u. Rio Negro
Universidad Nacional

Trabajo Final de Carrera

Despliegue de un entorno de
credenciales verificables (VC) bajo el
estandar de la W3C

Autor: Carlos Leandro Isaias Farra Gomez
Director: Mauro Cambarieri

Codirector: Guillermo Malpeli

u. Rio Negro
Universidad Nacional

Indice
Trabajo Final de Carrera..........cccceiiiiiiiemmnneiinnsssss s s s sssss s s s snns 1
FYs [T 2
1. Breve mMarco tEOrICO.......ccccciriiiriiiesisssssssssssnssssssnssssssnsssmmnsmmnsmmnnmnnnnnnnnnnrsnrsnnnn s s n s s s s nnnannnnnnnns 3
S 1 = T o T PRSP PP PRSP PUPPUPPRI 3
1.2 Credencial Verificable (VC)..... ..o 3
(IR TN 110V N B D 4
(R T 4
ST ATE= 1 = PP 5
1.8 CONSOICIO. ... ettt e e et e e et e e s s e e e s eeeeeeeeeeeeeeeeeeeeeeaeeaaaaaaaaaaaaaaaaaaaaaaans 5
LA 1= = T o | USSP 5
2. Tareas realizadas............cooiiiiiececiiiie s s e r e e s e s e e e e e e e e nm s e e e e e e e ennnnnn s aanrees 5
2.0 ANALISIS. ... 5
P B 1 1= o o T o 1= 0 F= TR To | [V T3 T o S 7
pZC BN Laa] o1 1=T 0 1Y a1 = Tod T o 1P 11
2.4 DOCUMENTACION.couiiieiii et e e e e e et e e e e e e e e e eeaa b e e e eeaeeeeeessannas 12
3. Procesos del entorno de Credenciales Verificables..........ccccooommmemcecceeeeeeeeenees 13
3.1 Emisién de un lote de Credenciales Verificables.............cccvvviiiiieiiiiiiiiiiiiiceeieeeeeeee, 13
3.2 Almacenamiento en la Wallet de una Credencial Verificable...............cuveveviviveeeeennee. 14
3.3 Verificacion de una Credencial Verificable............ 15
4 RESUILAUOS. ..o e e e n e e e e e e e e e e nnmaaa e a e e e e e eeennnnnnsrnaranaas 16
4.1 Ecosistema resultante...........ooovuuiiiiiiiiiice e 16
L 0= 11 17
5.1 BIbliografia........coooiiiii e e e e e e e e e e e e aaaaaaaas 17
5.2 Software Utilizado............... 17
TN 1= o X USSR 17
6.1 Archivos de despliegue en l0Cal..............ueiiiiiiiiiiii e 17
6.2 Archivos de €J€MPIO........coi i 23

SIRC TN =11=T0 9T 0] (oS30 LY o0 Yo [T o TS 28

u. Rio Negro
Universidad Nacional

En este trabajo final de carrera, se busca detallar el despliegue de un entorno de
Credenciales Verificables (VC) bajo el estandar Verificable Credentials Data Model v2.0
(World Wide Web Consortium [W3C], 2025).

1. Breve marco teorico.

Se incluyen en este marco tedrico las definiciones de los conceptos principales del
dominio de trabajo.

1.1 Claim

Una claim es la unidad basica de informacién dentro del modelo de datos.
Representa una declaracién sobre un sujeto, el cual puede ser una persona, una
organizacion u otro tipo de entidad. Estas afirmaciones se estructuran mediante relaciones
del tipo “sujeto - propiedad - valor”, lo que permite expresar una amplia gama de hechos,
como por ejemplo, si una persona ha completado estudios en una universidad especifica.

Prcperty—) Value

Fuente: Elaboracion personal a partir de la W3C.

1.2 Credencial Verificable (VC)

Una credencial verificable es una credencial enriquecida con mecanismos
criptograficos que permiten probar su origen y detectar cualquier alteracion. De esta forma,
el modelo garantiza tanto la autenticidad del emisor como la integridad del contenido.
Ejemplos tipicos de credenciales verificables incluyen identificaciones digitales de
empleados, licencias de conducir digitales y certificados académicos digitales.

Esta compuesta por una agrupacion de una o mas claims que provienen de una
misma entidad emisora; un proof; y diversos metadatos para definir su estructura.

/ Verifiable Credential \

Credential Metadata

Claim(s)

Proof(s)

_)

Fuente: Elaboracion personal a partir de la W3C.
Entre los metadatos mas comunes que suele contener una credencial verificable

estan:

u. Rio Negro
Universidad Nacional

Credencial Verificable

El "tipo" de la credencial da

flexibilidad para elegir el Tipo de Credencial
vocabulario propio de las
credenciales academicas. Datos de la Credencial

Identificador del Sujeto (Estudiante)

Identificador del Emisor

Fecha de Emision

Fecha de Expiracion

Estatus de la Credencial

Registro de Revocacion

Proof

Fuente: Elaboracion personal a partir de la W3C.

1.3 JSON-LD

La especificacion de Credenciales Verificables utiliza JSON-LD 1.1 como formato de
serializacion para representar su modelo de datos basado en grafos. JSON-LD facilita la
representacion semantica y extensible de estos datos en un formato familiar para
desarrolladores que ya usan JSON.

Tiene caracteristicas como permitir que las credenciales sean representadas como
un documento JSON; palabras clave como @id o @type para definir de forma mas
semantica los campos clave; soporte para tipos extra como fechas, url’s, entre otros.

1.3.1 JSON

JavaScript Object Notation es un lenguaje para definir objetos de forma concisa y
simple. Soporta campos con valores simples (nimeros enteros; numeros flotantes; cadenas
de texto; booleanos), valores compuestos (otro objeto JSON anidado) y colecciones simples
(arrays y diccionarios).

