

Trabajo Final de Carrera

Despliegue de un entorno de

credenciales verificables (VC) bajo el

estándar de la W3C

Autor: Carlos Leandro Isaias Farra Gomez

Director: Mauro Cambarieri

Codirector: Guillermo Malpeli

Índice
Trabajo Final de Carrera.. 1
Índice...2
1. Breve marco teórico.. 3

1.1 Claim.. 3
1.2 Credencial Verificable (VC).. 3
1.3 JSON-LD.. 4
1.4 DID... 4
1.5 Wallet..5
1.6 Consorcio... 5
1.7 Tenant...5

2. Tareas realizadas..5
2.1 Análisis... 5
2.2 Diseño de la solución... 7
2.3 Implementación.. 11
2.4 Documentación.. 12

3. Procesos del entorno de Credenciales Verificables...13
3.1 Emisión de un lote de Credenciales Verificables... 13
3.2 Almacenamiento en la Wallet de una Credencial Verificable..................................... 14
3.3 Verificación de una Credencial Verificable... 15

4.Resultados...16
4.1 Ecosistema resultante.. 16

5. Fuentes... 17
5.1 Bibliografía... 17
5.2 Software utilizado... 17

6. Anexos.. 17
6.1 Archivos de despliegue en local...17
6.2 Archivos de ejemplo... 23
6.3 Ejemplos de código.. 28

En este trabajo final de carrera, se busca detallar el despliegue de un entorno de
Credenciales Verificables (VC) bajo el estándar Verificable Credentials Data Model v2.0
(World Wide Web Consortium [W3C], 2025).

1. Breve marco teórico.
Se incluyen en este marco teórico las definiciones de los conceptos principales del

dominio de trabajo.

1.1 Claim
Una claim es la unidad básica de información dentro del modelo de datos.

Representa una declaración sobre un sujeto, el cual puede ser una persona, una
organización u otro tipo de entidad. Estas afirmaciones se estructuran mediante relaciones
del tipo “sujeto - propiedad - valor”, lo que permite expresar una amplia gama de hechos,
como por ejemplo, si una persona ha completado estudios en una universidad específica.

Fuente: Elaboración personal a partir de la W3C.

1.2 Credencial Verificable (VC)
Una credencial verificable es una credencial enriquecida con mecanismos

criptográficos que permiten probar su origen y detectar cualquier alteración. De esta forma,
el modelo garantiza tanto la autenticidad del emisor como la integridad del contenido.
Ejemplos típicos de credenciales verificables incluyen identificaciones digitales de
empleados, licencias de conducir digitales y certificados académicos digitales.

Está compuesta por una agrupación de una o más claims que provienen de una
misma entidad emisora; un proof; y diversos metadatos para definir su estructura.

Fuente: Elaboración personal a partir de la W3C.
Entre los metadatos mas comunes que suele contener una credencial verificable

están:

Fuente: Elaboración personal a partir de la W3C.

1.3 JSON-LD
La especificación de Credenciales Verificables utiliza JSON-LD 1.1 como formato de

serialización para representar su modelo de datos basado en grafos. JSON-LD facilita la
representación semántica y extensible de estos datos en un formato familiar para
desarrolladores que ya usan JSON.

Tiene características como permitir que las credenciales sean representadas como
un documento JSON; palabras clave como @id o @type para definir de forma más
semántica los campos clave; soporte para tipos extra como fechas, url’s, entre otros.

1.3.1 JSON
JavaScript Object Notation es un lenguaje para definir objetos de forma concisa y

simple. Soporta campos con valores simples (números enteros; números flotantes; cadenas
de texto; booleanos), valores compuestos (otro objeto JSON anidado) y colecciones simples
(arrays y diccionarios).

1.4 DID
El Descentralizaded ID es el identificador único con el que una institución puede

firmar una credencial verificable. De esta forma garantiza que las credenciales verificables
se pueden validar sin depender únicamente de la entidad que la emitió. Consiste de 2
elementos:

●​ Una seed, que cada entidad debe almacenar de forma confidencial, ya que se usa
en el servicio de emisión para firmar las credenciales verificables.

●​ El did propiamente dicho, que se guarda en un registro común entre todas las
entidades que conformen el consorcio establecido. En nuestro caso, al ser un

prototipo, representamos la única entidad registrada. Este sirve para ser consultado
por las instancias del verificador y validar que una determinada credencial verificable
fue emitida por una entidad perteneciente al registro.

1.5 Wallet
La wallet es un espacio de almacenamiento donde el usuario puede guardar sus

credenciales. La puede usar para mostrar la credencial, o una presentación parcial. En la
implementación del entorno está representada por una aplicación de Android.

1.6 Consorcio
Se usará este término para abarcar a las entidades que conforman el registro de

DIDs, representa un conjunto de entidades capaces de emitir credenciales verificables y
validar si los demás miembros del consorcio emiten sus propias credenciales.

1.7 Tenant
Es una entidad autorizada para emitir credenciales verificables en el entorno del

consorcio. No es precisamente un concepto del dominio sino que forma parte del proyecto.

2. Tareas realizadas

2.1 Análisis

2.1.1 Situación actual
Las universidades, o cualquier institución educativa, convalida los conocimientos de

los estudiantes mediante la emisión de certificados o títulos. Actualmente, esta
convalidación se hace al completar un curso o una carrera. Esto quiere decir que en el
sistema actual no existe la posibilidad de acreditar la adquisición de conocimientos parciales
sino solamente finalizados.

