harmonic balance
(HB2), the approximate expression of the x1 com-
ponent of this cycle results

x1 = 0.0380− 0.2757 cos(ωt)

−0.0048 cos(2ωt)− 0.0068sen(2ωt),

where ω = 0.8666. Analogously, the fourth (HB4)
and sixth (HB6) order approximations can be ob-
tained following the formulae in [Gentile et al.,
2019]. With these results, the semi-discretization
method is applied to determine the stability of the
periodic solution, via an approximation of the mon-
odromy operator given by (20). The results are
shown in Table 1, where the trivial multiplier µ0
and the following (of greater modulus) multiplier

µ1 are compared. In one case they are computed
via different harmonic balances and in the other
with Dde-Biftool [Engelborghs et al., 2001]. The ob-
tained values confirm the existence of an asymptot-
ically stable cycle, and the accuracy of the approx-
imations improves conforming a higher-order bal-
ance is employed, approaching the values given by
Dde-Biftool. Another measure of the accuracy of the
approximation is the closeness of the trivial multi-
plier µ0 to the point 1.

Table 1. Stability analysis of the cycle in model (21) with

k = 0.5, (µ, τ) = (−1, 1) (point Q in Fig. 1) via

semi-discretization, with different harmonic balances and

comparisons with Dde-Biftool.

θ ω µ0 µ1

HB2 0.2757 0.8666 1.0101 0.7881

HB4 0.2721 0.8669 1.0084 0.7951

HB6 0.2718 0.8669 1.0084 0.7955

Dde-Biftool 0.2705 0.8677 1.0000 0.8049

6.2. System of Campbell and
Leblanc

The following model, introduced in [Campbell &
LeBlanc, 1998] is considered

ẍ+ αẋ+ 5
2x = axτ + bx2τ , (23)

where α, a, b are parameters, xτ = x(t − τ) and
τ > 0. Equation (23) can be written as

ẋ1 = −αx1 − 5
2x2 + ax2τ + bx22τ ,

ẋ2 = x1.
(24)

The equilibrium points result with x∗1 = 0 and x∗2
being the solution of −5

2x2 + ax2 + bx22 = 0, thus

x∗2 = 0 or x∗2 = (52 − a)b−1. The dynamics close
to the trivial equilibrium with α = 0 was analyzed
in [Itovich et al., 2019] considering the variation of
the main parameters a and τ . The regions of asymp-
totic stability were determined in several parame-
ter planes by studying the exponential polynomial
characteristic equation. Moreover, the appearance
of periodic solutions was found via the GHBT as
well as the suspection of fold bifurcations of cycles,
the latter confirmed using Dde-Biftool. Now, taking
into account the results in [Campbell & LeBlanc,
1998], it is known that a Hopf-Hopf (HH) bifur-
cation with 1:2 resonance appears with α = 0, at
(τ, a) = (kπ,−3/2), k ∈ N. Now consider k = 1 and
let τ and a vary. The stability of the trivial equilib-
rium x∗ = (x∗1, x

∗
2) = (0, 0) of (24) is determined by
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the linear delay equation (2), where

L0 =

[
0 −5

2
1 0

]
, L1 =

[
0 a
0 0

]
,

according with the location of the roots of P (λ) =
det(λI−L0−L1e

−λτ ) = λ2+ 5
2−ae

−λτ . It is useful to
depict the stability chart in the (τ, a) plane, which
is obtained via the semi-discretization method, de-
tecting the curves where the equilibrium changes its
stability, and testing arbitrary points of the result-
ing regions. The result can be seen in Fig. 3.

HH

Fig. 3. Stability chart delimited by some portions of Hopf
bifurcation curves for system (23), close to a Hopf-Hopf
with 1:2 resonance point (HH) appearing for α = 0 at
(τ, a) = (π,−3/2). The shaded region indicates asymptotic
stability. By previous knowledge (see Gentile et al., 2018)
of the existence of flip, Neimark-Sacker and fold bifurcation
curves (displayed in green, red and pink, respectively) some
secondary bifurcations are detected at the points labeled as
Q1, Q2 and Q3.

It is also possible to apply the frequency-
domain approach to (24) in order to find periodic
solutions emanating from Hopf bifurcations. In this
sense (see Gentile et al., 2018), the case b = 0.9
was considered for system (23) and the dynamics
around the HH bifurcation with 1:2 resonance point
(α = 0, τ = π, a = −3/2) was studied in detail us-
ing the Dde-Biftool. Moreover, the existence of fold,
flip and Neimark-Sacker secondary bifurcations was
proved numerically. These bifurcations can be also
recovered with the combined techniques described
in this work. The approximate expressions of the
periodic solutions emerging from Hopf bifurcations
are obtained via the GHBT, and their stability is
determined as described in Example 6.1 in this sec-
tion. It is clear that the quasianalytic formulae of
the cycle changes as one selected system parameter
varies.

