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Abstract We analyse configurations of neutron stars
in the so-called R-squared gravity in the Palatini for-

malism. Using a realistic equation of state we show that

the mass-radius configurations are lighter than their

counterparts in General Relativity. We also obtain the

internal profiles, which run in strong correlation with
the derivatives of the equation of state, leading to re-

gions where the mass parameter decreases with the ra-

dial coordinate in a counter-intuitive way. In order to

analyse such correlation, we introduce a parametrisa-
tion of the equation of state given by multiple poly-

tropes, which allows us to explicitly control its deriva-

tives. We show that, even in a limiting case where hard

phase transitions in matter are allowed, the internal

profile of the mass parameter still presents strange fea-
tures and the calculatedM−R configurations also yield

neutron stars lighter than those obtained in General

Relativity.
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1 Introduction

The so-called Extended Theories of Gravity (ETGs) are

generalisations of General Relativity (GR) conceived to

deal with theoretical and observational issues arising

from astrophysical and cosmological scenarios (see [1]
for an extended review). A particular class of them,

namely f(R) theories, is obtained by substituting the

Einstein-Hilbert Lagrangian density by a function of

the Ricci scalar curvature R.

In the low-curvature regime, one of the stronger mo-

tivations to study f(R) theories is to describe cosmo-

logical observations without the necessity of invoking
a dark energy component in the current epoch of the

evolution of the universe [1, 2, 3, 4, 5]. In this vein,

there are several f(R) models that successfully account

for the succession of different cosmological eras, and
satisfy the current Solar System and laboratory con-

straints [6, 7, 8, 9, 10, 11].

A different motivation to consider f(R) theories comes
from the fact that the scarce data available from phe-

nomena in the strong-curvature regime are compatible

not only with GR, but also with f(R) and other modi-

fied theories (see for instance [12, 13]). In this context,
Neutron Stars (NSs) may offer the possibility of test-

ing deviations from GR through astrophysical observa-

tions. The internal structure of such compact objects

is described in GR by the solutions of the Tolman-

Oppenheimer-Volkoff (TOV) equations, together with
a suitable Equation of State (EoS). In the framework of

f(R)-theories in the metric formalism [4], the internal

structure of NSs has been previously studied by sev-

eral authors. Since the modified TOV equations have
derivatives of the metric up to the fourth order, differ-

ent approaches have been developed to deal with the

numerical integration. One of the first attempts was to

http://arxiv.org/abs/1607.03508v2
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consider the solution inside the star as a perturbation

of the GR case, and match it with the external solution

characterised by the Schwarzschild metric. This pertur-

bative method was used in [14, 15, 16, 17] to analyse

the internal structure of NSs using polytropic and re-
alistic EoSs to describe the matter content inside the

compact object. The structure of NSs using a pertur-

bative approach and including hyperons and/or quarks

EoSs was also explored in [18].

However, as it was pointed out in [19], the use of

a perturbative method to investigate the strong field
regime in f(R) theories and may lead to unphysical

results. Self-consistent models of NSs are then required

to solve simultaneously for the internal and external

regions, assuming appropriate boundary conditions at

the centre of the star and at infinity. This new approach
was explored by introducing a scalar field and working

in the so-called Jordan frame [19], by recasting the field

equations without mapping the original f(R) theory to

any scalar-tensor counterpart [20], and by using self-
consistent numerical methods to solve simultaneously

the internal structure of the star and the external metric

[21, 22, 23].1

The internal structure of NSs has also been stud-

ied using the Palatini formalism, in which the metric

and the connection are a priori considered as indepen-

dent geometrical entities [27, 28]. This approach has
the advantage of straightforwardly yielding field equa-

tions with derivatives of the metric up to second order.

The modified TOV equations in this case were firstly

derived in [29] by matching the interior solution with
the exterior Schwarzschild-de Sitter solution. Let us re-

mark that, differently from the above-mentioned met-

ric approach, in Palatini gravity the unique solution

of static and spherically symmetric vacuum configura-

tions is the Schwarzschild-de Sitter metric, in which the
value of the effective cosmological constant is calculated

using the well-known equivalence of f(R) and Brans-

Dicke theories (see for instance [1]). In the case of a

null cosmological constant (which is precisely that of
R-squared gravity), the mass parameter coincides with

the Schwarzschild mass, (i.e. with the value of m(r) at

the surface of the star.