En el caso de los cursos, las certificaciones suelen consistir en un archivo pdf, fácil
de perder y de presentar. Se han tomado medidas para mitigar estos déficits., Una de ellas
es la verificación a través de un código QR que se contrasta contra un servicio de
verificación propio de la entidad. Sin embargo, esto conlleva una desventaja: se necesita un
verificador centralizado que depende única y exclusivamente de que el emisor lo mantenga
funcionando. Si eventualmente se da de baja, no se podrían verificar más los certificados
emitidos por dicha entidad.

En el caso de las carreras de grado, la certificación a la finalización del cursado
representa la aprobación de la totalidad de la malla curricular. Esto genera que la oferta
académica resulte bastante inflexible y monolítica, ya que el estudiante no puede validar su
conocimiento en determinadas áreas, hasta completar el título de grado.

2.1.2 Infraestructura disponible
Para el desarrollo del proyecto, se hace uso de los recursos del Laboratorio de

Informática Aplicada (LIA) de la UNRN. Dicho laboratorio cuenta con los siguientes
componentes en su infraestructura:

●​ Nodo local de GitLab, como sistema de control de versiones. El mismo cuenta con
su propio runner configurado, de forma que la pipeline se ejecuta en el mismo
servidor.

●​ Nodo local de Docker Swarm, para el despliegue de las imágenes OCI generadas
con el runner de GitLab, que permiten definir y configurar la infraestructura de los
servicios de forma más sencilla.

●​ Servicio SMTP, que nos proporciona un email con el que enviar las credenciales de
prueba.

●​ Servicio de DNS propio, para generar dominios con los que exponer y probar los
servicios en el internet público.

2.1.3 Herramientas de Software utilizadas
Para el desarrollo del proyecto, es necesario o recomendable el uso de diversas

aplicaciones de software. Estas se encargan de aspectos como el tratamiento del código de
las aplicaciones a desplegar, el uso de los componentes de la infraestructura.

Entre las herramientas para trabajar con el código están:
●​ Visual Studio Code, un editor de texto que soporta varios lenguajes de

programación.
●​ Meld, una herramienta que permite comparar los archivos de 2 directorios. De forma

que permite encontrar fácilmente las diferencias entre 2 versiones distintas de la
misma aplicación, y elegir con cual quedarte. Esta diferenciación la puede hacer a
nivel de sistema de archivos, de línea dentro de un archivo, y de carácter dentro del
archivo. Permitiendo comparar con el nivel de granularidad que resulte más
conveniente para cada caso.

Para el uso adecuado y cómodo de la infraestructura, se usó:
●​ Git, sistema de control de versiones.
●​ Portainer, un servicio web que permite gestionar con interfaz gráfica el servidor de

Docker Swarm.

2.1.4 Limitaciones y alcance
Al tratarse de un prototipo, se desestima la implementación de funcionalidades que

mejoran la experiencia de usuario, tales como autenticación con OAuth 2, recuperación de
cuenta. Se prioriza la funcionalidad principal, que es la emisión, almacenamiento y
verificación de las credenciales.

2.2 Diseño de la solución

2.2.1 Credenciales Verificables
Ante estas limitaciones, surgen como alternativa las credenciales verificables que

ofrecen almacenar esa información de forma confiable, portable y verificable. De forma
descentralizada e interoperable.

La W3C establece el estándar Verifiable Credentials Data Model v2.0 con los
siguientes actores:

Fuente: Elaboración personal a partir de la W3C.

2.2.1.1 Emisor
Es la entidad responsable de generar credenciales a partir de afirmaciones sobre un sujeto
determinado. Este rol puede ser desempeñado por organizaciones, instituciones públicas o
individuos que emiten documentos digitales verificables.

2.2.1.2 Titular
Es quien recibe, almacena y presenta sus credenciales ante terceros. En muchos casos, el
titular coincide con el sujeto de la credencial (por ejemplo, una persona que recibe un
diploma), aunque no es una condición obligatoria.

2.2.1.3 Verificador
Representa al actor que recibe y procesa credenciales con el fin de verificar su validez. Para
ello, se apoya en mecanismos criptográficos, registros confiables y, eventualmente,
presentaciones verificables. El verificador toma decisiones basadas en la autenticidad y
vigencia de las credenciales recibidas, sin depender necesariamente de una relación
preexistente con el emisor. Algunos ejemplos comunes incluyen empleadores, portales web,
o entidades de control de acceso.

2.2.1.4 Registro de Datos
Son infraestructuras utilizadas para facilitar la verificación de las credenciales. Pueden
incluir esquemas de datos, claves públicas, listas de revocación, y otros mecanismos de

soporte. Estos registros pueden ser centralizados, federados o distribuidos (por ejemplo,
blockchain, IPFS).

2.2.2 Soluciones preexistentes
Para un desarrollo más ágil, sin descuidar la robustez, se optó por tomar un ecosistema ya
existente con licencia Open Source e implementarlo. El mismo fue desarrollado por el Digital
Credential Consortium (DCC).
La solución ofrece un conjunto de servicios, desarrollados con JavaScript y sus diversos
frameworks, como: Express, Next, Expo, React. De forma que se implementan los actores
necesarios, propuestos por la W3C: Emisor, Dueño, Verificador y Registro de Datos.

Fuente: Elaboración personal a partir de la DCC.