For example, in Fig. 3, three vertical dotted
lines are shown, assuming fixed values of τ and al-
lowing a to vary. In each case, the expressions of
the emerging cycles are constructed via the GHBT
and continued as functions of the parameter a. The
Floquet multipliers of the approximant matrix are
computed step by step, so this mechanism allows
to follow their evolution. Thus, the cycle bifurca-
tions mentioned above can be detected again and
checked, as shown in Tables 2-4, where the informa-
tion about the trivial multiplier and the amplitude
of the cycle is also given. These determinations are
shown in Fig. 3 labeled as Q1, Q2 and Q3, together
with some related cycle bifurcations curves obtained
previously in [Gentile et al., 2018]. It is well known
that the singularity caused by the vanishing of the
first curvature coefficient (13) causes the appear-
ance of fold bifurcations of cycles. As example, to
find a point where a fold appears, fourth-order ap-
proximations were used (by technical reasons, the
second-order expressions cannot be used for this
specific task) together with the semi-discretization
method. These results, which involve the point Q3

located in Fig. 3, can be seen in Table 4 and are
in agreement with those obtained in [Gentile et al.,
2018]. This singularity is very close to some initial
Hopf point pointed out in Table 4 and at least two
reasons can justify this particular determination:
the branch of periodic solutions grows in amplitude
very quickly and the GHBT can guarantee results
only when θ ≤ 1.

Table 2. Determination of a flip bifurcation point Q1 with

τ = 3.4 near to the Hopf point (τ, a) = (3.4,−0.9151) with

ω0 = 1.8480, for system (23).

a µ0 θ

HB2 −1.1130 0.9969 1.0375

HB4 −1.1206 0.9999 1.0337

Dde-Biftool −1.1235 1 1.0549

Table 3. Determination of a Neimark-Sacker bifurcation

point Q2 with τ = 3.6 near to the Hopf point

(τ, a) = (3.6,−0.5462) with ω0 = 1.7453, for system (23).

a µ0 θ

HB2 -0.9830 0.9867 1.5324

HB4 -1.0330 1.0085 1.5405

Dde-Biftool -1.0352 1 1.5430
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Table 4: Determination of a fold bifurcation point Q3 with

τ = 2.8 near to the Hopf point (τ, a) = (2.8,−1.2411) with

ω0 = 1.1220, for system (23).

a µ0 θ

HB4 -1.2226 0.9980 0.6386

Dde-Biftool -1.2211 1 0.6459

6.3. Van der Pol system with
time-delay

It is considered the modified delayed van der Pol
system studied in [Gentile et al., 2019], given by

ẍ+ (x2 − ε)xτ + x = 0, (25)

with ε > 0, which can be rewritten as

{
ẋ1 = −(x22 − ε)x2τ − x2,
ẋ2 = x1,

(26)

after defining the state variables x2 = x and x1 = ẋ.
System (26) has three equilibrium points with x∗1 =
0 and x∗2 = 0 or x∗2 = ±

√
ε− 1, when ε > 1. Fol-

lowing (3), the linearization about any equilibrium
point results:

L0 =

[
0 −1− 2(x∗2)

2

1 0

]
, L1 =

[
0 ε
0 0

]
, (27)

where x∗2 assumes the value in accordance with the
considered equilibrium point. Then, some aspects
related with stability of equilibrium points and or-
bits coming from Hopf bifurcations will be consid-
ered.

6.3.1. About its equilibrium points

The stability charts for the equilibrium points are
build following the strategy shown in the previous
examples. For the case of the trivial equilibrium,
with x∗2 = 0, (see (27)) the chart is obtained through
semi-discretization and shown in Fig. 4. This repre-
sentation is similar to one found before in [Itovich
et al., 2019]. Besides, one theorem can be stated
to establish stability areas exactly, due to the bor-
der curves can be obtained as exact formulas (see
Itovich et al., 2019).

τ
0 4 8 12 16 20
0

0.5

1

1.5

Fig. 4. Stability chart for the trivial equilibrium point for
system (25). The borders of the shadowed regions represent
Hopf bifurcation curves.

Moreover, for any of remaining two equilibrium
points with x∗2 = ±

√
ε− 1, the semi-discretization

method yields a stability chart that looks more com-
plex than the previous and is exhibited in Fig. 5.

τ
0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

Fig. 5. Stability chart for the non trivial equilibrium points
for system (25). The frontiers of these tongues are defined by
the collection of curves (τ, ε) in the condition (28).

Furthermore, it is possible to confirm the
asymptotic stability areas analytically, employing
Pontryagin results [Bellman & Cooke, 1963] with
an analogous strategy as in [Itovich et al., 2019]
through the new following outcome:

Theorem: Suppose that ε > 1 in (25) or system
(26). The sufficient and necessary condition that the
parameters (τ, ε) must satisfy to have the asymp-
totic stability at any of the non trivial equilibrium
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points is given by the general condition

(2k)2π2

2τ2
+ 1 < ε <

(2k + 1)2π2

2τ2
(28)

where k = 0 or k ∈ N.

