

Evaluación de calidad de agua en el arroyo Valcheta: indicadores fisicoquímicos y microbiológicos como señales de impacto ambiental

Solari, C. A.¹; Coniglio S. J.¹; Baggio R. B. ^{1,2}; Hünicken L.¹

¹Universidad Nacional de Río Negro, Viedma, Río Negro, Argentina. ²Consejo Nacional de Investigaciones Científicas y Técnicas.

Arroyo Valcheta - Río Negro

Uno de los escasos valles húmedos de la región

- Importancia Ecológica
- Refugio de biodiversidad en zona árida
- Importancia Socioeconómica
- Base para actividades económicas regionales
- Problemática Actual
- Múltiples usos del arroyo y su ribera
- Modificaciones del ecosistema original
- Impactos Potenciales
- Pérdida de biodiversidad
- Riesgos para la salud humana

Objetivo

Evaluar la calidad de agua del arroyo Valcheta mediante parámetros fisicoquímicos y microbiológicos en cuatro sitios diferenciados por el uso: Control (S1), Agrícola (S2), Urbano (S3) y Vertedero (S4).

Metodología

Se midieron parámetros **hidrológicos** (velocidad, caudal) **fisicoquímicos** (T°, CE, pH, sólidos suspendidos) y se recolectaron muestras para análisis de **nutrientes**, **clorofila** *a*, y bacterias indicadoras de **contaminación fecal** (BICF: *Escherichia coli* (ISO 9308) y *Enterococcus spp.* (ISO 7899). Se realizó un Análisis de Componentes Principales para identificar patrones y gradientes ambientales incluyendo todas las variables.

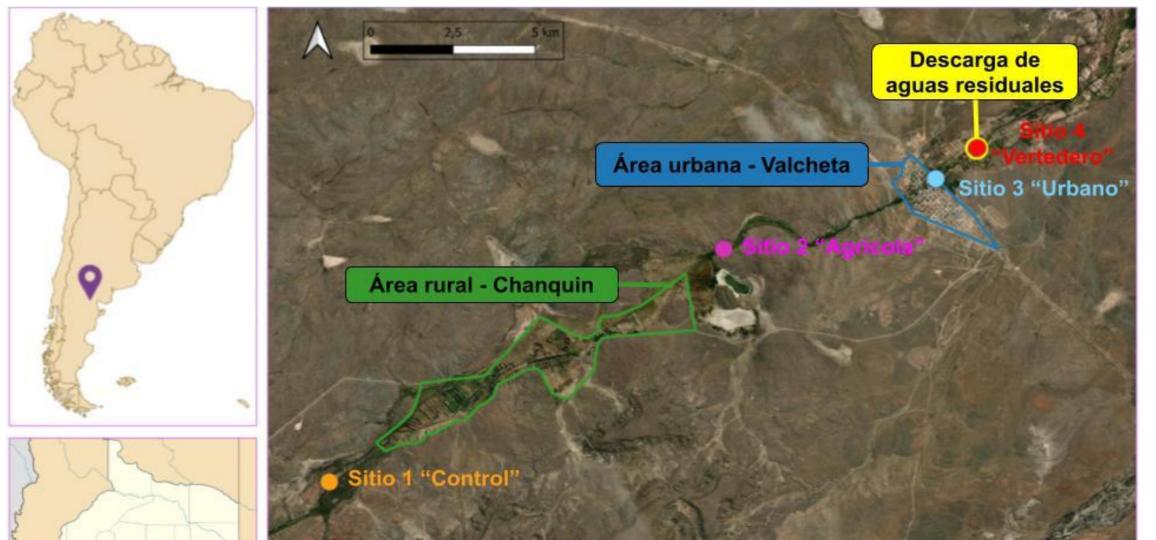
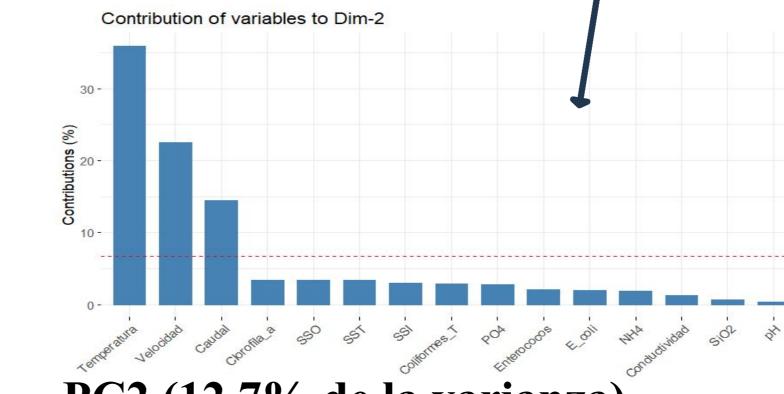
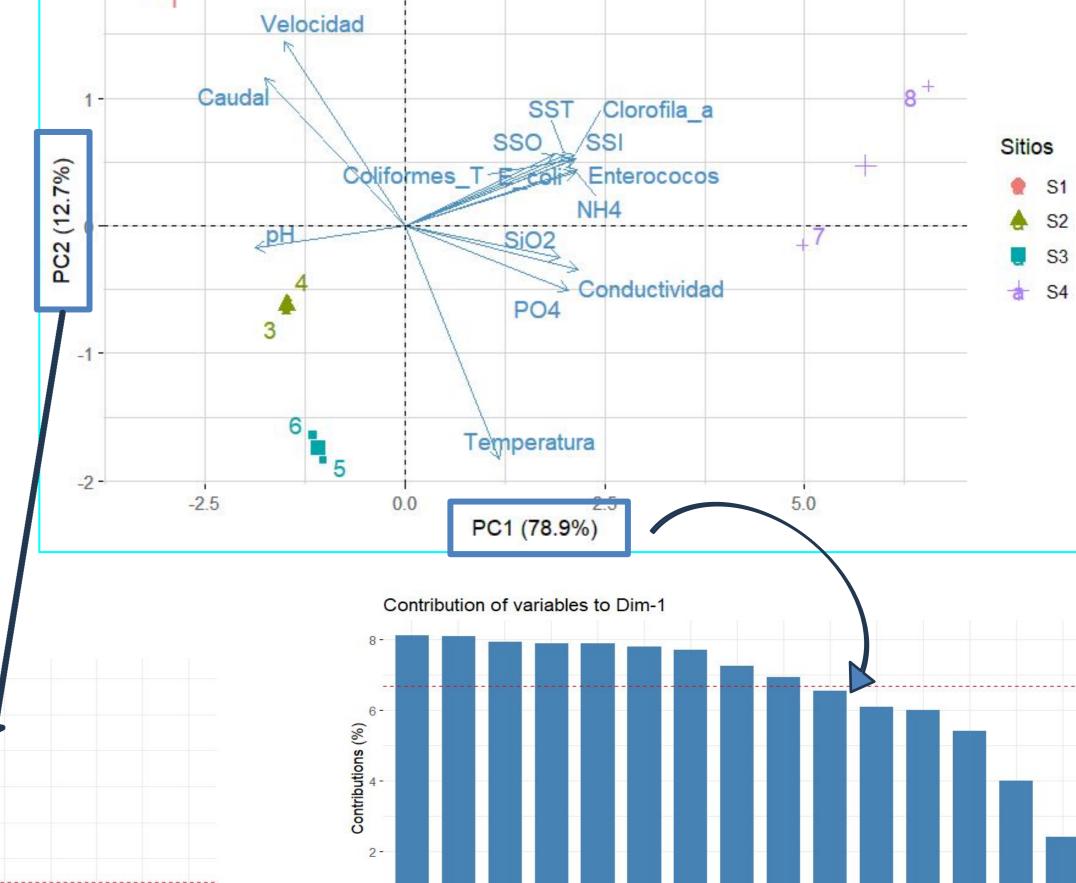



