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ABSTRACT
Triassic vertebrate tracks are known from the beginning of the 19th century and have
a worldwide distribution. Several Triassic track ichnoassemblages and ichnotaxa have
a restricted stratigraphic range and are useful in biochronology and biostratigraphy.
The record of Triassic tracks in the Iberian Peninsula has gone almost unnoticed
although more than 25 localities have been described since 1897. In one of these
localities, the naturalist Longinos Navás described the ichnotaxon Chirotherium
ibericus in 1906.The vertebrate tracks are in two sandy slabs from the Anisian
(Middle Triassic) of the Moncayo massif (Zaragoza, Spain). In a recent revision,
new, previously undescribed vertebrate tracks have been identified. The tracks
considered to be C. ibericus as well as other tracks with the same morphology from
both slabs have been classified as Chirotherium barthii. The rest of the tracks have
been assigned to Chirotheriidae indet., Rhynchosauroides isp. and undetermined
material. This new identification of C. barthii at the Navás site adds new data to the
Iberian record of this ichnotaxon, which is characterized by the small size of the
tracks when compared with the main occurrences of this ichnotaxon elsewhere. As
at the Navás tracksite, the Anisian C. barthii-Rhynchosauroides ichnoassemblage has
been found in other coeval localities in Iberia and worldwide. This ichnoassemblage
belongs to the upper Olenekian-lower Anisian interval according to previous
biochronological proposals. Analysis of the Triassic Iberian record of tetrapod
tracks is uneven in terms of abundance over time. From the earliest Triassic to the
latest Lower Triassic the record is very scarce, with Rhynchosauroides being the only
known ichnotaxon. Rhynchosauroides covers a wide temporal range and gives poor
information for biochronology. The record from the uppermost Lower Triassic to
the Middle Triassic is abundant. The highest ichnodiversity has been reported for
the Anisian with an assemblage composed of Dicynodontipus, Procolophonichnium,
Rhynchosauroides, Rotodactylus, Chirotherium, Isochirotherium, Coelurosaurichnus
and Paratrisauropus. The Iberian track record from the Anisian is coherent with the
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global biochronology proposed for Triassic tetrapod tracks. Nevertheless, the scarcity
of track occurrences during the late Olenekian and Ladinian prevents analysis of
the corresponding biochrons. Finally, although the Iberian record for the Upper
Triassic is not abundant, the presence of Eubrontes, Anchisauripus and probably
Brachychirotherium is coherent with the global track biochronology as well. Thus,
the Triassic track record in the Iberian Peninsula matches the expected record for
this age on the basis of a global biochronological approach, supporting the idea that
vertebrate Triassic tracks are a useful tool in biochronology.

Subjects Biogeography, Evolutionary Studies, Paleontology
Keywords Chirotherium ibericus, Chirotherium barthii, Middle Triassic, Iberian Peninsula,
Triassic geochronology, Vertebrate tracks

INTRODUCTION
Vertebrate track morphology is mainly determined by limb motion, foot anatomy and

substrate consistency, thus the studies of fossil tracks can provide insight into producer,

behaviour and palaeoenvironment, representing a direct window into the lives of

extinct organisms (Falkingham, 2014). Triassic tetrapod tracks have a wide distribution

across the supercontinent Pangea (see Lucas, 2007; Klein & Lucas, 2010a; and references

herein). The Triassic track record is archosaur, lepidosauromorph/archosauromorph-

(Rhynchosauroides) and synapsid-dominated (Haubold, 1971; Haubold, 1984; Klein &

Haubold, 2007), and includes the oldest known dinosaur tracks (Klein & Lucas, 2010a).

Several recent papers have asserted the usefulness of Triassic ichnotaxa for establishing

correlations between different stratigraphic units on a global scale, with emphasis on the

German and North American records (Lucas, 2007; Klein & Haubold, 2007; Klein & Lucas,

2010a). Footprints are the only tetrapod fossils known in many places, thus they provide

important data on vertebrate distribution in space and time (Lucas, 2007). For instance, the

number and diversity of chirotheriid tracks are such that several ichnologists have seriously

proposed that it is easier to study the evolution of Triassic archosaurs through their abun-

dant tracks than through their sparse skeletal remains (Lockley & Meyer, 2000). The Triassic

archosaur tracks show a distinct stratigraphic distribution pattern (limited temporal

ranges) that can be ascribed to different evolutionary developments of the locomotor

apparatus (Klein & Lucas, 2010a). Nevertheless, Klein & Lucas (2010a) have suggested that

the “single largest problem with Triassic footprint biostratigraphy and biochronology is

the nonuniform ichnotaxonomy and evaluation of footprints that show extreme variation

in shape due to extramorphological (substrate-related) phenomena”. Recent studies on

dinosaur tracks have shown how the substrate can influence the final track shape with

significant variations within the same trackway (e.g., Razzolini et al., 2014). For instance in

a Triassic context, the ichnogenus Chirotherium Kaup, 1935a, is one of the described ichno-

taxa with the most ichnospecies, but in several recent papers some of the ichnospecies

described have been considered to be extramorphological variations or synonyms of

well-established ichnotaxa (Klein & Haubold, 2007; Klein & Lucas, 2010a; Xing et al., 2013).
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In the Iberian Peninsula the Triassic track record has gone almost unnoticed because

of its scarcity and the fact that many of the tracks were described more than a century

ago (e.g., Calderón, 1897; Navás, 1904; Navás, 1906; Gómez de Llarena, 1917). In the last

few years new discoveries and reviews of previous material have notably increased what

is known of the Iberian Triassic tetrapod track record (Gand et al., 2010; Dı́az-Mart́ınez

& Pérez-Garćıa, 2011; Dı́az-Mart́ınez & Pérez-Garćıa, 2012; Fortuny et al., 2011). The

latter authors made an exhaustive review of the Triassic bone and track record in the

Iberian Peninsula, putting special emphasis on the paleobiogeography. Taking into account

these recent papers, 26 localities with Triassic vertebrate tracks have been described since

1897 in the Iberian Peninsula (see Dı́az-Mart́ınez & Pérez-Garćıa, 2011; Dı́az-Mart́ınez &

Pérez-Garćıa, 2012; Fortuny et al., 2012; Meléndez & Moratalla, 2014). Most of the studies

predate the 1990s, and almost all the Iberian tracks have been studied just once and only

took into account their ichnotaxonomic affinities. There are some examples where the ma-

terial has been reassessed, such as Chirotherium catalaunicum Casanovas Cladellas, Santafé

Llopis & Gómez Alba, 1979 (Fortuny et al., 2011), the Chirotherium tracks from Mallorca

(Calafat et al., 1987; Gand et al., 2010), Chirotherium barthii Kaup, 1935b from Catalonia

(Calzada, 1987; Valdiserri, Fortuny & Galobart, 2009), and the “Rillo de Gallo footprint” in

Guadalajara (Calderón, 1897; Dı́az-Mart́ınez & Pérez-Garćıa, 2012). These reassessments

have changed the initial identifications, and the age of the track-bearing layers has been

taken into consideration. A number of researchers (Gand et al., 2010; Fortuny et al., 2011;

Dı́az-Mart́ınez & Pérez-Garćıa, 2012) have emphasized the need to reappraise the Iberian

Triassic vertebrate record in order to compare it with that from other coeval basins.

In the present work, we reassess the two slabs from the Moncayo massif (NE Spain)

where Chirotherium ibericus (Navás, 1906) was defined (Navás, 1904; Navás, 1906). Since

its definition, no one has yet reanalyzed this material firsthand, although it has been

addressed in some ichnotaxonomic discussions (Leonardi, 1959; Kuhn, 1963; Haubold,

1971). During visits to the Natural Science Museum of the University of Zaragoza

(Zaragoza, Spain), we have identified in the slabs new vertebrate tracks and anatomical

details undescribed by Navás (1904), Navás (1906) and Leonardi (1959). Moreover, on the

basis of recent geological studies (e.g., Dı́ez et al., 2007; Bourquin et al., 2007; Bourquin et

al., 2011), we are able to refine the geological location of these slabs (Navás site from here).

The main aim of this paper is to discuss the ichnotaxonomy of all the vertebrate tracks

found in the two slabs (those classified as Chirotherium ibericus and the other new material

associated with them). Furthermore, we review the main tetrapod track assemblages of the

Iberian Triassic (only including those localities that are well dated) in order to compare

them with the biochrons based on tetrapod footprints (e.g., Klein & Haubold, 2007; Klein

& Lucas, 2010a) proposed for the Triassic.