The structure of static and spherically-symmetric

compact stars in the context of the Palatini formalism

was studied in [30] assuming both polytropic and realis-

tic EoSs. In the first case, the authors showed that the
matching between the interior and exterior solutions

at the surface of the star can yield divergences in the

curvature invariants near the surface of the star when

1 More sophisticated models of NSs were also considered in
the framework of f(R), such those including rotation [24, 25]
and strong magnetic mean fields [26].

polytropic EoSs with 3/2 < Γ < 2 are used for generic

f(R).

The no-go theorem related to the issue of the sin-

gularity at the surface of some polytropic NSs in these

model was carefully analysed in [31]. It was claimed
there that the origin of the singularity does not lie in

the fluid approximation or in the specifics of the ap-

proach followed to solve the internal structure of the

star, but is related to the intrinsic features of Palatini
f(R) gravity. The authors of [31] argued that the root

of the problem lies in the differential structure of the

field equations, in which the matter field derivatives are

of higher order than the metric derivatives.2 This pe-

culiarity introduces non-cumulative effects and makes
the metric sensitive to the local characteristics of mat-

ter. A possible resolution to the singularity problem in

this context, namely the addition of terms quadratic in

the derivatives of the connection to the gravitational
action, was also discussed in [31].3,4

If more realistic EoSs (which take into account the

fundamental microphysics of the matter that composes

the star) are used along with the modified TOV equa-

tions, compact stars present another unappealing fea-
ture in Palatini f(R) gravity. In [30], the structure of

NSs was calculated for the choice f(R) = R+αR2, us-

ing an analytic approximation of the realistic FPS EoS

[37]. In spite of the fact that such EoS yields a regu-
lar solution at the surface, the interior metric strongly

depends on the first and second derivatives of the func-

tion ρ(p). As a consequence, the radial profiles of the

mass parameter are not smooth functions as in GR,

but develop bumps when there are rapid changes in the
derivatives of the EoS [31].

The above results show that the modelling of NSs in

f(R) theories in the Palatini formalism involves some

extra considerations when compared with the GR case,
due to the strong correlation between the metric and

the derivatives of the EoS. It is important to note that

these are poorly constrained, since the EoSs are ac-

tually constructed to fit only the zeroth-order relation

between ρ and p, which is enough to calculate the struc-
ture of NSs in GR. Thus, special care must be taken if

high-order derivatives (e.g. dp/dρ, d2p/dρ2) are used

2 In fact, this feature induces corrections to the standard
model of particle physics at the MeV energy scale, see [32,
33, 34].
3 The existence of singularities at the surface of the star in

the context of Eddington-inspired Born-Infeld (EiBI) theory
was proved in [35], while a possible resolution to this prob-
lem, due to gravitational back-reaction on the particles was
presented in [36].
4 It was shown in [27] that the surface singularities are not

physical in the case of Planck-scale modified Lagrangians, in
which they are instead an artifact of the idealised equation
of state used.
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during the calculation, as in the case we are interested

in here.

The main goal of this work is to check whether the

non-smoothness of the mass parameter reported in [30]

is actually a feature of f(R) theories in the Palatini
formalism or it may be due to the details of the EoS

chosen there. For this purpose, we calculate the struc-

ture of a star in the Palatini formalism with the choice

f(R) = R + αR2 in two different ways. First, we use

the SLY EoS (instead of the FPS EoS used in [30]).
As a second test, an approximation to the EoS based

on the connection of multiple polytropes was employed.

The polytropes represent the state of matter at the core

and crust of the NS, and allow us to control the deriva-
tives of the EoS through a set of parameters. We find

that in both cases the internal profiles run in strong

correlation with the derivatives of the EoS, leading to

regions where the mass parameter decreases with the

radial coordinate in a counter-intuitive way, even in
the case where hard phase transitions in the EoS are

allowed. We also find that mass-radius configurations

in this theory do not allow heavier NSs than in GR for

any plausible α > 0.

The paper is organised as follows. In Section 2, we
present the modified TOV equations in the Palatini for-

malism. Realistic EoSs and the integration of the stel-

lar structure are described in Section 3, focusing on the

mass-radius relations and the correlation between the
features of the internal profile and the first and second

derivatives of the EoSs. In Section 4 we introduce a

parametrisation for the EoS based on the connection of

multiple polytropes, and examine the stellar structure

obtained for this EoS. Final remarks are presented in
Section 5.

2 Stellar structure in f(R) Palatini gravity

The modified Hilbert-Einstein action is given by

S[gµν , Γ, ψm] =
c4

16πG

∫

d4x
√
−gf(R) + Sm[gµν , ψm],

(1)

where f(R) is a function of the Ricci scalarR ≡ gµνRµν(Γ ),

with Rµν(Γ ) = −∂µΓ λ
λν + ∂λΓ

λ
µν + Γ λ

µρΓ
ρ
νλ − Γ λ

νρΓ
ρ
µλ.