1.4 DID

El Descentralizaded ID es el identificador uUnico con el que una institucion puede
firmar una credencial verificable. De esta forma garantiza que las credenciales verificables
se pueden validar sin depender unicamente de la entidad que la emitié. Consiste de 2
elementos:

e Una seed, que cada entidad debe almacenar de forma confidencial, ya que se usa
en el servicio de emision para firmar las credenciales verificables.

e El did propiamente dicho, que se guarda en un registro comun entre todas las
entidades que conformen el consorcio establecido. En nuestro caso, al ser un

u. Rio Negro
Universidad Nacional

prototipo, representamos la unica entidad registrada. Este sirve para ser consultado
por las instancias del verificador y validar que una determinada credencial verificable
fue emitida por una entidad perteneciente al registro.

1.5 Wallet

La wallet es un espacio de almacenamiento donde el usuario puede guardar sus
credenciales. La puede usar para mostrar la credencial, o una presentacion parcial. En la
implementacion del entorno esta representada por una aplicacion de Android.

1.6 Consorcio

Se usara este término para abarcar a las entidades que conforman el registro de
DIDs, representa un conjunto de entidades capaces de emitir credenciales verificables y
validar si los demas miembros del consorcio emiten sus propias credenciales.

1.7 Tenant

Es una entidad autorizada para emitir credenciales verificables en el entorno del
consorcio. No es precisamente un concepto del dominio sino que forma parte del proyecto.

2. Tareas realizadas

2.1 Analisis

2.1.1 Situacion actual

Las universidades, o cualquier institucién educativa, convalida los conocimientos de
los estudiantes mediante la emisién de certificados o titulos. Actualmente, esta
convalidacién se hace al completar un curso o una carrera. Esto quiere decir que en el
sistema actual no existe la posibilidad de acreditar la adquisicion de conocimientos parciales
sino solamente finalizados.

En el caso de los cursos, las certificaciones suelen consistir en un archivo pdf, facil
de perder y de presentar. Se han tomado medidas para mitigar estos déficits., Una de ellas
es la verificacion a través de un cédigo QR que se contrasta contra un servicio de
verificacion propio de la entidad. Sin embargo, esto conlleva una desventaja: se necesita un
verificador centralizado que depende Unica y exclusivamente de que el emisor lo mantenga
funcionando. Si eventualmente se da de baja, no se podrian verificar mas los certificados
emitidos por dicha entidad.

En el caso de las carreras de grado, la certificacion a la finalizacion del cursado
representa la aprobacion de la totalidad de la malla curricular. Esto genera que la oferta
académica resulte bastante inflexible y monolitica, ya que el estudiante no puede validar su
conocimiento en determinadas areas, hasta completar el titulo de grado.

u. Rio Negro
Universidad Nacional

Para el desarrollo del proyecto, se hace uso de los recursos del Laboratorio de
Informatica Aplicada (LIA) de la UNRN. Dicho laboratorio cuenta con los siguientes
componentes en su infraestructura:

e Nodo local de GitLab, como sistema de control de versiones. El mismo cuenta con
su propio runner configurado, de forma que la pipeline se ejecuta en el mismo
servidor.

e Nodo local de Docker Swarm, para el despliegue de las imagenes OCI generadas
con el runner de GitLab, que permiten definir y configurar la infraestructura de los
servicios de forma mas sencilla.

e Servicio SMTP, que nos proporciona un email con el que enviar las credenciales de
prueba.

e Servicio de DNS propio, para generar dominios con los que exponer y probar los
servicios en el internet publico.

2.1.2 Infraestructura disponible

2.1.3 Herramientas de Software utilizadas

Para el desarrollo del proyecto, es necesario o recomendable el uso de diversas
aplicaciones de software. Estas se encargan de aspectos como el tratamiento del codigo de
las aplicaciones a desplegar, el uso de los componentes de la infraestructura.

Entre las herramientas para trabajar con el cédigo estan:

e Visual Studio Code, un editor de texto que soporta varios lenguajes de
programacion.

e Meld, una herramienta que permite comparar los archivos de 2 directorios. De forma
que permite encontrar facilmente las diferencias entre 2 versiones distintas de la

misma aplicacion, y elegir con cual quedarte. Esta diferenciacion la puede hacer a

nivel de sistema de archivos, de linea dentro de un archivo, y de caracter dentro del

archivo. Permitiendo comparar con el nivel de granularidad que resulte mas
conveniente para cada caso.
Para el uso adecuado y cdmodo de la infraestructura, se usé:
e Git, sistema de control de versiones.
e Portainer, un servicio web que permite gestionar con interfaz grafica el servidor de
Docker Swarm.

2.1.4 Limitaciones y alcance

Al tratarse de un prototipo, se desestima la implementacion de funcionalidades que
mejoran la experiencia de usuario, tales como autenticacion con OAuth 2, recuperacion de
cuenta. Se prioriza la funcionalidad principal, que es la emision, almacenamiento y
verificacion de las credenciales.

u. Rio Negro
Universidad Nacional

2.2 Diseno de la solucion

2.2.1 Credenciales Verificables

Ante estas limitaciones, surgen como alternativa las credenciales verificables que
ofrecen almacenar esa informacién de forma confiable, portable y verificable. De forma
descentralizada e interoperable.

La W3C establece el estandar Verifiable Credentials Data Model v2.0 con los
siguientes actores:

Emisor Emision de Credencial Titular Envia Presentacion Verificador
_

. N Registra identificadores Verifica ldentificadores
Verifica Identificadores y usa esquemas y esquemas
¥ usa esquemas
Registro de
> Datos <
Verificables

Fuente: Elaboracion personal a partir de la W3C.

2.2.1.1 Emisor

Es la entidad responsable de generar credenciales a partir de afirmaciones sobre un sujeto
determinado. Este rol puede ser desempefiado por organizaciones, instituciones publicas o
individuos que emiten documentos digitales verificables.

2.2.1.2 Titular

Es quien recibe, almacena y presenta sus credenciales ante terceros. En muchos casos, el
titular coincide con el sujeto de la credencial (por ejemplo, una persona que recibe un
diploma), aunque no es una condicién obligatoria.