HISTORY OF CHIROTHERIUM IBERICUS
The Chirotherium ibericus tracks were found in the summer of 1895 when the Jesuit

naturalist Longinos Navás was on a field trip in the Moncayo area. The summer visitor

Mr. Ignacio de Inza showed Navás the place where “two dog-like traces” were imprinted
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Figure 1 Reproduction of the original drawing of Triassic ichnites. Reproduction of the original
drawing of slab CS.DA.39 bearing Triassic ichnites from the Moncayo massif, made by Longinos Navás
in 1895 in the field and reported by Navás (1904, p. 149).

cloven on the rock. Navás (1904) and Navás (1906) went on to identify six fossil tracks

in this outcrop. His publications on Triassic tracks (Navás, 1904; Navás, 1906) reported

the first occurrence of vertebrate tracks in Spain following the discovery of a chirotheriid

footprint in the Triassic of Molina de Aragón, Guadalajara province (Calderón, 1897;

Dı́az-Mart́ınez & Pérez-Garćıa, 2012). The first report of the discovery was in 1904, when

Navás (1904) cited the presence of “Cheirotherium” in the Moncayo massif, including a first

drawing of the slab bearing six ichnites made in the field by himself (Fig. 1). Subsequently,

Navás (1906) assigned the tracks to a new ichnotaxon, Chirosaurus ibericus, but without

a distinctive diagnosis. Nevertheless, it cannot be considered a nomen nudum because

he provided a detailed description and compared it with other ichnotaxa (see art. 10.1

International Commission on Zoological Nomenclature, 1999). At the end of Navás’s (1906)

paper, he proposed the possibility of using the name Chirotherium ibericum instead of

Chirosaurus ibericus. In this case, Chirosaurus ibericus has priority over Chirotherium

ibericum, which is a junior synonym, since the former was used before the latter. On

the other hand, the ichnogenus Chirotherium has priority with respect to Chirosaurus

(see Sarjeant, 1990) so the correct way to name the ichnotaxon proposed by Navás is

Chirotherium ibericus.

Navás (1906) proposed these tracks as a new ichnotaxon mainly on the basis of their

age, size and shape. He suggested a Silurian age for the tracks, but all the other known

Chirotherium tracks are Triassic. In addition, he compared the size of these tracks with the

tracks from Molina de Aragon (Guadalajara, Spain) and those from the “British Museum

of London” (today the Natural History Museum of London), concluding that the latter
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were much larger. He also suggested that the digit impressions of C. ibericus were more

slender than the other tracks to which he compared them.

The slab was excised and new tracks appeared inside that were only cited but

not described by Navás (1906). Finally, Navás (1906) proposed an amphibian as the

trackmaker.

Subsequently, Leonardi (1959) re-studied the material of Navás (1906) on the basis of

the previous publications and assigned the tracks from one slab to Chirotherium ibericus

and the tracks from the other slab to Chirotherium coltoni (= Isochirotherium coltoni)

Peabody (1957). Leonardi (1959) proposed that the presence of Chirotherium indicated a

Triassic age. Finally, Kuhn (1963) and Haubold (1971) analysed the entire bibliography on

pre-Cenozoic amphibian and reptile tracks and considered the tracks of the Navás site to be

Chirotherium ibericum and Chirotheriidae indet., respectively.

GEOLOGICAL SETTING
The tracks studied here are located in two excised slabs of fine-grained, bluish gray

sandstones. According to the known data (Navás, 1906; Leonardi, 1959; Bastero Monserrat,

1989), the Navás site was located in a block of rock within Holocene deposits from the

Moncayo massif, in the western part of Zaragoza province, NE Spain. The exact location

is beside the road to the Moncayo Sanctuary, 700 m before the sanctuary (Fig. 2). The

Navás site is located in the Aragonese Branch of the Iberian Range (Fig. 2). The Triassic

of this region is composed of typical Germanic facies: detritic Buntsandstein, dolomitic

Muschelkalk and lutitic-evaporitic Keuper (Arribas, 1985). The Moncayo massif is a

structural relief that stands out from the surrounding topography and has a great richness

of glacial and periglacial landforms (e.g., Pellicer & Echeverŕıa, 2004). These Holocene

deposits (e.g., block slopes) are formed from reworked material from the outcropping

Buntsandstein facies of the Moncayo anticline (Fig. 2, Ramı́rez del Pozo, 1980).

The local series in the Moncayo outcrops is formed from Permo-Triassic detritic

deposits lying unconformably on a Variscan basement (Arribas, 1985; Dı́ez et al., 2007).

This detritic series, lithologically composed of conglomerates, sandstones and lutites, is

divided into four units: the Araviana, Tierga, Calcena and Trasobares units, in ascending

stratigraphic order (Arribas, 1985). The basal conglomerates and lutites of the Araviana

unit are attributed to the Permian based on paleopalynological data, whereas above them

a noticeable hiatus has been recognized for the Lower Triassic (Dı́ez et al., 2007). The

Buntsandstein facies sensu stricto is represented by the Tierga, Calcena and Trasobares

units, which are Anisian (Middle Triassic) in age based on paleopalynological data and

sequence stratigraphy (Dı́ez et al., 2007; Bourquin et al., 2007; Bourquin et al., 2011).

The studied track-bearing slabs were recovered within Holocene deposits from the NE

slope of the Moncayo peak (Fig. 2); their exact stratigraphic origin cannot be specified with

certainty. However, the lithological features and the nearest outcrops allow us to assign

these slabs to Anisian Buntsandstein s.s. deposits, it being impossible to pinpoint their

provenance specifically to one of the three local units. These deposits constitute a major

cycle that can be divided into two minor cycles (Dı́ez et al., 2007). The sandy nature of the
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Figure 2 Geological setting of the Triassic outcrops in the Moncayo Massif. (A) Simplified geological
map of the Iberian Peninsula. (B) General map of the Triassic outcrops and pictures from the Navás site.
Map redrawn from MAGNA (Ramı́rez del Pozo, 1980).

slabs suggests that they probably belong to the Tierga-Calcena cycle in its retrogradational

phase (mainly the Tierga unit), which is attributed to the lower Anisian (Dı́ez et al., 2007).

The Tierga unit—about 250 m thick and mainly composed of fine to medium-grained

sandstones, with interbedded silty claystones—shows an evolution from a braided river

to a fluvio-lacustrine environment, whereas the overlying Calcena unit—far less thick and

rich in lutite—represents heterolithic coastal plain deposits (Dı́ez et al., 2007).

Buntsandstein facies in the Iberian Range have traditionally been considered to be

fluvial in origin (e.g., Arché & López-Gómez, 2006). Nonetheless, it should be noted that

recently the red Buntsandstein sandstones of the south-eastern Aragonian Branch of

the Iberian Chain have been reported as an evolving erg system (Soria et al., 2011), in

accordance with the highly arid conditions predicted by paleoclimatic models for Western

Europe during the Early Triassic (Péron et al., 2005).

MATERIAL AND METHODS
The analysed materials are two slabs, CS.DA.38 and CS.DA.39, which are housed in

the Museo de Ciencias Naturales de la Universidad de Zaragoza, Zaragoza, Spain. The

slabs have been deposited in the current institution since the late 20th century and were

previously part of the collection of the Jesuit school of Zaragoza (Colegio El Salvador) at

which Longinos Navás was teaching. The tracks were drawn using a large sheet of plastic.

All the tracks were photographed individually, were measured (Fig. 3) and were labeled

with the acronyms CS.DA.38.X or CS.DA.39.X (Figs. 4–6), depending on the slab and the

position within the slab. CS.DA is the official label assigned by the Jesuit school and later

Dı́az-Martı́nez et al. (2015), PeerJ, DOI 10.7717/peerj.1044 6/36

https://peerj.com
http://dx.doi.org/10.7717/peerj.1044


Figure 3 Scheme used for the measurements of the tracks and trackways. Scheme and measurements
based on Demathieu & Wright (1988) and Clark, Aspen & Corrance (2002) for: (A) chirotheriid tracks, (B)
Rhynchosauroides tracks, (C) tridactyl tracks, (D) trackways. Abbreviations in ‘Material and Methods’.

maintained in the Natural Science Museum of the University of Zaragoza. In addition, m/p

refers to manus (forelimb) and pes (hindlimb) tracks respectively.

The slabs have dimensions of 1.3 m length by 0.88 m width and 0.14 m thickness. The

tracks which Navás sketched and identified as a single trackway in the papers of 1904

and 1906 in slab CS.DA.39 (Navás, 1904) are in fact part of two incomplete trackways

(CS.DA.39.1.1p, CS.DA.39.1.1m, CS.DA.39.1.2p, CS.DA.39.1.2m and CS.DA.39.2.1m and

one isolated track CS.DA.39.9) (Figs. 1 and 4–6). The tracks in slab CS.DA.39 are at the
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Figure 4 Picture and sketch map of slab CS.DA.38.

bottom and are stratigraphically beneath slab CS.DA.38. The natural casts of CS.DA.38 are

located on the top of CS.DA.39.

Within slab CS.DA.38 (Figs. 4 and 6) we have identified three partial trackways

(CS.DA.38.1–CS.DA.38.2 and CS.DA.38.4), a manus-pes track set (CS.DA.38.3) and three

isolated tracks (CS.DA.38.5–CS.DA.38.7). In slab CS.DA.39 (Figs. 5 and 6), three partial

trackways (CS.DA.39.1–CS.DA.39.3), five tracks (CS.DA.39.4–CS.DA.39.8) that could rep-

resent a trackway, and two isolated tracks (CS.DA.39.9–CS.DA.39.10) have been studied. In

total, 28 vertebrate tracks have been studied (12 in CS.DA.38 and 18 in CS.DA.39).
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Figure 5 Picture and sketch map of slab CS.DA.39.