2.2.3 Arquitectura del ecosistema
Cada uno de estos actores representa un proyecto de software. La wallet (titular) y el
VerifierPlus (verificador) son aplicaciones monolíticas, es decir, que su lógica de negocio
está contenida en un solo módulo. Mientras que el servicio de emisión consiste de una
aplicación con arquitectura de microservicios, lo cual significa que son varios módulos
interdependientes.

Fuente: Elaboración personal

2.2.4 Arquitectura del proyecto Sign and Verify (Emisor)
La arquitectura del proyecto consta de cinco servicios:

1.​ Claim page
2.​ Dashboard
3.​ Workflow coordinator,
4.​ Transaction service,
5.​ Signing service.

También cuenta con un repositorio de datos que utiliza tecnología Mongo DB y un servicio
de caché utilizando Redis...

Fuente: Elaboración personal

2.2.4.1 Dashboard
Un dashboard es donde el administrador del sistema puede gestionar varios

aspectos relacionados con la emisión de credenciales verificables, trabajando por lotes.
Estas funcionalidades incluyen:

●​ Gestión de plantillas (templates) para las credenciales verificables. En estas, se
pueden modificar los campos para incluir los que se crean convenientes.

●​ Gestión de plantillas para los emails que se envían a los alumnos para reclamar su
credencial verificable. Se escribe como formato Mustache, una sintaxis basada en
HTML para definir templates con variables que pueden reemplazarse
posteriormente.

●​ Emisión de lote de credenciales, el administrador elige una de las plantillas de
credenciales definida previamente, luego carga un archivo .csv que satisfaga las
columnas de datos de la plantilla, una plantilla de email, se confirma la operación y la
creación del lote se ejecuta.

●​ Gestión de historial de lotes que permite ver las credenciales emitidas, a quienes, en
qué estado está el lote mismo, reenviar los mails.

2.2.4.2 Claim Page
Este sitio es donde el usuario que recibe una credencial verificable a través de su

correo electrónico, puede reclamar para almacenarla en su wallet personal.

2.2.4.3 Workflow Coordinator
Coordina el flujo de emisión de los lotes de credenciales verificables, orquestando el

Signing Service y el Transaction Service.

2.2.4.4 Signing Service
Se encarga de firmar las credenciales verificables, usando la seed correspondiente a

la entidad que solicite la emisión.

2.2.4.5 Transaction Service
​ Se encarga de almacenar cada lote de credenciales emitidas y firmadas,
garantizando la transaccionalidad de la operación.

2.3 Implementación

2.3.1 Configuración de la Infraestructura.

2.3.1.1 Repositorio
Los proyectos fueron gestionados por el servicio de GitLab del LIA- UNRN para almacenar
el código y las versiones de los mismos.

2.3.1.2 Integración Continua
Se configuró la pipeline para los proyectos de emisor y verificador, de forma que se
construye una imagen OCI que puede ser desplegada tanto en el servidor de Docker de la
UNRN como en una computadora personal para pruebas.
En el caso de la wallet, la pipeline genera un archivo APK, para poder integrarlo con la
tienda.

2.3.1.3 Despliegue
Se desplegó el emisor y el verificador sobre el servidor de Docker de la UNRN, se les
asignó un dominio para que sean visibles públicamente en internet. En el caso de la wallet,
se generó un archivo APK para instalarlo en dispositivos android, y se requiere un servidor
web activo donde la wallet del usuario debe poder conectarse.

2.3.2 Actualización de los servicios.
Las versiones alpha con las que trabajamos inicialmente, quedaron rápidamente atrasados
respecto a los repositorios originales de DCC. Es necesario actualizar los repositorios
locales, tanto por razones de seguridad (las dependencias viejas tienen vulnerabilidades
conocidas) como de funcionalidad (corrección de errores, nuevas funcionalidades).
Pero también es importante mantener las customizaciones realizadas, que consisten en
traducción (los repositorios originales tienen los textos en inglés), paleta de colores
personalizada.

2.3.3 Creación de un registro de DIDs propio
Para poder conformar nuestro propio consorcio, que se incluyó en la Sección 1.6 es

necesario consolidar nuestro propio registro de DIDs. Un registro de DIDs se define en un
documento JSON que consta de un array de objetos, donde cada objeto representa a una
entidad perteneciente al consorcio, y por tanto, con capacidad para emitir sus propias

credenciales verificables. El did funciona como una llave pública que valida que un conjunto
de datos fue encriptado usando una llave privada, la seed.
El servicio de signing usa una de las seeds que tenga definida como variable de entorno
para firmar las credenciales. Y también permite la creación de nuevos dids, el cual consta
de la seed que se usará para firmar, y debe mantenerse confidencial, y el did que se
expondrá en el registro de dids. La creación se puede realizar por 2 métodos:

●​ did:key no recibe parámetros de entrada, y devuelve un documento JSON con 2
atributos: seed y did.

●​ did:web recibe una url, y devuelve un documento JSON con 2 atributos: seed y did.
Este método requiere que la url definida se mantenga activa y accesible en un host

Se usó el servicio de signing para crear un did con el método did:key. Este método no pide
parámetros de entrada, y devuelve un JSON con 2 datos claves:

●​ seed: que se establece como variable de entorno en el propio servicio de signing.
Usa este dato para firmar las credenciales de un determinado emisor.

●​ did: se debe guardar en el registry.json correspondiente al consorcio. Este es
consultado por el verificador para validar que una credencial verificable fue emitida
por un emisor confiable, perteneciente al consorcio.