2.2.1.3 Verificador

Representa al actor que recibe y procesa credenciales con el fin de verificar su validez. Para
ello, se apoya en mecanismos criptograficos, registros confiables y, eventualmente,
presentaciones verificables. El verificador toma decisiones basadas en la autenticidad y
vigencia de las credenciales recibidas, sin depender necesariamente de una relacion
preexistente con el emisor. Algunos ejemplos comunes incluyen empleadores, portales web,
o entidades de control de acceso.

2.2.1.4 Registro de Datos

Son infraestructuras utilizadas para facilitar la verificaciéon de las credenciales. Pueden
incluir esquemas de datos, claves publicas, listas de revocacién, y otros mecanismos de

u. Rio Negro
Universidad Nacional

soporte. Estos registros pueden ser centralizados, federados o distribuidos (por ejemplo,
blockchain, IPFS).

2.2.2 Soluciones preexistentes

Para un desarrollo mas agil, sin descuidar la robustez, se optd por tomar un ecosistema ya
existente con licencia Open Source e implementarlo. EI mismo fue desarrollado por el Digital
Credential Consortium (DCC).

La solucién ofrece un conjunto de servicios, desarrollados con JavaScript y sus diversos
frameworks, como: Express, Next, Expo, React. De forma que se implementan los actores
necesarios, propuestos por la W3C: Emisor, Dueno, Verificador y Registro de Datos.

Learner
Credential
Sign & Verify Wallet VerifierPlus
™y Y
Emisor Emision de Credencial Titular Envia Presentacion Verificador
_
Verifica Identificad Registra identificadores Verifica Identificadores
erifica ldentificadores v usa esquemas y esquemas

y usa esgquemas

Registro de

bueﬁ?ct:ggleﬁg

DCC
Registries

Fuente: Elaboracion personal a partir de la DCC.

2.2.3 Arquitectura del ecosistema

Cada uno de estos actores representa un proyecto de software. La wallet (titular) y el
VerifierPlus (verificador) son aplicaciones monoliticas, es decir, que su légica de negocio
esta contenida en un solo médulo. Mientras que el servicio de emision consiste de una
aplicacion con arquitectura de microservicios, lo cual significa que son varios médulos
interdependientes.

u. Rio Negro
Universidad Nacional

Holder
Wallet
/ Reclama credencial
T Emisor
—
Servidor de la Wallet ™ Claim Page ‘

Verificador

]

Decodifica el ID de la
credencial

|

Verificador Emisor Dashboard ‘

K Orquesta a traves de

Data Storage / J,

‘ DID Registry MongoDB Workflow Coordinator ‘ Redis

D

Transaction Service ‘ Signing Service ‘

Fuente: Elaboracion personal

2.2.4 Arquitectura del proyecto Sign and Verify (Emisor)

La arquitectura del proyecto consta de cinco servicios:

1.

2
3.
4.
5

Claim page
Dashboard

Workflow coordinator,
Transaction service,
Signing service.

También cuenta con un repositorio de datos que utiliza tecnologia Mongo DB y un servicio
de caché utilizando Redis...

u. Rio Negro
Universidad Nacional

Claim Page

Workflow Coordinator MongoDB Redis
Transaction Service Signing Service

Fuente: Elaboracion personal

2.2.4.1 Dashboard

Un dashboard es donde el administrador del sistema puede gestionar varios
aspectos relacionados con la emision de credenciales verificables, trabajando por lotes.
Estas funcionalidades incluyen:

e Gestidn de plantillas (templates) para las credenciales verificables. En estas, se
pueden modificar los campos para incluir los que se crean convenientes.

e Gestidn de plantillas para los emails que se envian a los alumnos para reclamar su
credencial verificable. Se escribe como formato Mustache, una sintaxis basada en
HTML para definir templates con variables que pueden reemplazarse
posteriormente.

e Emisién de lote de credenciales, el administrador elige una de las plantillas de
credenciales definida previamente, luego carga un archivo .csv que satisfaga las
columnas de datos de la plantilla, una plantilla de email, se confirma la operacion y la
creacion del lote se ejecuta.

e Gestidn de historial de lotes que permite ver las credenciales emitidas, a quienes, en
qué estado esta el lote mismo, reenviar los mails.

2.2.4.2 Claim Page

Este sitio es donde el usuario que recibe una credencial verificable a través de su
correo electrénico, puede reclamar para almacenarla en su wallet personal.

2.2.4.3 Workflow Coordinator

Coordina el flujo de emision de los lotes de credenciales verificables, orquestando el
Signing Service y el Transaction Service.

u. Rio Negro
Universidad Nacional

Se encarga de firmar las credenciales verificables, usando la seed correspondiente a
la entidad que solicite la emision.

2.2.4.4 Signing Service

2.2.4 .5 Transaction Service

Se encarga de almacenar cada lote de credenciales emitidas y firmadas,
garantizando la transaccionalidad de la operacion.

2.3 Implementacion

2.3.1 Configuracion de la Infraestructura.

2.3.1.1 Repositorio

Los proyectos fueron gestionados por el servicio de GitLab del LIA- UNRN para almacenar
el codigo y las versiones de los mismos.

2.3.1.2 Integracion Continua

Se configuré la pipeline para los proyectos de emisor y verificador, de forma que se
construye una imagen OCI que puede ser desplegada tanto en el servidor de Docker de la
UNRN como en una computadora personal para pruebas.

En el caso de la wallet, la pipeline genera un archivo APK, para poder integrarlo con la
tienda.

2.3.1.3 Despliegue

Se desplego el emisor y el verificador sobre el servidor de Docker de la UNRN, se les
asignoé un dominio para que sean visibles publicamente en internet. En el caso de la wallet,
se genero un archivo APK para instalarlo en dispositivos android, y se requiere un servidor
web activo donde la wallet del usuario debe poder conectarse.