Measurements were taken mainly according to Demathieu & Wright (1988) and Clark,

Aspen & Corrance (2002) (see Fig. 3). Ichnotaxonomic discussions are mainly based

on Avanzini & Renesto (2002), Demathieu & Demathieu (2004), Fichter & Kunz (2004),

King et al. (2005) and Valdiserri & Avanzini (2007). In analysing and describing the skin

marks we follow Avanzini (2000) and Kim et al. (2010).

The measurements taken were (Fig. 3; Tables 1–3): L, track length; l, track width; M,

length set of I–IV; m, width set I–IV; I, length digit I; II, length digit II; III, length digit

III; IV, length digit IV; V, length digit V; t, divarication II–IV; t′, divarication I–IV; f,
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Figure 6 Sketch map of slabs CS.DA.38 and CS.DA.39 with the acronyms of each track.

divarication I–V; PL, pace length; Apm, angle between pes and manus; and Dpm, distance

between pes and manus. All parameters are given and compared in cm, except t, t′, f, and

Apm, which are given in degrees.

Furthermore, the entire bibliography relating to the record of Iberian Triassic tracks

is revised in order to allow comparison with the global tetrapod track biochronology
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Table 1 Measurements of the Chirotherium barthii tracks from the Navás site. Measurements (in cm and degrees) of the Chirotherium barthii
tracks from the Navás site. Abbreviations are listed in ‘Material and Methods’.

L M l m I II III IV V t t′ f PL pl Apm Dpm

38.1.1p 11.7 8 – 5.6 3.7 5.4 7.5 6.1 – 25 39 78 33.8 – 21 11.3

38.1.1m 4.7 3.3 – – – 1.4 2.3 2.8 2.3 45 – – – – – –

38.1.2p 11.2 8 7.5 6.1 – – – 6.1 3.7 23 45 85 – – – –

38.2.1p – – – – – 3.7 5.2 4.2 – 20 28 – 35 – 30 11.8

38.2.1m – – – – – 1.4 1.8 – – 30 – – – 36 – –

38.2.2p – – – – – – – – – – – – – – – 11.8*

38.2.2m – – – – – – – – – – – – – – – –

38.3.1p – – – – – – – – – – – – – – 20 11.8*

38.3.1m 4.7 2.8 – – – 1.4 1.8 2.4 1.8 41 – – – – – –

39.1.1p 14.5 8.9 8.9 7.5 – 7.9 9.4 7.4 5.2 29 43 79 42 – – 14.1

39.1.1m – – – – – – – 3.3 2.8 – – – – 38.5 – –

39.1.2p 13.1 8.9 7.9 7.9 2.8 6.1 7.5 6.6 4.7 18 42 85 – – 14 11.8

39.1.2m 5.6 4.2 6.1 4.7 1.4 3.3 3.8 3.3 3.3 33 65 145 – – – –

39.2.1p 13.1 – – – – – – – – – – – 45.1 – – 16.4

39.2.1m 6.1 – – – – 3.3 4.2 4.2 3.7 48 – – – – – –

39.2.2p – – – – – – – – 5.2 – – 86 – – – –

Notes.
* Estimate.

Table 2 Measurements of the Rhynchosauroides tracks from the Navás site. Measurements (in cm and
degrees) of the Rhynchosauroides tracks from the Navás site. Abbreviations are listed in ‘Material and
Methods’.

L l m I II III IV V t t′ f

39.4 4.6 2.7 2.4 1.6 2 2.5 2.8 0.8 10 50 78

39.5 – – – 0.9 1.7 2 2.6 – 15 30 –

39.6 – – – – – – – – – – –

39.7 – – – – – – – – – –

39.8 – – – – – – – – – – –

39.10 4.6 – – – 1.3 1.7 2.3 2.2 13 – –

Table 3 Measurements of the undetermined tracks from the Navás site. Measurements (in cm and
degrees) of the undetermined tracks from the Navás site. Abbreviations are listed in ‘Material and
Methods’.

L l II III IV t PL

38.4.1 2 2.8 1.7 1.8 1.5 48 37

38.4.2 2.4 2.5 1.7 1.9 1.8 35 –

38.5 2.3 1.6 1.4 1.9 1.4 18 –

38.6 2.3 – 1.4 1.6 – – –

38.7 2.4 – 1.7 1.7 – – –

39.11 2 2.2 1.4 1.8 1.4 12 –
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Table 4 Summary of the published Triassic tracks from the Iberian Peninsula that are located in a concrete chronostratigraphic age. Only the
most recent ichnotaxonomic determination is considered.

Icnotaxon Age Reference

Dicynodontipus isp. Anisian Valdiserri, Fortuny & Galobart (2009)

Procolophonichnium isp. Anisian Valdiserri, Fortuny & Galobart (2009)

Rhynchosauroides isp. Anisian (Fortuny et al., 2012) Calzada (1987)

Rhynchosauroides cf. beasleyei Anisian (Fortuny et al., 2012) Calzada (1987)

Rhynchosauroides isp. Anisian Valdiserri, Fortuny & Galobart (2009)

Rhynchosauroides isp. Olenekian-Anisian Gand et al. (2010)

Rhynchosauroides isp. Anisian Gand et al. (2010)

Rhynchosauroides isp. Anisian In this work

Rotodactylus sp. Anisian Valdiserri, Fortuny & Galobart (2009)

Brachychirotherium cf. gallicum Upper Triassic? Pérez-López (1993)

Brachychirotherium gallicum Anisian Gand et al. (2010)

Brachychirotherium isp. Anisian Gand et al. (2010)

Chirtotherium barthii Anisian (in this work) In this work

Chirotheium barthii Anisian (Fortuny et al., 2012) Calzada (1987)

Chirotherium barthii Anisian Valdiserri, Fortuny & Galobart (2009)

Chirotherium barthii Anisian Gand et al. (2010)

Chirotherium isp. Anisian Gand et al. (2010)

Isochirotherium soergeli Anisian Valdiserri, Fortuny & Galobart (2009)

Isochirotherium cf. coureli Anisian Gand et al. (2010)

Synaptichnium isp. Anisian (Fortuny et al., 2012) Calzada (1987)

Synaptichnium isp. Anisian Valdiserri, Fortuny & Galobart (2009)

Chirotheriid Ladinian-early Carnian Fortuny et al. (2012)

Chirotheriid Ladinian Meléndez & Moratalla (2014)

Chirotheriid Anisian In this work

Eubrontes isp. Rhaetian Pascual-Arribas & Latorre-Macarrón (2000)

Anchisauripus isp. Rhaetian Pascual-Arribas & Latorre-Macarrón (2000)

Coelurosaurichnus perriauxi Anisian Gand et al. (2010)

Paratrisauropus latus Anisian Gand et al. (2010)

Archosauria Landian Demathieu, Pérez-López & Pérez-Lorente (1999)

proposed by Klein & Haubold (2007) and Klein & Lucas (2010a). The information that we

used is presented in simplified form in Table 4 and in the Table S1.

SYSTEMATIC ICHNOLOGY

Ichnofamily Chirotheriidae Abel, 1935

Ichnogenus Chirotherium Kaup, 1835a

Chirotherium barthii Kaup, 1835b

(Figs. 4–8)
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1904 Cheirotherium Navás, p. 149.

1906 Chirosaurus ibericus Navás, p. 208, Figs. 2 and 3.

1906 Chirotherium ibericum Navás, p. 213, Figs. 2 and 3.

1959 Chirotherium ibericus Leonardi, p. 243, photograph 3.

1959 Chirotherium coltoni Leonardi, p. 243.

1963 Chirotherium ibericum Kuhn, p. 71.

1971 Chirotheriidae indet. Haubold, p. 58.

Referred specimens: CS.DA.38.1.1p, CS.DA.38.1.1m, CS.DA.38.1.2p, CS.DA.38.2.1p,

CS.DA.38.2.1m, CS.DA.38.2.2p, CS.DA.38.2.2m, CS.DA.38.3.1p, CS.DA.38.3.1m,

CS.DA.39.1.1p, CS.DA.39.1.1m, CS.DA.39.1.2p, CS.DA.39.1.2m, CS.DA.39.2.1p,

CS.DA.39.2.1m and CS.DA.39.2.2p.

Material: 16 tracks (four partial trackways and one pes/manus set) in the two slabs

(nine in CS.DA.38 and seven in CS.DA.39); some of them show skin and phalangeal pad

impressions (Figs. 4–8; Table 1).

Horizon and locality: Buntsandstein facies, Anisian (Middle Triassic); Navás site

(Moncayo massif, Zaragoza, Spain).