2.4 Documentación
Dado la escala del proyecto, separado en varios servicios, se documentó en los

repositorios de diversas maneras. Ya sea a través de documentos Markdown (.md),
archivos de despliegue y configuración de ejemplo y también para desplegarlo en un
entorno de desarrollo en máquina local.

2.4.1 Metodologías utilizadas para documentar el desarrollo

2.4.1.1 Documentos Markdown
A través de documentos con formato Markdown, se documentaron procesos,

configuraciones, diagramas de arquitectura y conceptos a tener en cuenta. Tanto a nivel de
servicio individual como el conjunto de cada uno de los actores. Los mismos cuentan con
gráficos escritos con sintaxis Mermaid, la cual es soportada por el servidor de GitLab de la
UNRN.

2.4.1.2 Archivos de ejemplo
Durante el desarrollo, se generaron archivos docker-stack.example.yml que se

corresponden en configuración, pero no en valores, a los implementados en el servidor de
docker de la UNRN. Se dejaron archivos .example.env que definen las variables de entorno
necesarias. Ver anexo 4.1

2.4.1.3 Despliegue en entorno de pruebas
Se crearon archivos docker-compose.yml para posibilitar un despliegue en un

entorno local. Ver anexo 4.2

2.1.1.4 Documentacion de DCC
La documentación original de los proyectos de DCC se movía a una carpeta

docs/legacy.

3. Procesos del entorno de Credenciales
Verificables

Con el ecosistema de credenciales verificables desplegado en su totalidad, se
pueden realizar los siguientes procesos para hacer uso del mismo.

3.1 Emisión de un lote de Credenciales Verificables
Las credenciales verificables se emiten como un lote donde se requiere un template

de la credencial, un template del mail a enviar y un conjunto de datos que se corresponda
con los templates anteriormente mencionado.

Diagrama de Secuencia de la emisión de una Credencial Verificable

Fuente: Elaboración personal

3.1.1 Plantillas requeridas
Se necesita tener definida una plantilla para la Credenciales Verificables y para el email de
notificación. En el anexo adjunto un ejemplo de ambos.

3.1.2 Definición de los datos del lote
Se define un CSV que satisfaga los datos solicitados tanto en la plantilla de la

credencial como en la plantilla del email.

3.1.3 Confirmación de los datos
Se verifica que el conjunto de datos se corresponda correctamente con las plantillas

seleccionadas, y si da todo bien, se puede emitir el lote.

3.1.4 Envío del lote
Una vez que todo esté en orden, se envía el lote de credenciales solicitado para ser

emitido y se notifica a los alumnos por su email.

Pasos para emitir un lote de Credenciales Verificables

Fuente: Elaboración personal

3.2 Almacenamiento en la Wallet de una Credencial Verificable
Una vez que el estudiante recibe la notificación por mail, este puede reclamar su

credencial verificable y almacenarla en su wallet personal.

3.2.1 Recepción del Email
El estudiante recibe un email, el mismo contiene un enlace al sitio de claim page,

donde hay un QR con el que puede reclamar su credencial verificable.

3.2.2 Almacenamiento en la Wallet
Con la aplicación de la wallet, se puede leer el QR para solicitar los datos de la

credencial verificable, y así almacenarla.

Pasos para almacenar una Credencial Verificable en la wallet

Fuente: Elaboración personal

3.3 Verificación de una Credencial Verificable

3.3.1 Abrir el sitio del VerifierPlus
​ Se va al sitio del VerifierPlus de alguna entidad perteneciente al mismo consorcio
que quien la emitio.

3.3.2 Exponer la credencial al verificador
​ Con la app de la Wallet se puede mostrar la credencial en formato de QR, o también
extraer el JSON con que la representa. El proyecto VerifierPlus permite ambas formas para
validar la credencial.
​ El verificador devolverá si la credencial es válida o no.

Pasos para verificar una Credencial Verificable

Fuente: Elaboración personal

4.Resultados

4.1 Ecosistema resultante
El ecosistema de software conseguido cumple con las funcionalidades mínimas que se
requieren para la gestión de credenciales verificables, que constan de: emisión,
almacenamiento y verificación descentralizada.

4.1.1 Emisión
El servicio de emisión puede emitir credenciales verificables por lote, usando plantillas para
las propias credenciales y para los mails de notificación a quienes les corresponde. Las
firma usando la seed privada de la entidad, que se corresponde en el registro con un DID
público.

4.1.2 Almacenamiento
El usuario final puede almacenar las credenciales verificables emitidas y compartirlas para
ser verificadas por un verificador perteneciente al consorcio.

4.1.3 Verificación
El servicio de verificación puede validar si una credencial fue emitida por una entidad
perteneciente al registro de DIDs público. Si bien el alcance del proyecto se limitaba a una
sola entidad, el método de verificación a través de DIDs públicos permite escalarlo a más de
una entidad de forma sencilla.

5. Fuentes

5.1 Bibliografía
W3C Verificables Credentials Data Model
https://bit.ly/4oVmotK
DCC - Digital Credentials Consortium
https://bit.ly/3LVCchl

5.2 Software utilizado
Meld, herramienta para realizar merge entre 2 directorios o archivos. GPLv2
https://bit.ly/3XIbI5C
Visual Studio Code, editor de código. MIT License.
https://bit.ly/47Ub62N

https://bit.ly/4oVmotK
https://bit.ly/3LVCchl
https://bit.ly/3XIbI5C
https://bit.ly/47Ub62N

6. Anexos

6.1 Archivos de despliegue en local
En esta sección se describen los archivos docker-compose.yml que permiten desplegar
cada servicio en máquina local de forma simple, usando Docker Compose.