2.3.2 Actualizacion de los servicios.

Las versiones alpha con las que trabajamos inicialmente, quedaron rapidamente atrasados
respecto a los repositorios originales de DCC. Es necesario actualizar los repositorios
locales, tanto por razones de seguridad (las dependencias viejas tienen vulnerabilidades
conocidas) como de funcionalidad (correccién de errores, nuevas funcionalidades).

Pero también es importante mantener las customizaciones realizadas, que consisten en
traduccion (los repositorios originales tienen los textos en inglés), paleta de colores
personalizada.

2.3.3 Creacion de un registro de DIDs propio

Para poder conformar nuestro propio consorcio, que se incluyé en la Seccién 1.6 es
necesario consolidar nuestro propio registro de DIDs. Un registro de DIDs se define en un
documento JSON que consta de un array de objetos, donde cada objeto representa a una
entidad perteneciente al consorcio, y por tanto, con capacidad para emitir sus propias

u. Rio Negro
Universidad Nacional

credenciales verificables. El did funciona como una llave publica que valida que un conjunto
de datos fue encriptado usando una llave privada, la seed.
El servicio de signing usa una de las seeds que tenga definida como variable de entorno
para firmar las credenciales. Y también permite la creacion de nuevos dids, el cual consta
de la seed que se usara para firmar, y debe mantenerse confidencial, y el did que se
expondra en el registro de dids. La creacion se puede realizar por 2 métodos:
e did:key no recibe parametros de entrada, y devuelve un documento JSON con 2
atributos: seed y did.
e did:web recibe una url, y devuelve un documento JSON con 2 atributos: seed y did.
Este método requiere que la url definida se mantenga activa y accesible en un host
Se usé el servicio de signing para crear un did con el método did:key. Este método no pide
parametros de entrada, y devuelve un JSON con 2 datos claves:
e seed: que se establece como variable de entorno en el propio servicio de signing.
Usa este dato para firmar las credenciales de un determinado emisor.
e did: se debe guardar en el registry.json correspondiente al consorcio. Este es
consultado por el verificador para validar que una credencial verificable fue emitida
por un emisor confiable, perteneciente al consorcio.

2.4 Documentacion

Dado la escala del proyecto, separado en varios servicios, se documento en los
repositorios de diversas maneras. Ya sea a través de documentos Markdown (.md),
archivos de despliegue y configuracion de ejemplo y también para desplegarlo en un
entorno de desarrollo en maquina local.

2.4.1 Metodologias utilizadas para documentar el desarrollo

2.4.1.1 Documentos Markdown

A través de documentos con formato Markdown, se documentaron procesos,
configuraciones, diagramas de arquitectura y conceptos a tener en cuenta. Tanto a nivel de
servicio individual como el conjunto de cada uno de los actores. Los mismos cuentan con
graficos escritos con sintaxis Mermaid, la cual es soportada por el servidor de GitLab de la
UNRN.

2.4.1.2 Archivos de ejemplo

Durante el desarrollo, se generaron archivos docker-stack.example.yml que se
corresponden en configuracion, pero no en valores, a los implementados en el servidor de
docker de la UNRN. Se dejaron archivos .example.env que definen las variables de entorno
necesarias. Ver anexo 4.1

2.4.1.3 Despliegue en entorno de pruebas

Se crearon archivos docker-compose.yml para posibilitar un despliegue en un
entorno local. Ver anexo 4.2

u. Rio Negro
Universidad Nacional
2.1.1.4 Documentacion de DCC

La documentacion original de los proyectos de DCC se movia a una carpeta
docs/legacy.

3. Procesos del entorno de Credenciales
Verificables

Con el ecosistema de credenciales verificables desplegado en su totalidad, se
pueden realizar los siguientes procesos para hacer uso del mismo.

3.1 Emision de un lote de Credenciales Verificables

Las credenciales verificables se emiten como un lote donde se requiere un template
de la credencial, un template del mail a enviar y un conjunto de datos que se corresponda
con los templates anteriormente mencionado.

Diagrama de Secuencia de la emisién de una Credencial Verificable

Dashboard Workflow Coordinator Signing Service Claim Page

Administrador Estudiante
Despacha un lote.

[] >

e Manda el lote.

o Manda credenciales para firmarlas.
Las devuelve firmadas. o
Devuelve el lote firmado.
Manda el email para reclamar su credencial e
o Solicita su crendencial.

Solicita la credencial con el ID codificado. o

e Devuelve la credencial

Le da su credencial. @

Dashboard Workflow Coordinator Signing Service Claim Page

Administrador Estudiante

Fuente: Elaboracion personal

3.1.1 Plantillas requeridas

Se necesita tener definida una plantilla para la Credenciales Verificables y para el email de
notificacion. En el anexo adjunto un ejemplo de ambos.

3.1.2 Definicion de los datos del lote

Se define un CSV que satisfaga los datos solicitados tanto en la plantilla de la
credencial como en la plantilla del email.

u. Rio Negro
Universidad Nacional
3.1.3 Confirmacioén de los datos

Se verifica que el conjunto de datos se corresponda correctamente con las plantillas
seleccionadas, y si da todo bien, se puede emitir el lote.

3.1.4 Envio del lote

Una vez que todo esté en orden, se envia el lote de credenciales solicitado para ser
emitido y se notifica a los alumnos por su email.

Pasos para emitir un lote de Credenciales Verificables

1 2 3

L

</>

Elegir una de las plantillas
para credenciales
previamente definidas.

Elegir una de las plantillas
para emails previamente
definidas.

Em

Elegir un archivo CSV con los
datos para el lote de
credenciales. El mismo debe
satisfacer los campos definidos

en las plantillas elegidas

53

Se envian los mails a los

Se confirma la operacion.]
estudiantes.

Fuente: Elaboracion personal

3.2 Almacenamiento en la Wallet de una Credencial Verificable

Una vez que el estudiante recibe la notificacion por mail, este puede reclamar su
credencial verificable y almacenarla en su wallet personal.