Description:

Manus: There are seven manus tracks but only one is complete, CS.DA.39.1.2m. It is

pentadactyl, mesaxonic, asymmetric and digitigrade (Fig. 7). The length of the manus

tracks varies from 4.7 cm to 6.1 cm, and the width of the only complete track is 6.1 cm.

Four digit impressions (I–IV) are directed forward, and one, the digit V impression, is

directed laterally. Digit I is often poorly preserved or absent. There is little difference in the

length of digits III and IV, which are longer than digits I (the smallest) and II. Digit V is

situated proximally below digit IV. It is divergent (from the long axis through digit III) and

separated from the other digits. Digits I, II, III and IV fuse at their proximal ends but do

not present clear metacarpal pads. At least four of the digits (I–IV) have an acuminate end,

although these are not as prominent as those on the pes. The divarication angle II–IV is

from 30◦ to 48◦. The angulation between digits I–IV and I–V is 65◦and 145◦respectively in

CS.DA.39.1.2m (see Table 1).

The manus tracks are more poorly-preserved than the pes tracks. The manus is relatively

small compared to the pes, with the manus-pes length ratio ranging from 0.4 to 0.46.

Pes: These are pentadactyl, mesaxonic, asymmetric and semiplantigrade tracks (see

Fig. 7). Four digit impressions (I–IV) are directed forward, and one, the digit V impression,

is directed laterally. They are longer than wide. The length of the pes print varies from

11.2 cm to 14.5 cm, and the width ranges from 7.5 cm to 8.9 cm. The length to width ratio

varies from 1.5 to 1.65. Digits I–IV form an isolated group that is longer (from 8 to 8.9 cm)

than wide (from 5.6 to 7.9 cm).The digits are longer than wide and have an acuminate end.

Digit III is slightly longer than digit IV and digit II. Digit I is the smallest (III>IV>II>I); it

is located posteriorly and is usually the worst preserved. The divarication angle II–IV varies

from 18◦ to 29◦and I–IV from 28◦ to 45◦. Digits I–IV show clear impressions of digital

pads, but not metatarsal pads. Digit V is rotated outwards with respect to digit IV. It shows
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Figure 7 Pictures of the studied tracks assigned to Chirotherium barthii. (A) CS.DA.38.1.1p and
CS.DA.38.1.1m. (B) CS.DA.38.1.2p. (C) CS.DA.39.1.1p. (D) CS.DA.39.1.2m (see location in Fig. 6).
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Figure 8 Main Chirotherium ichnospecies compared with the Navás site tracks. (A) C. vorbachi (re-
drawn from King et al., 2005). (B) C. sickleri (redrawn from Haubold, 1971). (C) C. lulli (redrawn from
Baird, 1954). (D) C. lomasi (redrawn from Baird, 1957). (E) C. storetonense (redrawn from King et al.,
2005. (F) C. rex (redrawn from Peabody, 1957. (G) C. wondrai (redrawn from Haubold, 1971. (H) C.
coureli (redrawn from Demathieu, 1970). (I) C. barthii (redrawn from Haubold, 1971). J: CS.DA.38.1.1p.
K: CS.DA.38.1.2p. and L: CS.DA.39.1.1p.

a subovoid impression of the metatarsal pad. The angulation between digit I–V varies from

78◦ to 86◦. In the pes track CS.DA.38.1.2p skin impressions are recognizable. Another part

of the slab with skin-like marks has been found, but there are not any tracks associated with

it. In both cases, they are very small in size, about 1 mm on the digit V surface (Fig. 9A).

Their shape is predominantly subrounded and does not show a distinct ornamentation.

Impressions are separated by a thin and non-imbricated depression.

Trackway: There are four partial trackways and one manus-pes set (see Figs. 4–7). The

manus is rotated outward 14◦–30◦ with respect to the pes. The manus/pes distances range

from 11.3 cm to 16.4 cm. The manus is placed in front of, and to the inside of, the pes

(usually with the outer edge of the manus in line with the outer edge of the pes). The pace

length between pes tracks is from 33.8 cm to 42 cm, and between manus tracks from 36 cm

to 38.5 cm.
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Figure 9 Photographs of the new identified material. (A) Isolated set of skin impressions from the slab
CS.DA.38 (see location in Fig. 6). (B) Chirotheriidae indet., CS.DA.39.3.2p. (C) Undetermined material
(unnamed morphotype), CS.DA.38.4.1. (D) Rhynchosauroides isp., CS.DA.39.4. (E) Rhynchosauroides
isp., CS.DA.39.9. (F) Rhynchosauroides isp., CS.DA.39.5.

Remarks:

The tracks in both slabs have the same general shape. Although there is slight variability

among them, we consider that this variability is a consequence of preservational factors.

The main difference between the tracks is the size. The tracks in CS.DA.38 are slightly

smaller than the CS.DA.39 tracks (see Table 1). Nevertheless, we consider that size is not a

valid ichnotaxobase (see Bertling et al., 2006), and therefore we have classified all of them in

the same way.

Since the pes tracks are semiplantigrade and pentadactyl with a compact anterior digit

I–IV group and a posterolaterally positioned digit V, and the manus tracks are smaller than

the pes tracks, pentadactyl, mesaxonic, asymmetric and digitigrade, they can be attributed

to the ichnofamily Chirotheriidae (cf. Demathieu & Demathieu, 2004; King et al., 2005).

Demathieu & Demathieu (2004) and King et al. (2005) proposed the proportions of

pes digits I–IV as the most important feature for distinguishing chirotheriid ichnogenera,

whereas the length, shape and position of digit V are variable (Klein & Haubold, 2003). The
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ichnofamily Chirotheriidae is composed of nine ichnogenera: Brachychirotherium Beurlen,

1950; Chirotherium; Isochirotherium Haubold, 1971; Paleochirotherium Fichter & Kunz,

2011; Parachirotherium Kuhn, 1958; Protochirotherium Fichter & Kunz, 2004; Parasynap-

tichnium Mietto, 1987; Sphingopus Demathieu, 1966; and Synaptichnium Nopcsa, 1923.

Five of these, Brachychirotherium, Chirotherium, Isochirotherium, Parachirotherium and

Sphingopus, are mesaxonic, and only in three of these, Brachychirotherium, Chirotherium

and Isochirotherium do the digit I–IV impressions form an isolated group. The tracks from

the Navás site belong to Chirotherium because the digit IV impression is normally longer

than II and the digit II–IV impressions are similar in thickness. In Isochirotherium digit II

is always longer than digit IV, and in Brachychirotherium digits II and III are thicker than

digits I, IV and V (sensu Haubold, 1971; King et al., 2005).

The studied material, classified as C. ibericus by Navás (1906), and other material of

the same shape, presents the digit III impression slightly longer than digits II and IV. This

character differentiates it from C. vorbachi Kirchner, 1927 (Fig. 8A), which is much more

mesaxonic. Furthermore, it is characterized by a digit IV impression that is slightly longer

and often thinner than digit II. It differs from C. sickleri Kaup, 1835c, C. lulli Bock, 1952,

and C. eyermani Baird, 1957, which present digit IV clearly longer than digit II (Figs.

8B–8D), and from C. storetonense Morton, 1863, which has digit II thinner than digit IV

(Fig. 8E). Additionally, the digit I impression is smaller and thinner than the digit II–IV

impressions, and located forwardly and slightly independently with respect to digits II–IV.

These characters differentiate it from C. rex Peabody, 1948, C. wondrai Heller, 1952, and

C. coureli Demathieu, 1970, which have a more robust digit I impression positioned at

the same proximal position as the other digits and forming a more compact group I–IV

(Figs. 8F–8H). The only ichnotaxon that shares all the above-described characters with the

studied material is C. barthii (Fig. 8I). Only size differentiates them from one another. The

Navás site tracks (Figs. 8J–8L) are smaller than the holotype of C. barthii. Nevertheless,

we consider that size is not a valid ichnotaxobase because it can merely represent an

ontogenetic variation. Accordingly, we regard the two types of track as the same. C.

barthii was defined in 1835 by Kaup on the basis of Middle Triassic tracks from Germany.

Therefore, C. barthii has temporal priority with respect to the ichnotaxon C. ibericus, and

the latter is a junior synonym of C. barthii.

Ichnofamily Chirotheriidae Abel, 1935

Chirotheriidae indet.

(Figs. 4–6 and 9)

Referred specimens: CS.DA.39.3.1 and CS.DA.39.3.2.

Material: A possible partial trackway of pes tracks in slab CS.DA.39 (Figs. 4–6 and 9B;

Table 2).

Horizon and locality: Buntsandstein facies, Anisian (Middle Triassic); Navás site

(Moncayo massif, Zaragoza, Spain).
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Description:

The tracks are poorly-preserved and could be two consecutive pes tracks. The first

track is pentadactyl, mesaxonic, asymmetric and semiplantigrade (Fig. 9B). Four digit

impressions (I–IV) are directed forward, and one, the digit V impression, is directed

laterally. It is longer than wide. The second track preserves the digit V impression, which is

also directed laterally, and some impressions directed forwards, which could belong to any

of the digit I–IV impressions. The pace length is 72 cm.