6.1.1 Emisor

services:​
 coordinator:​
 image: digitalcredentials/workflow-coordinator:0.1.0​
 environment:​
 - ENABLE_STATUS_SERVICE=​
 - PUBLIC_EXCHANGE_HOST=​
 - TENANT_TOKEN_LEF_TEST=​
 ports:​
 - '4005:4005'​
 signing:​
 image: digitalcredentials/signing-service:0.2.0​
 environment:​
 - TENANT_SEED_{TENANT_NAME}=​
 transactions:​
 image: digitalcredentials/transaction-service:0.1.0​
 payload:​
 build:​
 context: .​
 dockerfile: Dockerfile.local​
 depends_on:​
 - coordinator​
 - redis​
 - mongo​
 environment:​
 - COORDINATOR_URL=​
 - REDIS_URL=​
 - REDIS_PORT=​
 - MONGODB_URI=​
 - PAYLOAD_SECRET=​
 - TENANT_NAME=​
 - SMTP_HOST=​
 - SMTP_USER=​
 - SMTP_PASS=​
 - SMTP_STARTTLS=​
 - EMAIL_FROM=​
 - CLAIM_PAGE_URL=​
 - PAYLOAD_PUBLIC_SERVER_URL=​

 ports:​
 - '3000:3000'​
 volumes:​
 - ./src:/home/node/app/src​
 claim-page:​
 image: digitalcredentials/admin-dashboard-claim-page:0.1.0​
 container_name: 'ad-claim-page'​
 depends_on:​
 - payload​
 ports:​
 - '8080:8080'​
 redis:​
 image: redis:alpine​
 container_name: ad-redis​
 environment:​
 - ALLOW_EMPTY_PASSWORD=​
 ports:​
 - '6379:6379'​
 mongo:​
 image: mongo​
 environment:​
 MONGO_INITDB_ROOT_USERNAME:​
 MONGO_INITDB_ROOT_PASSWORD:​
 ports:​
 - "27017:27017"​
 ​
 mongo-express:​
 image: mongo-express:latest​
 container_name: mongo-express​
 ports:​
 - "8081:8081"​
 environment:​
 ME_CONFIG_MONGODB_SERVER: mongo​
 ME_CONFIG_MONGODB_PORT: ​
 ME_CONFIG_MONGODB_ADMINUSERNAME:​
 ME_CONFIG_MONGODB_ADMINPASSWORD:​
 depends_on:​
 - mongo​
volumes:​
 transactions:

Las variables de entorno de cada servicio sirven para configurar:

6.1.1.1 Variables de Workflow Coordinator

Nombre de la variable Valor esperado Para qué sirve

ENABLE_STATUS_SERVI
CE

false | true Define si se levantó el
status service.

PUBLIC_EXCHANGE_HO
ST

String de URL o dirección
web

URL del dashboard del
emisor

TENANT_TOKEN_LEF_TE
ST

Un string que representa
un token | UNPROTECTED

Token que usará el emisor
para validar su identidad.
UNPROTECTED para que
no lo haga.

6.1.1.2 Variables del Signing Service

Nombre de la variable Valor esperado Para qué sirve

TENANT_SEED_{TENANT
_NAME}

Un string que representa la
seed del tenant

Es lo que usa para firmar
las credenciales
verificables. El
TENANT_NAME es el
nombre de una entidad
autorizada para firmar.

6.1.1.3 Variables del Dashboard

Nombre de la variable Valor esperado Para qué sirve

COORDINATOR_URL URL URL del Workflow
Coordinator.

REDIS_URL URL URL de Redis, una base de
datos clave-valor usada
como caché.

MONGODB_URI URL URL de Mongo, donde se
incluye el hostname, el
puerto, el usuario y la
contraseña para loguearse.

PAYLOAD_SECRET String Salt usado para codificar y
decodificar el ID de una
credencial verificable recién
emitida y enviada por
correo a su respectivo
estudiante. Es usada por el
claim page una vez que se
reclama la credencial.

TENANT_NAME String Nombre de la entidad
emisora de la credencial
verificable. Se usa para

que el Signing Service
sepa que seed debe usar.

SMTP_HOST String Host del servidor SMTP
que envía los correos.

SMTP_USER String Usuario del servidor SMTP
que envía los correos.

SMTP_PASS String Contraseña del usuario del
servidor SMTP que envía
los correos.

SMTP_STARTTLS true | false Si el servidor SMTP usa
TTL para cifrar la
comunicación.

EMAIL_FROM String Nombre del emisor del
email.

CLAIM_PAGE_URL String URL de la claim page.

PAYLOAD_PUBLIC_SERV
ER_URL

String URL del propio Dashboard.

6.1.1.4 Variables de Redis

Nombre de la variable Valor esperado Para qué sirve

ALLOW_EMPTY_PASSW
ORD

yes | no Si se permite el logueo con
contraseña vacía.

6.1.1.5 Variables de Mongo

Nombre de la variable Valor esperado Para qué sirve

MONGO_INITDB_ROOT_
USERNAME

String El usuario de root para el
motor de mongo.

MONGO_INITDB_ROOT_
PASSWORD

String La contraseña del usuario
root.

6.1.1.6 Variables de Mongo Express

Nombre de la variable Valor esperado Para qué sirve

ME_CONFIG_MONGODB_
SERVER

String Host de la base de datos
mongo. Al ser un

docker-compose, se puede
referenciar el nombre del
servicio.