Figura 1. Mapa de sitios de muestreo.

Tabla 1. La tabla muestra los valores de las correlaciones entre cada variable independiente y los componentes principales (PC)

Variable	PC1	PC2
Velocidad Caudal	-0,20 -0,23	
Temperatura Conductividad pH SST SSI SSO	0,28 -0,25 0,26 0,28	-0,60 -0,11 -0,06 0,18 0,17 0,18
PO4 NH4 SiO2	0,28	-0,17 0,14 -0,08
Clorofila a Enterococos <i>E. Coli</i> Col. Tot	0,28 0,28	0,18 0,15 0,14 0,17



PC2 (12,7% de la varianza)

Asociado a T°, velocidad de corriente y caudal → diferencia S1, S2 y S3.

Resultados

Biplot - Sitios y Variables

Relacionado con conductividad, enterococos, CE, sólidos suspendidos inorgánicos, *E. coli*, amonio, clorofila *a*, coliformes totales, fosfato y sólidos suspendidos → distingue al S4.

Sitios	Hidrold	gicas	Físicoquímicas					Tróficas			Biológicas						
	Veloc.	Caudal	Temp	CE pH	Sólidos s	Sólidos suspendidos (mg/100ml)		PO ₄	NH ₄	SiO ₂	Clorofila a BICF (UFC/100		00ml)				
85	(m/s)	(m ³ /s)	(°C)	(µS/cm)	Totales	Inorgánicos	Orgánicos	(mg/l)	(mg/l)	(mg/l)	(μg/l) En	t Col. T	E. coli				
s S1	0.836	0.557	13.6	495 8.6	0.15	ND	0.15	0.073	0.038	12.63	1.829	₄ 53	4				
51	0.630	0.557	13.0	493 6.0	± 0.04	ND	± 0.04	± 0.014	± 0.022	± 0.665	± 1.17	±6	±2				
S2	S2 0.129 0.386	0.386	16.1 70	16.1	703 8.5	0.36	0.06	0.28	0.087	0.022	12.84	0.398	7 67	16			
52		0.500		703 0.3	± 0.06	± 0.03	± 0	± 0.009	± 0	± 0.028	± 0.56	±13	± 4				
S3	S3 0.19	0.096	0.096	0.096 16.8	96 16.8	16.8	16.8	880 8.7	0.36	ND	0.36	0.124	0.066	13.15	1.196	1 27	1
55			10.0	000 0.7	± 0.34	110	± 0.34	± 0.008	± 0.03	± 0.368	± 0.19	±6	± 0				
S4	ND	ND	16.4	1504 8.3	5.35	2	3.35	0.175	3.588	14.305	816.405	0 413	363				
DТ	ST ND ND	10.4	10.4	1304 0.3	± 3.47	± 0	± 2.9	± 0.003	± 0.056	± 0.361	± 291.7 17	±1	±6				

Conclusión

El análisis multivariado identificó dos gradientes en el arroyo Valcheta: uno de contaminación (sitio 4 con altos NH4, PO4, E.coli por efluente cloacal) y otro hidrológico (velocidad, caudal, temperatura separando zona urbana de control/agrícola). El impacto antrópico es el principal factor de variabilidad ambiental.