Remarks:

As pointed out in the previous section, pes tracks that are semiplantigrade and

pentadactyl with a compact anterior digit I–IV group are related with the ichnofamily

Chirotheriidae (cf. Demathieu & Demathieu, 2004; King et al., 2005). Nevertheless, we are

not assigning these tracks to a concrete chirotheriid ichnogenus because the proportions

of digits I–IV are the most important feature for classification (Demathieu & Demathieu,

2004; King et al., 2005) and this information cannot be extracted from the tracks due to

their state of preservation.

Ichnofamily Rhynchosauroidae Haubold, 1966

Ichnogenus Rhynchosauroides Maidwell, 1911

Rhynchosauroides isp.

(Figs. 4–6 and 9D–9F)

Referred specimens: CS.DA.39.4, CS.DA.39.5, CS.DA.39.6, CS.DA.39.7, CS.DA.39.8 and

CS.DA.39.9.

Material: Part of a possible trackway (CS.DA.39.4, CS.DA.39.5, CS.DA.39.6, CS.DA.39.7

and CS.DA.39.8) and an isolated track (CS.DA.39.9) in slab CS.DA.39 (Figs. 4–6 and

9A–9C; Table 2).

Horizon and locality: Buntsandstein facies, Anisian (Middle Triassic); Navás site

(Moncayo massif, Zaragoza, Spain).

Description:

Manus: the best-preserved manus track, CS.DA.39.4 (Fig. 9D), is pentadactyl, ectaxonic,

very asymmetric and plantigrade. Four digit impressions (I–IV) are directed forward, and

one, the digit V impression, is directed more laterally. The length of the track is 3.7 cm

and the width 2.4 cm (length/width ratio 1.54). The digits are longer than wide and

rotated medially. Digit IV is the longest. Digit IV>III>II>I>V. The divarication angle

II–IV is 10◦, I–IV is 50◦ and I–V is 78◦. The digit impressions show clear impressions

of claw marks. The palm impression is well-marked and bilobed. Similar to this track is

CS.DA.39.9 4 (Fig. 9E), but one of the digit impressions (probably the digit IV impression)

is not preserved.

Pes: track CS.DA.39.5 4 (Fig. 9F) is tetradactyl, very asymmetric and digitigrade. The

four digit impressions (I–IV) are longer than wide, directed forward and rotated medially.

It is not possible to measure the length or width of the track due to its state of preservation.

Digit IV is the longest. Digit IV>III>II>I>V. The divarication angle II–IV is 15◦ and I–IV

is 30◦. The digit impressions do not show clear impressions of claw marks.
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Tracks CS.DA.39.6, CS.DA.39.7 and CS.DA.39.8 are tridactyl and didactyl. The shape

and size of the preserved digit impressions are similar to those of tracks CS.DA.39.4 and

CS.DA.39.5, and they are located close to them.

Remarks:

There is clear variability among all the tracks. Some of them, CS.DA.39.4–CS.DA.39.8,

could be part of the same trackway given their shape, size and location. Therefore, this

variability is probably a consequence of the state of preservation and not because they are

different morphotypes. The best-preserved tracks present the following main features: four

digit impressions (I–IV) directed forward; digits longer than wide and rotated medially;

and digits increasing in length from I to IV. In addition, in CS.DA.39.4 and CS.DA.39.10

(manus tracks) there is a digit V impression, which is shorter than the others and is turned

outwards. These characters are typical of the ichnogenus Rhynchosauroides (Melchor &

de Valais, 2006; Hunt & Lucas, 2007a; Avanzini, Piñuela & Garćıa-Ramos, 2010; Lucas et

al., 2010). However, more than 20 ichnospecies of Rhynchosauroides have been defined

(see Haubold, 1971), and the validity of some of them has not been discussed. As we have

suggested above, moreover, the shape of the tracks studied here is variable, and they are not

well enough preserved for a confident determination of the ichnospecies. Accordingly, we

have decided to be cautious in assigning these tracks to Rhynchosauroides isp.

Undetermined material

Unnamed Morphotype

(Figs. 4–6 and 9C)

Referred specimens: CS.DA.38.4, CS.DA.38.5, CS.DA.38.6, CS.DA.38.7 and CS.DA.39.10.

Material: six footprints in the two slabs (five in CS.DA.38 and one in CS.DA.39); two of

them are a pair 4 (Figs. 4–6 and 9C; Table 3).

Horizon and locality: Buntsandstein facies, Anisian (Middle Triassic); Navás site

(Moncayo massif, Zaragoza, Spain).

Description:

These are tridactyl, mesaxonic, symmetric and digitigrade tracks. The length is from

2 cm to 2.4 cm, and the width from 1.6 cm to 2.8 cm. The three digit impressions are

directed forward. There is little difference in the length of the digits, the central one

being the longest. The divergence between the lateral digits is variable. The tracks of the

pair CS.DA.38 (Figs. 4–6 and 9C) present a greater divarication angle than the other

tracks. The digit impressions of these tracks are the thinnest as well. At least three tracks

(CS.DA.38.4.1, CS.DA.38.4.2 and CS.DA.38.5) have an acuminate end.

The pace length in the pair CS.DA.38.4 is 37 cm.

Remarks:

Although some tracks are thinner than others, all the tracks present the same features.

Tridactyl, mesaxonic and digitigrade tracks could be associated with non-avian or avian

theropod tracks (cf. Thulborn, 1990; De Valais & Melchor, 2008). However, non-avian

theropod tracks are generally asymmetric, and there are no avian remains in the Anisian.
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The tracks are very shallow and are not well-preserved. Their preservation is not easy

to interpret. Thus, it may have been preserved as undertracks and/or they are in fact

parts of other more complex kinds of track superimposed (e.g., chirotheriid and/or

Rhynchosauroides). Because of the poor state of preservation of the specimens, any

attribution would be tentative.

DISCUSSION
The Navás site tracks and the Triassic Iberian record
After a reassessment of the Navás site, Chirotherium barthii, Chirotheriidae indet.,

Rhynchosauroides isp., and an unnamed morphotype have been identified. As at the

Navás site, chirotheriid tracks are well-represented in other Iberian localities. This kind of

tracks is the most abundant compared to other ichnogroups. According to the revision of

Dı́az-Mart́ınez & Pérez-Garćıa (2011) and the most recent articles (Dı́az-Mart́ınez & Pérez-

Garćıa, 2012; Fortuny et al., 2012; Meléndez & Moratalla, 2014; this work) on 63 classified

remains in 26 publications, 26 correspond to chirotheriid tracks. These tracks have been at-

tributed to Brachychirotherium (2), Chirotherium (13), Isochirotherium (3), Synaptichnium

(5) and indeterminate chirotheriids (3). The re-evaluation of the type material of C. iberi-

cus has demonstrated that it is a junior synonym of C. barthii. This latter ichnospecies has

also been found at other Iberian localities such as Corral d’en Parera (Calzada, 1987) and in

the Eslida Formation (Gand et al., 2010), both Anisian in age. Gand et al. (2010) suggested

that the presence of C. barthii is “rather uncommon in Spain”. What is remarkable is the

small size of the Iberian tracks assigned to C. barthii (Figs. 7A–7D), since in the emended

description of the diagnosis of this ichnospecies provided by King et al. (2005), the authors

proposed that C. barthii has a pes length of about 19–22 cm. In the case of the Iberian

tracks, the tracks from the Navás site have a pes length of between 11 and 14 cm, whereas

the tracks described by Gand et al. (2010) are even smaller (pes length 8.4 cm). Calzada

(1987) did not measure the total length of the tracks but the length of digit III (9.5–9.6 cm)

according to the scale of the track pictures also seems small in size. Small-sized C. barthii

tracks have also been described in the Middle Triassic of the United States (Klein & Lucas,

2010b; Lovelace & Lovelace, 2012), Morocco (Tourani et al., 2010; Klein et al., 2011), and

China (Xing et al., 2013), and possibly also Switzerland (Cavin et al., 2012). The small size

of the Iberian tracks assigned to C. barthii would fit better with the pes length of C. sickleri.