3.2.1 Recepcion del Email

El estudiante recibe un email, el mismo contiene un enlace al sitio de claim page,
donde hay un QR con el que puede reclamar su credencial verificable.

u. Rio Negro
Universidad Nacional
3.2.2 Almacenamiento en la Wallet

Con la aplicacion de la wallet, se puede leer el QR para solicitar los datos de la
credencial verificable, y asi almacenarla.

Pasos para almacenar una Credencial Verificable en la wallet

1 2

:E =

El enlace lleva a la pagina
de Claim Page, donde hay
un QR para reclamar la
credencial.

Se recibe el mail con la
credencial verificable
obtenida.

3 4

o

Se lee el QR con el
telefono, el cual debe tener
la Wallet instalada y
configurada.

El QR lleva a la app de la
Wallet, donde se debe
aceptar la credencial. Tras
lo cual, queda almacenada
en la misma.

Fuente: Elaboracion personal

3.3 Verificacion de una Credencial Verificable

3.3.1 Abirir el sitio del VerifierPlus

Se va al sitio del VerifierPlus de alguna entidad perteneciente al mismo consorcio
qgue quien la emitio.

3.3.2 Exponer la credencial al verificador

Con la app de la Wallet se puede mostrar la credencial en formato de QR, o también
extraer el JSON con que la representa. El proyecto VerifierPlus permite ambas formas para
validar la credencial.

El verificador devolvera si la credencial es valida o no.

u. Rio Negro
Universidad Nacional

Pasos para verificar una Credencial Verificable

CJ

Abrir la pagina del Mostrar el QR de la
verificador. credencial con la aplicacion
de la Wallet.

El verificador mostrara si la
credencial es valida o no.

Fuente: Elaboracion personal

4 Resultados

4.1 Ecosistema resultante

El ecosistema de software conseguido cumple con las funcionalidades minimas que se
requieren para la gestion de credenciales verificables, que constan de: emision,
almacenamiento y verificacién descentralizada.

4.1.1 Emision

El servicio de emision puede emitir credenciales verificables por lote, usando plantillas para
las propias credenciales y para los mails de notificacion a quienes les corresponde. Las
firma usando la seed privada de la entidad, que se corresponde en el registro con un DID
publico.

4 1.2 Almacenamiento

El usuario final puede almacenar las credenciales verificables emitidas y compartirlas para
ser verificadas por un verificador perteneciente al consorcio.

4 .1.3 Verificacion

El servicio de verificacion puede validar si una credencial fue emitida por una entidad
perteneciente al registro de DIDs publico. Si bien el alcance del proyecto se limitaba a una
sola entidad, el método de verificacién a través de DIDs publicos permite escalarlo a mas de
una entidad de forma sencilla.

u. Rio Negro
Universidad Nacional

5. Fuentes

5.1 Bibliografia

W3C Verificables Credentials Data Model

https://bit.ly/40VmotK
DCC - Digital Credentials Consortium

https://bit.ly/3LVCchl

5.2 Software utilizado

Meld, herramienta para realizar merge entre 2 directorios o archivos. GPLv2
https://bit.ly/3XIbl5C

Visual Studio Code, editor de cdodigo. MIT License.

https://bit.ly/47Ub62N

https://bit.ly/4oVmotK
https://bit.ly/3LVCchl
https://bit.ly/3XIbI5C
https://bit.ly/47Ub62N

u. Rio Negro
Universidad Nacional

6. Anexos

6.1 Archivos de despliegue en local

En esta seccion se describen los archivos docker-compose.yml que permiten desplegar
cada servicio en maquina local de forma simple, usando Docker Compose.

6.1.1 Emisor

services:
coordinator:
image: digitalcredentials/workflow-coordinator:0.1.0
environment:
- ENABLE_STATUS_SERVICE=
- PUBLIC_ EXCHANGE HOST=
- TENANT_TOKEN_LEF_TEST=
ports:
- '4005:4005"
signing:
image: digitalcredentials/signing-service:0.2.0
environment:
- TENANT_SEED_{TENANT_NAME }=
transactions:
image: digitalcredentials/transaction-service:0.1.0
payload:
build:
context:
dockerfile: Dockerfile.local
depends_on:
- coordinator
- redis
- mongo
environment:
- COORDINATOR_URL=
- REDIS_URL=
- REDIS_PORT=
- MONGODB_URI=
- PAYLOAD_SECRET=
- TENANT_NAME=
- SMTP_HOST=
- SMTP_USER=
- SMTP_PASS=
- SMTP_STARTTLS=
- EMAIL_ FROM=
- CLAIM PAGE_URL=
- PAYLOAD_PUBLIC_SERVER_URL=

u. Rio Negro
Universidad Nacional

ports:
- '3000:3000'
volumes:
- ./src:/home/node/app/src
claim-page:
image: digitalcredentials/admin-dashboard-claim-page:0.1.0
container_name: 'ad-claim-page'
depends_on:
- payload
ports:
- '8080:8080'
redis:
image: redis:alpine
container_name: ad-redis
environment:
- ALLOW_EMPTY_PASSWORD=
ports:
- '6379:6379'
mongo:
image: mongo
environment:
MONGO_INITDB_ROOT_USERNAME:
MONGO_INITDB_ROOT_PASSWORD:
ports:
- "27017:27017"

mongo-express:
image: mongo-express:latest
container_name: mongo-express
ports:
- "8081:8081"
environment:
ME_CONFIG_MONGODB_SERVER: mongo
ME_CONFIG_MONGODB_PORT:
ME_CONFIG_MONGODB_ADMINUSERNAME :
ME_CONFIG_MONGODB_ADMINPASSWORD:
depends_on:
- mongo
volumes:
transactions:

Las variables de entorno de cada servicio sirven para configurar:

6.1.1.1 Variables de Workflow Coordinator

Nombre de la variable Valor esperado Para qué sirve

Rio Negro

1. C

ENABLE_STATUS_SERUVI
CE

false | true

Define si se levanto el
status service.