The matter action Sm depends on the matter fields ψm

and the metric gµν .

In the Palatini formalism the field equations are ob-
tained by varying the action with respect to the metric

and the connection [27], and they are given by

fR(R)Rµν(Γ )−
1

2
f(R)gµν =

8πG

c4
Tµν , (2)

∇ρ

[√
−g
(

δρλfRg
µν − 1

2
δµλfRg

ρν − 1

2
δνλfRg

µρ

)]

= 0 ,

(3)

where fR ≡ df/dR and Tµν is the energy-momentum

tensor, which satisfies the continuity equation

∇µT
µν = 0. (4)

The trace of Eqn. (2) yields

fR(R)R− 2f(R) =
8πG

c4
T. (5)

This algebraic equation can be used to express the scalar
curvature R as a function of the trace T of the energy-

momentum tensor.

The stellar structure is computed by assuming a

spherically-symmetric and static metric with line ele-

ment

ds2 = −eA(r)c2dt2+eB(r)dr2+r2(dθ2+sin2 θdφ2), (6)

and a perfect-fluid matter with energy-momentum ten-

sor Tµν = (c2ρ+p)uµuν+pgµν , where ρ(r) is the density
and p(r) is the pressure. With these considerations, the

continuity equation (4) yields

p′ = −A
′

2
(c2ρ+ p) , (7)

and the tt and rr components of the field equations (2)

can be written as [30, 38]

A′ = − 1

1 + γ0

(

1− eB

r
− eB

fR

8πGrp

c4
+
α0

r

)

, (8)

B′ =
1

1 + γ0

(

1− eB

r
+
eB

fR

8πGrρ

c2
+
α0 + β0

r

)

, (9)

where prime symbol denotes derivative with respect to
the radial coordinate, r, and

α0 ≡ r2

(

3

4

(

f ′
R

fR

)2

+
2f ′

R

rfR
+
eB

2

(

R−
f

fR

)

)

, (10)

β0 ≡ r2

(

f ′′
R

fR
− 3

2

(

f ′
R

fR

)2
)

, (11)

γ0 ≡ rf ′
R

2fR
. (12)

The generalised TOV equations take the form [29, 38]

p′ = − 1

1 + γ0

c2ρ+ p

r(c2r − 2Gm)
(

Gm+
4πGr3p

fR
− α0

2
(c2r − 2Gm)

)

, (13)

m′ =
1

1 + γ0

(

4πr2ρ

fR
+
c2

G

α0 + β0
2

−
m

r
(α0 + β0 − γ0)

)

, (14)
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where the mass parameter is defined as m(r) ≡ c2r(1−
e−B)/2G.5. From now on, we will work with a particu-

lar form for the f(R), the so-called R-squared gravity,

characterised by the function f(R) = R + αR2.6 The

constant α is a free parameter of the theory which must
be positive due to stability considerations [3, 4]. This

type of theory has been frequently studied due to its

renormalisation properties [39]. In a cosmological con-

text, it was shown in [40] that this theory gives rise,
in the metric formalism, to an early non-singular pe-

riod of accelerating expansion. Also in the metric for-

malism, slowly-rotating NSs were analysed in [24], and

the behavior of the normalized I-Q relation for neu-

tron stars was discussed in [41]. Charged black holes in
f(R) = R+αR2 in Palatini formalism have been anal-

ysed in [42], and the ratio of crustal to the total mo-

ment of inertia of NSs in these theories was calculated

in [43]. Bouncing cosmologies in the Palatini version of
this theory have been studied in [44].

The system of differential equations (13)-(14) can

be solved if a relation between ρ and p is given. Note

that using Eqn. (5) the scalar curvature R can be ex-

pressed as a function of T . In particular, R-squared
gravity yields R = −8πGT/c4 = −8πG(−c2ρ+ 3p)/c4.

Through the chain rule, the derivatives of fR with re-

spect to the radial coordinate, r, in the functions α0, β0
and γ0, are written in terms of p′, p′′, and the first and
second derivatives of the EoS. Then, the calculation of

the stellar structure requires a non-trivial derivation of

Eqns. (13) and (14) in an explicit form [38].

3 M − R configurations and internal profiles

3.1 Equation of State

The EoS contains the information of the behaviour of
matter inside NSs through several orders of magnitude

in density. Because the properties of matter at the high-

est densities in the central region of NSs are not well

understood, different EoSs have been proposed and con-
strained with observations of masses and radii of actual

NSs [37, 45].