In fact, King et al. (2005) proposed that “there is a strong possibility that C. sickleri may rep-

resent the tracks of a juvenile reptile, whose adult tracks might be attributed to C. barthii

or C. storetonense Morton, 1863”. Klein & Haubold (2003) also showed the similarities

between the two ichnotaxa with a landmark analysis and suggested that “one could suspect

a juvenile C. barthii”. The authors pointed out that some features of C. sickleri, such as

the manus print morphology and the trackway pattern, were not included in the analysis,

which was mainly done with the pes morphology. The Navás site, as well as the recent

publications of small-sized C. barthii tracks, thus adds valuable data to this debate, and

an exhaustive comparison of the two ichnotaxa is needed in order to discern whether

C. sickleri is an ontogenetic variation of C. barthii or in fact a different ichnospecies.
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The C. barthii pes track CS.DA.38.1.2p has preserved skin traces (Fig. 4) that are not

noted in previous reports on the material. Other skin traces were found in the same

slab (Fig. 9F), but they are not related with any visible track. The skin impressions were

only created because the integument registered on a receptive substrate (Gatesy, 2001;

Pérez-Lorente, 2001), and the motion of the skin relative to the sediment during separation

strongly influences the morphology of the skin impression (Gatesy, 2001; Avanzini, Piñuela

& Garćıa-Ramos, 2011). In this case, the ornamentation reveals scales that are sub-rounded

to polygonal in shape, and it is present in digit V. These scale marks are similar to other

chirotheriid skin impressions studied by Avanzini (2000), suggesting that these kinds of

scales are similar to those of birds and extant Archosauria.

Six tracks belonging to Rhynchosauroides, including pes and manus tracks, were found

at the Navás site. Rhynchosauroides is the best-known ichnogenus in the Triassic record of

Iberia. It has been found at 13 localities in the provinces of Barcelona, Cantabria, Castellón,

Guadalajara, Teruel and Zaragoza (Demathieu & Saiz de Omeñaca, 1976; Demathieu

& Saiz de Omeñaca, 1977; Demathieu, Ramos & Sopeña, 1978; Demathieu & Saiz de

Omeñaca, 1979; Calzada, 1987; Demathieu & Saiz de Omeñaca, 1990; Ezquerra et al., 1995;

Valdiserri, Fortuny & Galobart, 2009; Gand et al., 2010; this work). Four Rhynchosauroides

ichnospecies have been described in the Iberian Peninsula: Rhynchosauroides santanderen-

sis Demathieu & Saiz de Omeñaca, 1976; Rhynchosauroides virgiliae Demathieu, Ramos

& Sopeña, 1978; Rhynchosauroides extraneus Demathieu & Saiz de Omeñaca, 1979; and

Rhynchosauroides simulans Demathieu & Saiz de Omeñaca, 1979. The temporal record of

this ichnotaxon is predominantly Anisian, as exemplified by the Navás site, although it has

also been described in the Permian (Valentini, Conti & Mariotti, 2007) and even in the Late

Jurassic (Avanzini, Piñuela & Garćıa-Ramos, 2010).

Finally, undetermined material has also been found at the Navás site. These tracks

are tridactyl and mesaxonic, but they are probably the preserved part of other tracks. In

the Iberian record other Triassic tracks with problematic affinities have been cited (see

Table S1). The tracks classified as type 3 and type 4 of Demathieu & Saiz de Omeñaca (1976)

and Demathieu & Saiz de Omeñaca, 1977) are similar to those from the Navás site. In the

former case, the shape of the tracks suggests that they are part of Rhynchosauroides tracks. It

is therefore possible that the Navás tracks might be as well.

The Navás tracksite presents the Chirotherium barthii-Rhynchosauroides ichnoassem-

blage. This ichnoassemblage is common in other Middle Triassic localities in Iberia

(Calzada, 1987; Gand et al., 2010), as well as in other ichnoassemblages with greater

ichnodiversity described in the Middle Triassic of Europe (e.g., France, Gand, Demathieu

& Montenat, 2007; Italy, Avanzini, Bernardi & Nicosia, 2011; Poland, Niedźwiedzki et

al., 2007), North Africa (e.g., Morocco, Tourani et al., 2010; Klein et al., 2011) and

North America (e.g., Hunt et al., 1993; Heckert, Lucas & Hunt, 2005). Analysis of the

ichnoassemblage from the Navás site within the context of the global tetrapod track

biochronology of the Triassic shows it to belong to biochron II (sensu Klein & Haubold,

2007) or the Chirotherium barthii biochron (sensu Klein & Lucas, 2010a). Both biochrons
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are defined for the upper Olenekian-lower Anisian age, which is coherent with the age of

the Navás site, which is here considered lower Anisian.

In the case of the track record here described, the ichnogenera have been atributed

to trackmakers belonging to different taxonomic categories in previous literature.

The inferred trackmakers are Archosauriformes for Chirotherium as well as Lepi-

dosauromorpha/Eosuchia for Rhynchosauroides (Klein et al., 2011; Avanzini, Piñuela &

Garćıa-Ramos, 2011).

The Triassic record of vertebrate tracks in the Iberian Peninsula
and the tetrapod-track-based biochrons
Several characteristic track assemblages and ichnotaxa have a restricted stratigraphic range

and can therefore be repeatedly observed in the global record in distinct time intervals

(Klein & Lucas, 2010a). Several authors (e.g., Haubold, 1969; Demathieu & Haubold, 1974;

Olsen, 1980; Lockley & Hunt, 1995; Hunt & Lucas, 2007b; Lucas, 2007; Klein & Haubold,

2007; Klein & Lucas, 2010a; Xing et al., 2014; and references therein) have proposed the

possibility of a tetrapod ichnostratigraphy of Triassic sequences. Nevertheless, vertebrate

track biochronology faces three main problems that result in it being not as refined as

tetrapod body fossils can be: the ichnotaxonomy, the evolutionary turnover rates and

facies restrictions (Lucas, 2007). The last two biases are conditioned by the habitat and

rate of evolution that is proper to each taxon and animal group (see discussion in Lucas,

2007). Thus the main problem with Triassic footprint biostratigraphy and biochronology

is the nonuniform ichnotaxonomy and the evaluation of footprints that show extreme

variation in shape due to extramorphological (substrate-related) phenomena (Klein &

Lucas, 2010a). For instance, 75 chirotherian ichnospecies have been described from Triassic

deposits in Europe, North America, South America, northern and southern Africa, and

China (Klein & Haubold, 2007; Klein & Lucas, 2010a), but most of them may be synonyms

and/or extramorphological variations of perhaps 35 valid ichnotaxa (Xing et al., 2013).

Since 1897, when the first work on Triassic vertebrate tracks from the Iberian Peninsula

was published, 25 scientific works on the topic have been published (see Dı́az-Mart́ınez

& Pérez-Garćıa, 2011; Dı́az-Mart́ınez & Pérez-Garćıa, 2012; Fortuny et al., 2012; Meléndez

& Moratalla, 2014) (Table S1). Vertebrate tracks have been reported from 26 sites, and six

new ichnotaxa have been defined: Chirotherium ibericus, R. santanderensis, R. virgiliae,

Chirotherium catalaunicum, R. extraneus and R. simulans. More than half of the papers

on Triassic tracks were published before the 1990s, and almost none of the Iberian tracks

have been re-studied. In all the papers that reassess previously studied tracks, the initial

ichnotaxonomic identifications and the age of the track-bearing layers were subsequently

modified (e.g., Leonardi, 1959; Gand et al., 2010; Fortuny et al., 2011; Dı́az-Mart́ınez &

Pérez-Garćıa, 2012, this work). In addition to the nonuniform ichnotaxonomy, the Iberian

record presents another problem when it comes to comparisons with the biostratigraphy

and biochronology proposed for the Triassic tracks. This is the temporal geological context

of the ichnological localities. In some papers the age of the tracksite is well defined in terms

of chronostratigraphic ages such as Anisian, Ladinian or Rhaetian (e.g., Pascual-Arribas

& Latorre-Macarrón, 2000; Gand et al., 2010; Fortuny et al., 2011). In other papers,
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Figure 10 Stratigraphic distribution of tetrapod track ichnotaxa and form groups in the Triassic with
the global biochrons compared with the Iberian record. The global biochrons are based on Klein
& Haubold (2007) and Klein & Lucas (2010a). The red lines represent the Iberian record based on
Table 4. Abbreviations: Atr., Atreipus; Grall., Grallator; Coelurosau., Coelurosaurichnus; Dicy., Dicyn-
odont tracks; Prot., Protochirotherium.

however, authors have located the tracks within the classic Germanic facies (Buntsandstein,

Muschelkalk and Keuper) (see Dı́az-Mart́ınez & Pérez-Garćıa, 2011; Table S1), which are

not considered time intervals, as the development of the different rift systems in central

and western Europe was not coeval, causing diachronous facies changes (López-Gómez,

Arché & Pérez-López, 2002; and references therein). In this context, we have only compared

the Iberian record that is located in a concrete chronostratigraphic age (Table 4; Fig. 10)

with the tetrapod track biochronology of the Triassic proposed by Klein & Haubold (2007)

and Klein & Lucas (2010a).
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Lowest Triassic-upper Lower Triassic
Klein & Lucas (2010a) define the “dicynodont-tracks” biochron for the latest

Changhsingian-Induan stratigraphic interval, during which earliest Triassic dicynodont

tracks are characteristic. The authors suggest that this biochron is so far restricted to

Gondwana.

For the late Induan-late Olenekian stratigraphic interval, Klein & Haubold (2007)

propose biochron I, and Klein & Lucas (2010a) the Protochirotherium biochron. The

typical ichnological assemblage of these biochrons is based on the ichnotaxa Protochi-

rotherium (Synaptichnium), Rhynchosauroides and Procolophonichnium Nopcsa, 1923

(Klein & Lucas, 2010a).