ME_CONFIG_MONGODB_
PORT

Entero positivo Puerto del servidor de
mongo.

ME_CONFIG_MONGODB_
ADMINUSERNAME

String Username del root de
mongo.

ME_CONFIG_MONGODB_
ADMINPASSWORD

String Password del root de
mongo.

6.1.2 Verificador

services:​
 web-verifier-plus:​
 container_name: web-verifier-plus​
 build:​
 context: .​
 dockerfile: Dockerfile​
 environment:​
 NEXT_TELEMETRY_DISABLED: 1​
 DB_USER:​
 DB_PASS_:​
 DB_HOST:​
 ports:​
 - "{VERIFIER_PORT}:3000"​
 depends_on:​
 - mongo​
​
 mongo:​
 image: mongo​
 restart: always​
 environment:​
 MONGO_INITDB_ROOT_USERNAME:​
 MONGO_INITDB_ROOT_PASSWORD:

6.1.2.1 Variables del Verificador

Nombre de la variable Valor esperado Para qué sirve

NEXT_TELEMETRY_DISA
BLED

0 | 1 Determina si Vercel,
desarrolladora del
framework NextJS, toma

datos anónimos de
telemetría sobre la
aplicación. 0 para que lo
haga; 1 para que no.

DB_USER String Username del usuario de
mongo.

DB_PASS String Password del usuario de
mongo.

DB_HOST String Host de la base de datos
mongo. Al ser un
docker-compose, se puede
referenciar el nombre del
servicio.

VERIFIER_PORT Entero positivo El puerto que se expondrá
para poder acceder al
verificador.

6.1.2.2 Variables de Mongo
Las mismas que para el mongo del emisor.

6.2 Archivos de ejemplo
Aquí se colocarán los archivos docker-stack-example.yml correspondientes a cada servicio
desplegado en el servidor de Docker de la UNRN.

6.2.1 Emisor

version: '3.8'​
​
networks:​
 traefik-unrn:​
 external: true​
​
services:​
 coordinator:​
 image: digitalcredentials/workflow-coordinator:1.0.0​
 environment:​
 - ENABLE_STATUS_SERVICE=​
 - PUBLIC_EXCHANGE_HOST=​
 - TENANT_TOKEN_MC_UNRN=​
 ports:​
 - '4005:4005'​
 networks:​
 - traefik-unrn​

 deploy:​
 mode: replicated​
 replicas: 1​
​
 signing:​
 image: digitalcredentials/signing-service:1.0.0​
 environment:​
 - TENANT_SEED_MC_UNRN=​
 - TENANT_DIDMETHOD_MC_UNRN=​
 networks:​
 - traefik-unrn​
 ports:​
 - '4006:4006'​
 deploy:​
 mode: replicated​
 replicas: 1​
​
 transactions:​
 image: digitalcredentials/transaction-service:0.4.0​
 networks:​
 - traefik-unrn​
 deploy:​
 mode: replicated​
 replicas: 1​
​
 emisor:​
 image:

registrygitlab.unrn.edu.ar/lia/microcredenciales/emisor:37d1bd6a​
​
 depends_on:​
 - coordinator​
 - redis​
 - mongo​
 environment:​
 - COORDINATOR_URL=​
 - REDIS_URL=​
 - REDIS_PORT=​
 - MONGODB_URI=​
 - PAYLOAD_SECRET=​
 - TENANT_NAME=MC_UNRN​
 - SMTP_HOST=​
 - SMTP_USER=​
 - SMTP_PASS=​
 - EMAIL_FROM=​
 - CLAIM_PAGE_URL=​
 - PAYLOAD_PUBLIC_SERVER_URL=​

 #ports:​
 # - '3000:3000'​
 networks:​
 - traefik-unrn​
volumes:​
- /opt/emisor/src:/home/node/app/src​
 deploy:​
 mode: replicated​
 replicas: 1​
 labels:​
 - "traefik.enable=true"​
 - "traefik.port=3000"​
 -

"traefik.http.routers.emisor.rule=Host(`microcredenciales.unrn.edu.ar`)"​
 - "traefik.http.routers.emisor.tls=true"​
 - "traefik.http.routers.emisor.service=emisor"​
 - "traefik.http.services.emisor.loadbalancer.server.port=3000"​
 - "traefik.http.routers.emisor.entrypoints=websecure"​
 # HTTP​
 - "traefik.http.routers.emisor-http.entrypoints=web"​
 -

"traefik.http.routers.emisor-http.rule=Host(`microcredenciales.unrn.edu.

ar`)"​
 # Redirect​
 - "traefik.http.routers.emisor-http.middlewares=emisor-https"​
 -

"traefik.http.middlewares.emisor-https.redirectscheme.scheme=https"​
 claim-page:​
 image: digitalcredentials/admin-dashboard-claim-page:1.0.0​
 depends_on:​
 - emisor​
 ports:​
 - '8080:8080'​
 networks:​
 - traefik-unrn​
 deploy:​
 mode: replicated​
 replicas: 1​
​
 redis:​
 image: redis:alpine​
 environment:​
 - ALLOW_EMPTY_PASSWORD=​
 ports:​
 - '6379:6379'​
 networks:​