6.3.2. About its periodic solutions

System (26) can also be represented in a feedback
form considering

G∗(s) =
1

s2
[
1 e−sτ

]T
g(Y ) = (y2 − ε)yτ + y,

where Y = [y yτ ]. Thus with the frequency do-
main approach, for the trivial equilibrium Y ∗ =
(y∗, y∗τ ) = (0, 0), the Jacobian matrix is J =
[1 − ε]. Since rankG∗(s)J = 1, its only nonzero

eigenvalue is given by λ̂(s) = (1 − εe−sτ )/s2,
for which the necessary Hopf bifurcation condition
(λ̂(iω0) = −1) reads{

ε cos(ω0τ) = 1− ω2
0,

ε sin(ω0τ) = 0.

There is a trivial solution given by ω0 = 1 and
ε = 0, the same appearing for the non-delayed
system. On the other hand, there is a set of so-
lutions with ωτ = nπ, n ∈ N ∪ {0} that result in
ε(−1)n = 1 − (nπ/τ)2 after replacing into the first
equation. Thus, the Hopf curves in the (τ, ε) plane
can be obtained also from the last expression and
are in agreement with (28), limiting the stability
regions in Fig. 5.

Since the output of the linear subsystem is non-
scalar, the general expression for the curvature coef-
ficient (11) is used. After some calculations, for the
solution ω0 = 1 and ε = 0, follows σ1 = sin(τ)/8,
then the bifurcation is supercritical if sin τ < 0 and
subcritical if sin τ > 0. This information agrees with
the results shown in Tables 5 and 6, for two partic-
ular choices of the parameters (τ, ε), given a stable
or an unstable cycle, respectively. From the second
equation the amplitude is given by θ = 2ε1/2, thus
max(x(t)) = 2ε1/2.

Since the matrix representing the second-order
derivative in (9) is zero for the trivial equilibrium,
it is not difficult to develop up to fourth-order har-
monic balance. Taking into account the procedure
given in [Moiola & Chen, 1996; Gentile et al., 2019],
one can obtain the following expressions for the har-
monics

Y0 = 0, Y1 = 2
√
ε

[
1

e−iωτ

]
, Y2 = 0,

Y3 = −2ε3/2

ψ(ω)

[
e−iωτ

e−i4ωτ

]
, Y4 = 0,

where ψ(ω) = 1− 9ω2 − εe−i3ωτ and ω is obtained
by solving

λ̂(iω) = −1 + ξ1θ
2 + ξ2θ

4, (29)

with

ξ1 = (
1

2
e−iωτ +

1

4
eiωτ )/ω2,

ξ2 = −(2 + e−i4ωτ )/(16ω2ψ(ω)).

Particularly, for the second order harmonic bal-
ance, the frequency ω follows from (29) considering
ξ2 = 0 and the expression for the cycle results just
with Y1. To apply the semi-discretization method
one needs the expression of the periodic solution
to replace it in (27) and then one follows the steps
described in Section 5.

In order to test the stability of the cycles emerg-
ing from Hopf bifurcations curves (see Fig. 4), a
pair of representative examples have been consid-
ered and the outcomes can be observed in Tables 5
and 6.

Table 5. Stability analysis of the stable cycle in model (26)

with τ = 4, and ε = 0.05 via semi-discretization, with

different harmonic balances and comparison with

Dde-Biftool results.
θ ω µ0 µ1

HB2 0.4472 0.9611 1.0292 0.7688

HB4 0.4480 0.9611 0.9954 0.7959

Dde-Biftool 0.4451 0.9610 1.0000 0.7923

Table 6. Stability analysis of the unstable cycle in

model (26) with τ = 1, and ε = 0.05 via semi-discretization,

with different harmonic balances and comparison with

Dde-Biftool results.
θ ω µ0 µ1

HB2 0.4472 1.0256 1.0075 1.2648

HB4 0.4485 1.026 1.0011 1.2761

Dde-Biftool 0.4495 1.026 1.0000 1.2780

7. Conclusions

In this work, the usefulness of the combination
between the GHBT and the semi-discretization
techniques, to study stability and bifurcations in
delayed equations, is demonstrated. This hybrid
method allows to determine the stability regions
of equilibrium points, the stability of limit cycles
emerging from Hopf bifurcations and to detect sec-
ondary bifurcations. Moreover, stability charts with
the identification of those secondary bifurcations
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were built. The accuracy on the detection of those
global phenomena relies on the proximity between
the secondary bifurcation point and the initial Hopf
bifurcation point that gives birth to the limit cycle,
as well as on the order of the harmonic balance em-
ployed. The obtained results successfully agree with
those given by the software Dde-Biftool. In future
contributions, the goal is to use this hybrid tech-
nique to study the dynamics around more complex
singularities, and also to analyze delay equations of
neutral type.
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