It is important to emphasise that the EoSs avail-

able in the literature are usually given by the tabulation

of the zeroth-order relation between ρ and p, because
such is the relation needed to calculate the structure of

NSs in GR. However, in such cases the usual interpola-

tion technique fails to accurately represent high-order

derivatives [46].

5 An alternative representation of the TOV equations can
be found in [28].
6 Negative powers of R are negligible in the strong field

regime in which we are interested in here [2].

Thus, special care should be taken if dp/dρ and

d2p/dρ2 are used during the calculation, as in the case

we are interested in here. Alternatively, analytic ap-

proximations instead of tabular EoSs can be used in

order to achieve more precision. In this direction, we
first consider the SLY EoS, extensively used to calcu-

late the internal structure of NSs [37, 45], as well as the

FPS EoS, used in [30] for comparison. They are com-

plex representations of tabular EoSs obtained through a
thermodynamically-consistent procedure to best-fit co-

efficients of a polynomial expansion, both in the crust

and core density regimes [37]. The analytic parametri-

sations for SLY and FPS EoSs are given by

ζ =
a1 + a2ξ + a3ξ

3

1 + a4 ξ
f0(a5(ξ − a6))

+(a7 + a8ξ) f0(a9(a10 − ξ))

+(a11 + a12ξ) f0(a13(a14 − ξ))

+(a15 + a16ξ) f0(a17(a18 − ξ)) , (15)

where ξ = log(ρ/g cm−3), ζ = log(p/dyn cm−2), f0(x) =
1

ex+1 , and the coefficients ai for each case are tabulated

in [37]. The analytic approximations to SLY and FPS

EoSs are shown in Figure 1, as well as its first and

second derivatives. We also include for comparison a
simpler polytropic approximation, namely PLY, given

by

ζ = 2ξ + 5.29355 . (16)

Despite the latter is not a realistic EoS apt to thor-

oughly represent NSs, it is a toy model that will allow
us to develop a detailed analysis of the derivatives of the

EoSs and their crucial role in the calculation of stellar

structure in f(R) gravity.

3.2 Numerical Results

Solving the system of ordinary differential equations

given by (13)-(14) implies their integration from the

centre of the NS to its surface, for which we assume
boundary conditions: m(r = 0) = 0, p(r = 0) = pc,

ρ(r = 0) = ρc, p(r = R) = 10−12pc and m(r = R) =

M . Once the solution is found, a couple of values M

and R for the total mass and the radius, respectively,

are established. Then, varying ρc, a family of static
configurations (M,R) is obtained. In order to perform

the integration, we used a numerical code based on a

fourth-order Runge-Kutta method with a variable step

for the radial coordinate which is systematically short-
ened close to the NS surface, to account for rapid vari-

ations of the physical parameters in that region. All

metric functions are finite at r = 0, thus ensuring that
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Fig. 1 Analytic approximation of SLY and FPS EoSs (upper
panel), and their corresponding first and second derivatives
(middle and bottom panel, respectively). The simpler poly-
tropic approximation PLY is also included for comparison.
Grey-shadowed areas indicate transition regions.

the obtained solutions are non-singular at the vicinity
of the origin [47].7

In Figure 2, we show the family of static configura-

tions for the SLY, FPS and PLY EoSs, for three differ-

ent values of the parameter α, running from α = 0 (GR
case) to α = 5 × 109 cm2. In this work we restrict the

values of α in accordance to the constraints reported in

[51]. In all cases, the total mass corresponds to the value

of the mass parameter at the surface of the star, where

the internal metric coincides with the Schwarzschild so-
lution. Although these constraints were obtained for

f(R) theories in the metric formalism, they represent

a first attempt to study strong field scenarios in the

Palatini formalism. While differences between modified
gravity and GR are not appreciable for PLY EoS, sig-

nificant changes can be noticed when the realistic EoSs

are considered. Using the same initial conditions to

compute the integration, the maximum of the config-

urations decreases when α increases. That is, in this
particular choice of modified gravity NSs heavier than

those in GR are not allowed for any of the two realistic

EoSs. This feature of NSs in the R+αR2 model of modi-

fied gravity could be in tension with recent observations
which evidence massive NSs, as the case of PSR J1614-

2230 (M = (1.97±0.04)M⊙) [52] and PSR J0348+0432

(M = (2.01 ± 0.04) M⊙) [53]. This tension may allow

to place constraints on the parameter α.