In the Iberian Peninsula the only record of Triassic tracks for this interval is composed

solely of Rhynchosauroides tracks considered to be Olenekian-Anisian in age (Gand et al.,

2010). This is the oldest Triassic track record in the Iberian Peninsula. The ichnotaxon

Rhynchosauroides has a broad temporal distribution. Klein & Lucas (2010a) consider this

ichnotaxon to range throughout the Triassic (it is very common in the Late Triassic,

Hunt & Lucas, 2007a), and Avanzini, Piñuela & Garćıa-Ramos (2010) even identified

Rhynchosauroides tracks in the Upper Jurassic of Asturias (Spain). The appearance of

this ichnotaxon in Iberia is thus coherent with the global distribution proposed by Klein &

Lucas (2010a). Nevertheless, the record is very scarce and does not give concrete data on the

biochron, which could be within the Olenekian-Anisian time range given the dominance

of Rhynchosauroides in some footprint assemblages (Fig. 10).

Uppermost Lower Triassic-Middle Triassic
For this interval Klein & Haubold (2007) proposed three biochrons, and Klein & Lucas

(2010a) two. For the late Olenekian-early Anisian, biochron II (Klein & Haubold,

2007) and the Chirotherium barthii biochron (Klein & Lucas, 2010a) were defined. The

typical assemblage for this temporal interval is composed of C. barthii, C. sickleri, Isochi-

rotherium, Synaptichnium (“Brachychirotherium”), Rotodactylus Peabody, 1948, Rhyn-

chosauroides, Procolophonichnium, dicynodont tracks and Capitosauroides Haubold, 1970

(Klein & Lucas, 2010a).

Klein & Haubold (2007) proposed biochron III for the late Anisian-early Ladinian

interval and biochron IV for the late Ladinian. Biochron III is composed of the ichnotaxa

Sphingopus, Atreipus Olsen & Baird, 1986, Grallator Hitchcock, 1858, Rotodactylus,

Isochirotherium and Synaptichnium (“Brachychirotherium”). Typical of biochron IV are

Parachirotherium, Atreipus, Grallator, and Synaptichnium (“Brachychirotherium”). For

almost the same temporal range as biochrons III and IV, Klein & Lucas (2010a) defined the

Atreipus-Grallator biochron in the late Anisian-lowermost Carnian. The typical assemblage

of this biochron comprises Atreipus, Grallator (“Coelurosaurichnus”), Synaptichnium

(“Brachychirotherium”), Isochirotherium, Sphingopus, Parachirotherium, Rhynchosauroides

and Procolophonichnium.

The Iberian record in the uppermost Lower Triassic-Middle Triassic time interval is

abundant. As suggested above, the oldest remains are Olenekian-Anisian in age and are
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composed only of Rhynchosauroides tracks (Gand et al., 2010). Calzada (1987) proposed

a late Olenekian or early Anisian age for the tracks that he studied in the Buntsandstein

of Catalonia, whereas Valdiserri, Fortuny & Galobart (2009) and Fortuny et al. (2012)

suggested an Anisian age for these tracks based on magnetostratigraphy and biostrati-

graphic data. In the Anisian, the Iberian assemblage consists of Dicynodontipus Lilien-

stern, 1944, Procolophonichnium, Rhynchosauroides, Rotodactylus, Brachychirotherium,

Chirotherium barthii, Isochirotherium, Synaptichnium, Coelurosaurichnus Huene, 1941,

and Paratrisauropus Ellenberger, 1972 (Calzada, 1987; Valdiserri, Fortuny & Galobart,

2009; Gand et al., 2010; Fortuny et al., 2012; this work). In the Ladinian only three

localities with vertebrate tracks have been described to date (Demathieu, Pérez-López

& Pérez-Lorente, 1999; Fortuny et al., 2012; Meléndez & Moratalla, 2014). Demathieu,

Pérez-López & Pérez-Lorente (1999) described tridactyl tracks and referred them to a

crurotarsal/dinosauroid trackmaker. Fortuny et al. (2012) studied some vertebrate ichnites

that were recovered from the Middle Muschelkalk (Ladinian-early Carnian) and classified

them as belonging to the Chirotheriidae ichnofamily. Finally, Meléndez & Moratalla (2014)

cited the presence of tracks with the general footprint morphology of the “group” formed

by the Chirotherium–Isochirotherium–Brachychirotherium ichnogenera.

When the Iberian record for this temporal interval is compared with the tetrapod-track-

based biochrons, it can be seen that several characteristic Triassic track assemblages and

ichnotaxa with a restricted stratigraphic range are present. For instance, the ichnotaxon

Chirotherium barthii has been found in four localities of an Anisian age (Table 4).

The presence of this ichnotaxon is typical of biochron II of Klein & Haubold (2007)

and the Chirotherium barthii biochron of Klein & Lucas (2010a), both from the late

Olenekian-early Anisian interval. The latter authors suggest that Chirotherium barthii

disappears during the Anisian. The ichnotaxa Isochirotherium and Rotodactylus have

been found in the Anisian of the Iberian Peninsula as well. Both ichnotaxa have a

broader distribution (late Olenekian-early Ladinian) than C. barthii, forming part of

biochrons II and III of Klein & Haubold (2007) and the C. barthii and Atreipus-Grallator

biochrons of Klein & Lucas (2010a). These ichnotaxa disappear before the end of the

Ladinian (Klein & Haubold, 2007). Also present in the Anisian of the Iberian Peninsula

are the ichnotaxa Coelurosaurichnus and Paratrisauropus. Coelurosaurichnus is present

in biochron III (late Anisian-early Ladinian) of Klein & Haubold (2007) and in the

Atreipus-Grallator biochron (late Anisian-lowermost Carnian) of Klein & Lucas (2010a).

The ichnotaxon Synaptichnium, present in the Anisian of Iberia, is typical of biochrons II,

III and IV of Klein & Haubold (2007) and the C. barthii and Atreipus-Grallator biochrons

of Klein & Lucas (2010a) for the late Olenekian-Ladinian time range. The ichnotaxon

Brachychirotherium was cited in the Anisian of the Iberian Peninsula by Gand et al. (2010).

Nevertheless, Klein & Haubold (2007) and Klein & Lucas (2010a) placed this ichnotaxon

in biochrons V and VI, and in the Brachychirotherium biochron of the lowermost Carnian

to Rhaetian respectively. After analyzing the tracks classified as Brachychirotherium by

Gand et al. (2010), we conclude that they present a Chirotherium affinity (the digit IV

impression is longer than II, and the digit II–IV impressions are similar in thickness).
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In this case, the age of these tracks matches with the distribution of Chirotherium in the

biochronological approaches. Other ichnotaxa with a broad temporal distribution (see

Klein & Lucas, 2010a), such as Dicynodontipus, Procolophonichnium and Rhynchosauroides,

have also been found in the Anisian of the Iberian Peninsula.

For the Ladinian, chirotheriid tracks and tracks referred to a crurotarsal/ dinosauroid

trackmaker have been found in Iberia. However, these tracks are not useful in biostrati-

graphic and biochronological studies.

In sum, the Iberian record from the Anisian is coherent with the global biochronology of

Triassic tetrapod tracks, but in the late Olenekian and the Ladinian the record is very scarce

(Fig. 10).

Upper Triassic
For the Carnian to Rhaetian, Klein & Haubold (2007) propose two biochrons. Biochron

V has a temporal range from lower Carnian to lower Norian and is composed of the

ichnotaxa Atreipus, Grallator and Brachychirotherium (Klein & Haubold, 2007); biochron

VI, ranging from the middle Norian to Rhaetian, consists of Grallator, Eubrontes Hitchcock,

1845 and Brachychirotherium (Klein & Haubold, 2007). By contrast, Klein & Lucas

(2010a) propose the Brachychirotherium biochron for almost all the Late Triassic (from

lowermost Carnian to Rhaetian). This biochron is composed of the assemblage comprising

Brachychirotherium, Atreipus, Grallator, Eubrontes, Apatopus, Rhynchosauroides and

dicynodont tracks (Klein & Lucas, 2010a).

In the Iberian Peninsula there are only two localities in the Upper Triassic. Pérez-López

(1993) classified a trackway found in the Keuper facies as Brachychirotherium cf.

gallicum. In Europe this facies spans from the late Middle Triassic (Ladinian) through

the entire Late Triassic (Carnian to Rhaetian) (Sues & Fraser, 2010). The presence of

Brachychirotherium is typical of the lowermost Carnian–Rhaetian, and this could be the

age of these Spanish tracks. The other tracksite from the Upper Triassic presents Eubrontes

and Anchisauripus and is dated as Rhaetian in age (Pascual-Arribas & Latorre-Macarrón,

2000).The ichnotaxon Eubrontes is typical of biochron VI (early Norian–Rhaetian) of Klein

& Haubold (2007) and the Brachychirotherium biochron (lowermost Carnian–Rhaetian) of

Klein & Lucas (2010a). Although the Iberian record for the Upper Triassic is not abundant,

the data on these tracks are consistent with the global biochronology of Triassic tetrapod

tracks (Fig. 10).