 - traefik-unrn​
 deploy:​
 mode: replicated​
 replicas: 1​
​
 mongo:​
 image: l33tlamer/mongodb-without-avx:5.0.20​
 # image: mongo​
 environment:​
 MONGO_INITDB_ROOT_USERNAME: ​
 MONGO_INITDB_ROOT_PASSWORD: ​
 ports:​
 - "27017:27017"​
 networks:​
 - traefik-unrn​
 volumes:​
 - mongodb:/data/db​
 deploy:​
 mode: replicated​
 replicas: 1​
​
 mongo-express:​
 image: mongo-express:latest​
 ports:​
 - "8081:8081"​
 networks:​
 - traefik-unrn​
 environment:​
 ME_CONFIG_MONGODB_SERVER:​
 ME_CONFIG_MONGODB_PORT:​
 ME_CONFIG_MONGODB_ADMINUSERNAME: ​
 ME_CONFIG_MONGODB_ADMINPASSWORD:​
 depends_on:​
 - mongo​
 deploy:​
 mode: replicated​
 replicas: 1​
​
volumes:​
 mongodb:

6.2.2 Verificador

version: '3.8'​

​
networks:​
 {VERIFICADOR_NETWORK}:​
 external: true​
​
services:​
 verificador:​
 image: verificador:{TAG}​
 environment:​
 - NEXT_TELEMETRY_DISABLED=1​
 - DB_USER=​
 - DB_PASS=​
 - DB_HOST= ​
 networks:​
 - {VERIFICADOR_NETWORK}​
 deploy:​
 mode: replicated​
 replicas: 1​
 labels:​
 - "traefik.enable=true"​
 - "traefik.port={VERIFICADOR_PORT}"​
 - "traefik.http.routers.verificador.rule=Host(`{VERIFICADOR_URL})"​
 - "traefik.http.routers.verificador.tls=true"​
 - "traefik.http.routers.verificador.service=verificador"​
 -

"traefik.http.services.verificador.loadbalancer.server.port={VERIFICADOR

_PORT}"​
 - "traefik.http.routers.verificador.entrypoints=websecure"​
 # HTTP​
 - "traefik.http.routers.verificador-http.entrypoints=web"​
 -

"traefik.http.routers.verificador-http.rule=Host(`VERIFICADOR_URL`)"​
 # Redirect​
 -

"traefik.http.routers.verificador-http.middlewares=verificador-https"​
 -

"traefik.http.middlewares.verificador-https.redirectscheme.scheme=https"​
 depends_on:​
 - mongo

6.2.2.1 Variables del verificador

Nombre de la variable Valor esperado Para qué sirve

VERIFICADOR_NETWORK String Red interna de Docker para
aislar los servicios.

VERIFICADOR_URL URL Dominio asignado al
servicio en Traefik.

VERIFICADOR_PORT Entero positivo Puerto donde el servidor de
la aplicación escuchara.

NEXT_TELEMETRY_DISA
BLED

0 | 1 Determina si Vercel,
desarrolladora del
framework NextJS, toma
datos anónimos de
telemetría sobre la
aplicación. 0 para que lo
haga; 1 para que no.

DB_USER String Username del usuario de
mongo.

DB_PASS String Password del usuario de
mongo.

DB_HOST String Host de la base de datos
mongo. Al ser un
docker-compose, se puede
referenciar el nombre del
servicio.

VERIFIER_PORT Entero positivo El puerto que se expondrá
para poder acceder al
verificador.

6.3 Ejemplos de código

6.3.1 Ejemplo de Plantilla para Credenciales Verificables

{​
 "type": [​
 "VerifiableCredential",​
 "EducationalCredential"​
],​
 "proof": {​
 "jws": "eyJhbGciOiJFZERTQSJ9..",​
 "type": "Ed25519Signature2018",​
 "created": "2023-01-01T00:00:00Z",​
 "proofPurpose": "assertionMethod",​
 "verificationMethod":

"https://campusbimodal.unrn.edu.ar/issuer/keys/1"​
 },​
 "issuer": {​

 "id": "did:example:76e12ec712ebc6f1c221ebfeb1f",​
 "name": "Universidad Nacional de Río Negro"​
 },​
 "@context": [​
 "https://www.w3.org/ns/credentials/v2",​
 "https://www.w3.org/ns/credentials/examples/v2"​
],​
 "validFrom": "{{validoDesde}}",​
 "credentialStatus": {​
 "id": "https://campusbimodal.unrn.edu.ar/status/default",​
 "type": "CredentialStatusList2021"​
 },​
 "credentialSchema": {​
 "id": "https://www.w3.org/2018/credentials/examples/v1",​
 "type": "JsonSchemaValidator2018"​
 },​
 "credentialSubject": {​
 "type": [​
 "AchievementSubject"​
],​
 "name": "{{earnerName}}",​
 "achievement": {​
 "type": [​
 "Achievement"​
],​
 "criteria": {​
 "type": "Criteria",​
 "narrative": "El alumno {{earnerName}} ha finalizado el

{{degreeType}} en {{subject}} de manera satisfactoria."​
 }​
 },​
 "hasCredential": {​
 "id": "https://cred.127.0.0.1.nip.io/api/claim/default",​
 "name": "{{credentialName}}",​
 "type": [​
 "EducationalOccupationalCredential"​
],​
 "logoURL": "{{logoUrl}}",​
 "description": "{{description}}",​
 "currentYear": "{{currentYear}}",​
 "competencyRequired": "Competencias no especificadas.",​
 "credentialCategory": "badge"​
 }​
 }​
}