PUBLIC_EXCHANGE_HO
ST

String de URL o direccion
web

URL del dashboard del
emisor

TENANT_TOKEN_LEF_TE
ST

Un string que representa
un token | UNPROTECTED

Token que usara el emisor
para validar su identidad.
UNPROTECTED para que
no lo haga.

6.1.1.2 Variables del Signing Service

Nombre de la variable

Valor esperado

Para qué sirve

TENANT_SEED_{TENANT
_NAME}

Un string que representa la
seed del tenant

Es lo que usa para firmar
las credenciales
verificables. El
TENANT_NAME es el
nombre de una entidad
autorizada para firmar.

6.1.1.3 Variables del Dashboard

Nombre de la variable

Valor esperado

Para qué sirve

COORDINATOR_URL

URL

URL del Workflow
Coordinator.

REDIS_URL

URL

URL de Redis, una base de
datos clave-valor usada
como caché.

MONGODB_URI

URL

URL de Mongo, donde se
incluye el hostname, el
puerto, el usuario y la
contrasefa para loguearse.

PAYLOAD_SECRET

String

Salt usado para codificar y
decodificar el ID de una
credencial verificable recién
emitida y enviada por
correo a su respectivo
estudiante. Es usada por el
claim page una vez que se
reclama la credencial.

TENANT_NAME

String

Nombre de la entidad
emisora de la credencial
verificable. Se usa para

Universidad Nacional

u. Rio Negro
Universidad Nacional

que el Signing Service
sepa que seed debe usar.

ER_URL

SMTP_HOST String Host del servidor SMTP
que envia los correos.
SMTP_USER String Usuario del servidor SMTP
que envia los correos.
SMTP_PASS String Contrasena del usuario del
servidor SMTP que envia
los correos.
SMTP_STARTTLS true | false Si el servidor SMTP usa
TTL para cifrar la
comunicacion.
EMAIL_FROM String Nombre del emisor del
email.
CLAIM_PAGE_URL String URL de la claim page.
PAYLOAD PUBLIC_SERV | String URL del propio Dashboard.

6.1.1.4 Variables de Redis

Nombre de la variable

Valor esperado

Para qué sirve

ALLOW_EMPTY_PASSW
ORD

yes | no

Si se permite el logueo con
contrasefa vacia.

6.1.1.5 Variables de Mongo

Nombre de la variable

Valor esperado

Para qué sirve

PASSWORD

MONGO_INITDB_ROOT_ | String El usuario de root para el
USERNAME motor de mongo.
MONGO_INITDB_ROOT_ | String La contrasefia del usuario

root.

6.1.1.6 Variables de Mongo Express

Nombre de la variable

Valor esperado

Para qué sirve

ME_CONFIG_MONGODB_
SERVER

String

Host de la base de datos
mongo. Al ser un

u. Rio Negro
Universidad Nacional

docker-compose, se puede
referenciar el nombre del
servicio.

ME_CONFIG_MONGODB __ | Entero positivo
PORT

Puerto del servidor de
mongo.

ME_CONFIG_MONGODB _ | String
ADMINUSERNAME

Username del root de
mongo.

ME_CONFIG_MONGODB_ | String
ADMINPASSWORD

Password del root de
mongo.

6.1.2 Verificador

services:
web-verifier-plus:
container _name: web-verifier-plus
build:
context:
dockerfile: Dockerfile
environment:
NEXT_TELEMETRY_DISABLED: 1
DB_USER:
DB_PASS :
DB_HOST:
ports:
- "{VERIFIER_PORT}:3000"
depends_on:
- mongo

mongo:
image: mongo
restart: always
environment:
MONGO_INITDB_ROOT USERNAME :
MONGO_INITDB_ROOT_PASSWORD:

6.1.2.1 Variables del Verificador

Nombre de la variable Valor esperado

Para qué sirve

NEXT_TELEMETRY_DISA |01
BLED

Determina si Vercel,
desarrolladora del
framework NextJS, toma

u. Rio Negro
Universidad Nacional

datos anénimos de
telemetria sobre la
aplicacién. 0 para que lo
haga; 1 para que no.

DB_USER String Username del usuario de
mongo.

DB_PASS String Password del usuario de
mongo.

DB_HOST String Host de la base de datos

mongo. Al ser un
docker-compose, se puede
referenciar el nombre del
servicio.

VERIFIER_PORT Entero positivo El puerto que se expondra
para poder acceder al
verificador.

6.1.2.2 Variables de Mongo

Las mismas que para el mongo del emisor.

6.2 Archivos de ejemplo

Aqui se colocaran los archivos docker-stack-example.yml correspondientes a cada servicio
desplegado en el servidor de Docker de la UNRN.

6.2.1 Emisor

version: '3.8'

networks:
traefik-unrn:
external: true

services:
coordinator:

image: digitalcredentials/workflow-coordinator:1.0.0

environment:
- ENABLE_STATUS_SERVICE=
- PUBLIC_EXCHANGE_HOST=
- TENANT_TOKEN_MC_UNRN=

ports:
- '4005:4005"

networks:
- traefik-unrn

M. Rio Negro
Universidad Nacional

deploy:
mode: replicated
replicas: 1

signing:
image: digitalcredentials/signing-service:1.0.0
environment:
- TENANT_SEED_MC_UNRN=
- TENANT_DIDMETHOD_MC_UNRN=
networks:
- traefik-unrn
ports:
- '4006:4006'
deploy:
mode: replicated
replicas: 1

transactions:
image: digitalcredentials/transaction-service:0.4.0
networks:
- traefik-unrn
deploy:
mode: replicated
replicas: 1

emisor:
image:
registrygitlab.unrn.edu.ar/lia/microcredenciales/emisor:37d1bd6a

depends_on:
- coordinator
- redis
- mongo
environment:
- COORDINATOR_URL=
- REDIS_URL=
- REDIS_PORT=
- MONGODB_URI=
- PAYLOAD SECRET=
- TENANT_NAME=MC_UNRN
- SMTP_HOST=
- SMTP_USER=
- SMTP_PASS=
- EMAIL_FROM=
- CLAIM PAGE_URL=
- PAYLOAD PUBLIC_SERVER_URL=