Tetrapod and track diversity in the Triassic of Iberian Peninsula
A noteworthy point that emerges from the previous review is the high difference

in ichnodiversity among the Triassic stages in the Iberian Peninsula. According to

Dı́az-Mart́ınez, Garćıa-Ortiz & Pérez-Lorente (2015), this difference can be explained in

at least three ways. The first explanation would be that this is a consequence of a greater

diversity of trackmakers in a concrete age than in others, this diversity being reflected in the

track record. It is also possible that in one age there were more suitable facies for preserving

the tracks, so although the diversity might in fact be similar in all the ages, in the Anisian it

seems highest; there would thus be a preservational bias against the other ages. Finally, the
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high ichnodiversity could also be explained by weathering and erosion processes that affect

the rock outcrops as well as the exposed surface area of the track-bearing layers.

The poor track record during Olenekian (Early Triassic) in Iberia is also observed in

other European regions. It has been explained as a product of both an ecological bias

(only coastal dwellers would be potentially recorded) and/or a real “evolutionary pattern”

due to a slow recovery in diversity from the previous Permo-Triassic mass extinction

(Avanzini, Bernardi & Nicosia, 2011). The high diversity of the tetrapod track record during

the Early-Middle Triassic could be related with the radiation of tetrapods, reflecting the

morphological diversity spanning from a stem-reptile to a “mammalian” foot, from a basal

crocodilomorph to a dinosauromorph foot (Avanzini, Bernardi & Nicosia, 2011). The

herein presented data indicates the Anisian as being the age with highest ichnodiversity.

As in other European regions the decrease in the tetrapod tracks occurrences after the

Anisian could be largely related with a great rise of the sea level and the consequent

change to marine environments (e.g., Avanzini, Bernardi & Nicosia, 2011; Fortuny et al.,

2011). In spite of a probable influence of facies bias, the pattern of the Iberian record is

consistent with those observed in Germany, France, Italy and USA (Hunt & Lucas, 2007b;

Avanzini, Bernardi & Nicosia, 2011), suggesting that the vertebrate track record reflect an

evolutionary pattern. As previously stated (e.g., Avanzini, Bernardi & Nicosia, 2011) the

track reliability for evolutionary studies is confirmed.

Global track record is much more abundant than the skeletal record and provides data

as reliable as those obtained from skeletal remains (Carrano & Wilson, 2001; Avanzini,

Bernardi & Nicosia, 2011). This fact is also relevant in the Iberian Triassic record.

The skeletal remains of tetrapods, excluding marine groups, from the Triassic of the

Iberian Peninsula are rather scarce (see Fortuny et al., 2011). In the Anisian, capitosaurs,

archosauriforms, procolophonids and mastodontosaurid stereospondyls have been found

in Catalonia (e.g., Gaete et al., 1996; Fortuny et al., 2011; Fortuny et al., 2014). Phytosaurs,

metoposaurid temnospondyls have been identified in the Carnian-early Norian of Portugal

(Steyer et al., 2011; Mateus et al., 2014). An indeterminate temnospondyl has been cited

from Late Triassic of Aragón (Spain) (Knoll, López-Antoñanzas & Molina-Anadón, 2004).

Finally, a mastodonsaurid stereospondyl and the temnospondyl Metoposaurus algarvensis

have been found in the Triassic-Jurassic boundary of Portugal (Witzmann & Gassner,

2008; Brusatte et al., 2015). Of all the skeletal remains found in the Triassic of the Iberian

Peninsula, only the Anisian archosauriforms and procolophonids can be considered as

the probably trackmakers of the chirotheriid and Procolophonichnium tracks of the same

age. Therefore, the track diversity increase and complement the skeletal record to a better

understanding of the Triassic tetrapod diversity in the Iberian Peninsula.

In order to have a more complete vision of the Triassic track record in the Iberian

Peninsula, it is therefore important to reassess the rest of the Triassic Iberian ichnological

localities not included here because these do not yet have a concrete temporal geological

context.
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CONCLUSIONS
The ichnotaxonomy of historic vertebrate tracks found in two sandy slabs from the Anisian

(Middle Triassic) of the Moncayo massif (Iberian Range, NE Spain) has been re-studied.

The tracks previously considered Chirotherium ibericus by Navás, and other tracks of

the same shape found in the two slabs, have been reassessed and have been classified as

Chirotherium barthii. Chirotherium ibericus has been deemed to be a junior synonym of

Chirotherium barthii. The rest of the studied tracks have been assigned to Chirotheriidae

indet., Rhynchosauroides isp. and undetermined material. All the tracks classified as

Chirotherium barthii in the Iberian Peninsula are characterized by their small size. This

point and other reports of small-sized C. barthii in other localities around the world

shed new light on the differentiation between small-sized C. barthii and C. sickleri. The

C. barthii-Rhynchosauroides ichnoassemblage present in the Navás tracksite (Anisian in

age) is typical of biochron II or the Chirotherium barthii biochron, of an Olenekian-lower

Anisian age. This ichnoassemblage has also been found in other coeval Iberian localities.

Although the Iberian record of Triassic tracks is not continuous and in some ages is

more abundant than others, in general it is coherent with the global biochronology of

Triassic tetrapod tracks. This further corroborates the usefulness of vertebrate Triassic

tracks in biochronology. In the lowermost Lower Triassic-upper Lower Triassic interval,

the record is very scarce and only the ichnotaxon Rhynchosauroides is cited. The record

for the uppermost Lower Triassic-Middle Triassic is abundant. The most complete

record is the ichnoassemblage from the Anisian, which is composed of Dicynodontipus,

Procolophonichnium, Rhynchosauroides, Rotodactylus, Chirotherium, Isochirotherium,

Coelurosaurichnus, and Paratrisauropus. The late Olenekian and Ladinian record is not

well represented. Finally, Eubrontes, Anchisauripus and probably Brachychirotherium have

been identified although the Iberian record for the Upper Triassic is not abundant. The

analysis could be more complete if the whole of the Iberian record were analyzed. With

this paper, therefore, we emphasize the need to reassess the Triassic vertebrate track record

of the Iberian Peninsula and specify the age of the localities, in order to have a complete

image of this record and compare it with the tetrapod-track-based biochronology

and biostratigraphy. Triassic skeletal remains are scarce in the Iberian Peninsula when

compared with the ichnological record. Therefore, the track diversity shown in this paper

throughout the Triassic complements and improves the information about the tetrapod

diversity in the Iberian Peninsula for this age.
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Demathieu G, Saiz de Omeñaca J. 1976. La faunei chnologique du Trias de Puentenansadans son
environnement paleogeographique (Santander, Espagne). Bulletin de la Société Géologique de
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Demathieu G, Saiz de Omeñaca J. 1977. Estudio del Rhynchosauroides santanderiensis, n. sp.,
y otras nuevas huellas de pisadas en el Trias de Santander, con notas sobre el ambiente
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Ellenberger P. 1972. Contributioná la classificationdes Pistes de Vértebrés du Trias: les types du
Stormbergd’Afrique du Sud (I). Palaeovertebrata Memoire Extraordinaire 134:1–104.

Ezquerra R, Zurita C, Soria AR, Martı́nez P. 1995. Icnitas de vertebrados en las facies
Buntsandstein (Triásico inferior) del Macizo de Montalbán (Peñarroyas, Provincia de Teruel).
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Landmarkanalyse. Hallesches Jahrbuch Geowiss 25:21–36.

Dı́az-Martı́nez et al. (2015), PeerJ, DOI 10.7717/peerj.1044 33/36

https://peerj.com
http://dx.doi.org/10.1016/j.palaeo.2010.05.012
http://dx.doi.org/10.1080/10420940591009312
http://dx.doi.org/10.7717/peerj.1044


Klein H, Haubold H. 2007. Archosaur footprints—potential for biochronology of Triassic
continental sequences. New Mexico Museum of Natural History and Science, Bulletin
41:120–130.

Klein H, Lucas SG. 2010a. Tetrapod footprints-their use in biostratigraphy and biochronology
of the Triassic. Geological Society, London, Special Publications 334(1):419–446
DOI 10.1144/SP334.14.

Klein H, Lucas SG. 2010b. Review of the tetrapod ichnofauna of the Moenkopi Formation/Group
(Early-Middle Triassic of the American Southwest). New Mexico Museum of Natural History and
Science, Bulletin 50:1–67.

Klein H, Voigt S, Saber H, Schneider JW, Hminna A, Fischer J, Lagnaoui A, Brosig A. 2011.
First occurrence of a Middle Triassic tetrapod ichnofauna from the Argana Basin (western
High Atlas, Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 307(1):218–231
DOI 10.1016/j.palaeo.2011.05.021.
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