6.3.2 Ejemplo de Plantilla para email de notificacion

<html>​
 <head>​
 <style>​
 body {​
 font-family: 'Arial', sans-serif;​
 background-color: #f4f4f4;​
 margin: 0;​
 padding: 0;​
 }​
 .email-container {​
 max-width: 600px;​
 margin: 40px auto;​
 background-color: #ffffff;​
 padding: 30px;​
 border-radius: 15px;​
 box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);​
 border: 3px solid #b30000;​
 }​
 .header {​
 text-align: center;​
 padding-bottom: 30px;​
 }​
 .logo {​
 max-width: 200px;​
 height: auto;​
 }​
 .content {​
 font-size: 16px;​
 color: #333333;​
 line-height: 1.8;​
 }​
 .content p {​
 margin: 15px 0;​
 }​
 .qr-code {​
 text-align: center;​
 margin: 30px 0;​
 }​
 .qr-code img {​
 max-width: 200px;​
 border: 2px solid #b30000;​
 border-radius: 10px;​
 }​
 .footer {​

 text-align: center;​
 font-size: 14px;​
 color: #666666;​
 margin-top: 40px;​
 border-top: 1px solid #dddddd;​
 padding-top: 20px;​
 }​
 a {​
 color: #b30000;​
 text-decoration: underline;​
 }​
 a:hover {​
 color: #a00000;​
 }​
 </style>​
 </head>​
 <body>​
 <div class="email-container">​
 <div class="header">​
 ​
 </div>​
 <div class="content">​
 <p>Estimado/a {{earnerName}},</p>​
 ​
 <p>¡Felicitaciones por haber completado tu

{{degreeType}} en {{subject}}! Estamos

muy orgullosos de tu logro.</p>​
 <p>Ve a reclamar tu credencial:</p>​
 </div>​
 Haz clic aquí​
 <div class="footer">​
 <p>Si tienes alguna pregunta, por favor contáctanos en lia@unrn.edu.ar.</p>​
 <p>© {{currentYear}} Tu Universidad. Todos los derechos

reservados.</p>​
 </div>​
 </div>​
 </body>​
</html>

	Trabajo Final de Carrera
	Despliegue de un entorno de credenciales verificables (VC) bajo el estándar de la W3C
	Índice
	1. Breve marco teórico.
	1.1 Claim
	1.2 Credencial Verificable (VC)
	1.3 JSON-LD
	1.3.1 JSON

	1.4 DID
	1.5 Wallet
	1.6 Consorcio
	1.7 Tenant

	2. Tareas realizadas
	2.1 Análisis
	2.1.1 Situación actual
	2.1.2 Infraestructura disponible
	2.1.3 Herramientas de Software utilizadas
	2.1.4 Limitaciones y alcance

	2.2 Diseño de la solución
	2.2.1 Credenciales Verificables
	2.2.1.1 Emisor
	2.2.1.2 Titular
	2.2.1.3 Verificador
	2.2.1.4 Registro de Datos

	2.2.2 Soluciones preexistentes
	2.2.3 Arquitectura del ecosistema
	2.2.4 Arquitectura del proyecto Sign and Verify (Emisor)
	2.2.4.1 Dashboard
	2.2.4.2 Claim Page
	2.2.4.3 Workflow Coordinator
	2.2.4.4 Signing Service
	2.2.4.5 Transaction Service

	2.3 Implementación
	2.3.1 Configuración de la Infraestructura.
	2.3.1.1 Repositorio
	2.3.1.2 Integración Continua
	2.3.1.3 Despliegue

	2.3.2 Actualización de los servicios.
	2.3.3 Creación de un registro de DIDs propio

	2.4 Documentación
	2.4.1 Metodologías utilizadas para documentar el desarrollo
	2.4.1.1 Documentos Markdown
	2.4.1.2 Archivos de ejemplo
	2.4.1.3 Despliegue en entorno de pruebas
	2.1.1.4 Documentacion de DCC

	3. Procesos del entorno de Credenciales Verificables
	3.1 Emisión de un lote de Credenciales Verificables
	3.1.1 Plantillas requeridas
	3.1.2 Definición de los datos del lote
	3.1.3 Confirmación de los datos
	3.1.4 Envío del lote

	3.2 Almacenamiento en la Wallet de una Credencial Verificable
	3.2.1 Recepción del Email
	3.2.2 Almacenamiento en la Wallet

	3.3 Verificación de una Credencial Verificable
	3.3.1 Abrir el sitio del VerifierPlus
	3.3.2 Exponer la credencial al verificador

	4.Resultados
	4.1 Ecosistema resultante
	4.1.1 Emisión
	4.1.2 Almacenamiento
	4.1.3 Verificación

	5. Fuentes
	5.1 Bibliografía
	5.2 Software utilizado

	
	6. Anexos
	6.1 Archivos de despliegue en local
	6.1.1 Emisor
	6.1.1.1 Variables de Workflow Coordinator
	6.1.1.2 Variables del Signing Service
	6.1.1.3 Variables del Dashboard
	6.1.1.4 Variables de Redis
	6.1.1.5 Variables de Mongo
	6.1.1.6 Variables de Mongo Express

	6.1.2 Verificador
	6.1.2.1 Variables del Verificador
	6.1.2.2 Variables de Mongo

	6.2 Archivos de ejemplo
	6.2.1 Emisor
	6.2.2 Verificador
	6.2.2.1 Variables del verificador

	6.3 Ejemplos de código
	6.3.1 Ejemplo de Plantilla para Credenciales Verificables
	6.3.2 Ejemplo de Plantilla para email de notificacion