M. Rio Negro
Universidad Nacional

#ports:
- '3000:3000'
networks:
- traefik-unrn
volumes:
- /opt/emisor/src:/home/node/app/src
deploy:

mode: replicated
replicas: 1
labels:
- "traefik.enable=true"
- "traefik.port=3000"
"traefik.http.routers.emisor.rule=Host(microcredenciales.unrn.edu.ar)"
- "traefik.http.routers.emisor.tls=true"
- "traefik.http.routers.emisor.service=emisor"
- "traefik.http.services.emisor.loadbalancer.server.port=3000"
- "traefik.http.routers.emisor.entrypoints=websecure”
HTTP
- "traefik.http.routers.emisor-http.entrypoints=web"
"traefik.http.routers.emisor-http.rule=Host(microcredenciales.unrn.edu.
ar)"
Redirect
- "traefik.http.routers.emisor-http.middlewares=emisor-https"”
"traefik.http.middlewares.emisor-https.redirectscheme.scheme=https"
claim-page:
image: digitalcredentials/admin-dashboard-claim-page:1.0.0
depends_on:
- emisor
ports:
- '8080:8080'
networks:
- traefik-unrn
deploy:
mode: replicated
replicas: 1

redis:
image: redis:alpine
environment:
- ALLOW_EMPTY_PASSWORD=
ports:
- '6379:6379'
networks:

M. Rio Negro
Universidad Nacional

- traefik-unrn
deploy:

mode: replicated

replicas: 1

mongo:
image: 133tlamer/mongodb-without-avx:5.0.20
image: mongo
environment:
MONGO_INITDB_ROOT_ USERNAME :
MONGO_INITDB_ROOT PASSWORD:
ports:
- "27017:27017"
networks:
- traefik-unrn
volumes:
- mongodb: /data/db
deploy:
mode: replicated
replicas: 1

mongo-express:

image: mongo-express:latest

ports:

- "8081:8081"

networks:
- traefik-unrn

environment:
ME_CONFIG_MONGODB_SERVER:
ME_CONFIG_MONGODB_PORT:
ME_CONFIG_MONGODB_ADMINUSERNAME :
ME_CONFIG_MONGODB_ADMINPASSWORD:

depends_on:

- mongo

deploy:
mode: replicated
replicas: 1

volumes:
mongodb:

6.2.2 Verificador

version: '3.8'

M. Rio Negro
Universidad Nacional

networks:
{VERIFICADOR_NETWORK}:
external: true

services:
verificador:
image: verificador:{TAG}
environment:
- NEXT_TELEMETRY_DISABLED=1
- DB_USER=
- DB_PASS=
- DB_HOST=
networks:
- {VERIFICADOR_NETWORK}
deploy:
mode: replicated
replicas: 1
labels:

- "traefik.enable=true"

- "traefik.port={VERIFICADOR_PORT}"

- "traefik.http.routers.verificador.rule=Host (" {VERIFICADOR URL})"

- "traefik.http.routers.verificador.tls=true"

- "traefik.http.routers.verificador.service=verificador"
"traefik.http.services.verificador.loadbalancer.server.port={VERIFICADOR
_PORT}"

- "traefik.http.routers.verificador.entrypoints=websecure"

HTTP

- "traefik.http.routers.verificador-http.entrypoints=web"
"traefik.http.routers.verificador-http.rule=Host(VERIFICADOR URL")"

Redirect

traefik.http.routers.verificador-http.middlewares=verificador-https"

traefik.http.middlewares.verificador-https.redirectscheme.scheme=https"
depends_on:
- mongo

6.2.2.1 Variables del verificador

Nombre de la variable Valor esperado Para qué sirve

VERIFICADOR_NETWORK | String Red interna de Docker para
aislar los servicios.

u. Rio Negro
Universidad Nacional

VERIFICADOR_URL URL Dominio asignado al
servicio en Traefik.

VERIFICADOR_PORT Entero positivo Puerto donde el servidor de
la aplicacion escuchara.

NEXT_TELEMETRY_DISA |01 Determina si Vercel,

BLED desarrolladora del

framework NextJS, toma
datos anénimos de
telemetria sobre la
aplicacion. 0 para que lo
haga; 1 para que no.

DB_USER String Username del usuario de
mongo.

DB_PASS String Password del usuario de
mongo.

DB_HOST String Host de la base de datos

mongo. Al ser un
docker-compose, se puede
referenciar el nombre del
servicio.

VERIFIER _PORT Entero positivo El puerto que se expondra
para poder acceder al
verificador.

6.3 Ejemplos de codigo

6.3.1 Ejemplo de Plantilla para Credenciales Verificables

{
"type": [
"VerifiableCredential”,
"EducationalCredential™
1,
"proof": {
"jws": "eyJhbGciOiJFZERTQSJ9..",
"type": "Ed25519Signature2018”,
"created": "2023-01-01T00:00:00Z",
"proofPurpose": "assertionMethod",
"verificationMethod":
"https://campusbimodal.unrn.edu.ar/issuer/keys/1"

}s

"issuer": {

M. Rio Negro
Universidad Nacional

"id": "did:example:76el2ec712ebc6flc22lebfeblf",
"name": "Universidad Nacional de Rio Negro"
¥
"@context": [
"https://www.w3.0org/ns/credentials/v2",
"https://www.w3.0org/ns/credentials/examples/v2"
1
"validFrom": "{{validoDesde}}",
"credentialStatus”: {
"id": "https://campusbimodal.unrn.edu.ar/status/default”,
"type": "CredentialStatusList2021"
¥
"credentialSchema"”: {
"id": "https://www.w3.0rg/2018/credentials/examples/v1",
"type": "JsonSchemaValidator2018"
¥
"credentialSubject": {
lltypell: [
"AchievementSubject”
1,
"name": "{{earnerName}}",
"achievement": {
Iltypell: [
"Achievement™
1,
"criteria": {
"type": "Criteria",

"narrative": "E1 alumno {{earnerName}} ha finalizado el
{{degreeType}} en {{subject}} de manera satisfactoria."”
}
s

"hasCredential”: {
"id": "https://cred.127.0.0.1.nip.io/api/claim/default"”,
"name": "{{credentialName}}",
"type": [
"EducationalOccupationalCredential”
1,
"logoURL": "{{logoUrl}}",
"description”: "{{description}}",
"currentYear": "{{currentYear}}",
"competencyRequired"”: "Competencias no especificadas."”,
"credentialCategory"”: "badge"

e

6.3.2 Ejemplo de Plantilla para email de notificacion

<html>
<head>

<style>

body {
font-family: 'Arial', sans-serif;
background-color: #f4f4f4;
margin: 0;
padding: ©;

}

.email-container {
max-width: 600px;
margin: 40px auto;
background-color: #ffffff;
padding: 30px;
border-radius: 15px;
box-shadow: © 8px 16px rgba(e, @, 0, 0.2);
border: 3px solid #b30000;
}

.header {
text-align: center;
padding-bottom: 30px;

}

.logo {
max-width: 200px;
height: auto;

}

.content {
font-size: 16px;
color: #333333;
line-height: 1.8;

¥

.content p {
margin: 15px 0;

¥

.qr-code {
text-align: center;
margin: 30px 0;

¥

.qr-code img {
max-width: 200px;
border: 2px solid #b30000;
border-radius: 10px;

}
.footer {

Rio Negro
Universidad Nacional

u. Rio Negro
Universidad Nacional

text-align: center;
font-size: 14px;
color: #666666;
margin-top: 40px;
border-top: 1px solid #dddddd;
padding-top: 20px;
}
a {
color: #b30000;
text-decoration: underline;
}
a:hover {
color: #a00000;
}
</style>
</head>
<body>
<div class="email-container">
<div class="header">

</div>
<div class="content">
<p>Estimado/a {{earnerName}},</p>

<p>ijFelicitaciones por haber completado tu
{{degreeType}} en {{subject}}! Estamos
muy orgullosos de tu logro.</p>
<p>Ve a reclamar tu credencial:</p>
</div>
Haz clic aqui
<div class="footer">
<p>Si tienes alguna pregunta, por favor contactanos en lia@unrn.edu.ar.</p>
<p>© {{currentYear}} Tu Universidad. Todos los derechos
reservados.</p>
</div>
</div>
</body>
</html>

	Trabajo Final de Carrera
	Despliegue de un entorno de credenciales verificables (VC) bajo el estándar de la W3C
	Índice
	1. Breve marco teórico.
	1.1 Claim
	1.2 Credencial Verificable (VC)
	1.3 JSON-LD
	1.3.1 JSON

	1.4 DID
	1.5 Wallet
	1.6 Consorcio
	1.7 Tenant

	2. Tareas realizadas
	2.1 Análisis
	2.1.1 Situación actual
	2.1.2 Infraestructura disponible
	2.1.3 Herramientas de Software utilizadas
	2.1.4 Limitaciones y alcance

	2.2 Diseño de la solución
	2.2.1 Credenciales Verificables
	2.2.1.1 Emisor
	2.2.1.2 Titular
	2.2.1.3 Verificador
	2.2.1.4 Registro de Datos

	2.2.2 Soluciones preexistentes
	2.2.3 Arquitectura del ecosistema
	2.2.4 Arquitectura del proyecto Sign and Verify (Emisor)
	2.2.4.1 Dashboard
	2.2.4.2 Claim Page
	2.2.4.3 Workflow Coordinator
	2.2.4.4 Signing Service
	2.2.4.5 Transaction Service

	2.3 Implementación
	2.3.1 Configuración de la Infraestructura.
	2.3.1.1 Repositorio
	2.3.1.2 Integración Continua
	2.3.1.3 Despliegue

	2.3.2 Actualización de los servicios.
	2.3.3 Creación de un registro de DIDs propio

	2.4 Documentación
	2.4.1 Metodologías utilizadas para documentar el desarrollo
	2.4.1.1 Documentos Markdown
	2.4.1.2 Archivos de ejemplo
	2.4.1.3 Despliegue en entorno de pruebas
	2.1.1.4 Documentacion de DCC

	3. Procesos del entorno de Credenciales Verificables
	3.1 Emisión de un lote de Credenciales Verificables
	3.1.1 Plantillas requeridas
	3.1.2 Definición de los datos del lote
	3.1.3 Confirmación de los datos
	3.1.4 Envío del lote

	3.2 Almacenamiento en la Wallet de una Credencial Verificable
	3.2.1 Recepción del Email
	3.2.2 Almacenamiento en la Wallet

	3.3 Verificación de una Credencial Verificable
	3.3.1 Abrir el sitio del VerifierPlus
	3.3.2 Exponer la credencial al verificador

	4.Resultados
	4.1 Ecosistema resultante
	4.1.1 Emisión
	4.1.2 Almacenamiento
	4.1.3 Verificación

	5. Fuentes
	5.1 Bibliografía
	5.2 Software utilizado

	
	6. Anexos
	6.1 Archivos de despliegue en local
	6.1.1 Emisor
	6.1.1.1 Variables de Workflow Coordinator
	6.1.1.2 Variables del Signing Service
	6.1.1.3 Variables del Dashboard
	6.1.1.4 Variables de Redis
	6.1.1.5 Variables de Mongo
	6.1.1.6 Variables de Mongo Express

	6.1.2 Verificador
	6.1.2.1 Variables del Verificador
	6.1.2.2 Variables de Mongo

	6.2 Archivos de ejemplo
	6.2.1 Emisor
	6.2.2 Verificador
	6.2.2.1 Variables del verificador

	6.3 Ejemplos de código
	6.3.1 Ejemplo de Plantilla para Credenciales Verificables
	6.3.2 Ejemplo de Plantilla para email de notificacion