7 It is worth mentioning that there are spherically sym-
metric solutions to Palatini R-squared theory in which the
r = 0 region is not accesible. Such solutions represent worm-
holes [42, 48, 49] (see [50] for wormholes generated by a one-
parameter family of anisotropic fluids in the same theory).

More remarkable features can be observed in Fig-

ure 3, which shows the internal mass profiles obtained

assuming a SLY EoS for ρc = 4 × 1015 gr cm−3 and

three different values of the α parameter, together with

the derivatives of the EoS used in grey-dashed lines.
There exist internal regions where the mass parameter

decreases with ρ, that is dm/dρ < 0, and, as the den-

sity and the pressure monotonously decrease with the

radial coordinate, in those regions the mass parame-
ter also decreases with the radius (dm/dr < 0). This

unexpected behaviour becomes more noticeable when

α increases. Moreover, the regions for which these fea-

tures are observed are clearly correlated with those in-

tervals in which the second derivative of the EoS be-
comes important, that is, close to phase-transition re-

gions, in particular, in the crust-core transition, around

ξ = 14.1. This correlation is also evidenced by the fact

that dm/dρ remains always positive when the simpler
PLY EoS with trivial derivatives is used. This counter-

intuitive feature was previously reported in [30] using

the FPS EoS, where the authors claim that similar

problems will appear in any theory involving higher

derivatives in the matter fields than in the metric, since
in such theories the cumulative dependence of the met-

ric on the matter field is not guaranteed. In fact, similar

features on internal profiles of NSs were pointed out in

[16], where stellar structure was computed using a per-
turbative approach to find an approximated solution of

the fourth-order differential equation system derived in

the metric formalism.

This scenario motivates a careful analysis of the nu-

merical approximation to realistic EoSs, since EoSs are
generally constructed to successfully generate NSs in

GR. Such a procedure could lead to the loss of im-

portant information contained in the first and second

derivatives of the EoS, which are relevant in f(R)-gravity.
Thus, it is worth investigating possible descriptions of

realistic NSs in a way such that the derivatives of the

EoSs remain under control. We present in the next sec-

tion a first approach to this problem, by proposing an

alternative parametrisation to mimic the behaviour of
EoSs close to phase-transition regions. We shall see that

this parametrisation offers a simplified description of

the nuclear matter on the crust and the core of NSs,

allowing us to play with different values of dp/dρ and
d2p/dρ2 in order to re-interpret the results presented

above.

4 A parametrisation for EOSs

The interior of NSs is usually well-described by three

distinct regions, namely the core, the inner crust and

the outer crust (see Figure 1). Each region can be roughly
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Fig. 3 Mass parameter profile for the transition region be-
tween the core and the inner crust using the SLY EoS and
for ρc = 4 × 1015 gr cm−3. The counter-intuitive behaviour
dm/dξ < 0 is more noticeable as α increases. First and second
derivatives of the SLY EoS are plotted in dashed-gray lines to
evidence the strong correlations of the mass profiles with the
second derivative of the EoS, which becomes more prominent
in the crust-core transition region (ξ ∼ 14.0–14.3).

represented by a polytropic EoS with a characteristic
polytropic index Γ = d log p/d log ρ = dζ/dξ [54]. We

shall restrict our analysis to the densities which cover

the core and the inner crust, as well as the correspond-

ing transition region between them (ξ ∼ 14.2), where

the mass profile presents the most significant differences
with respect to the GR case (see Figure 3).

We choose to represent the above description by an

arbitrary EoS, namely PLYT, shown in Figure 4, to-

gether with its first and second derivatives. In this rep-

resentation, the first and second logarithmic derivatives

of the PLYT EoS are given by

dζ

dξ
=
Γ2 − Γ1

π
tan−1

(

ξ − ξ0
∆

)

+
Γ1 + Γ2

2
, (17)

d2ζ

dξ2
=
Γ2 − Γ1

π

∆

∆2 + (ξ − ξ0)
2 , (18)

where Γ2 and Γ1 are the polytropic indices for the
core and the inner crust, respectively. The parameter∆

characterises the width of the transition region, allow-

ing us to control there the first and second derivatives

of the PLYT EoS. Since second derivatives are uncon-
strained by thermodynamics, ∆ can be chosen as small

as desired.8 In the limiting case in which both poly-

tropic EoSs are matched with a hard phase-transition

between the core and the inner crust, i.e. ∆ near to but

different from 0. The explicit form of PLYT EoS can be
obtained by integrating Eqn. (17).

The mass-radius configurations as well as the inter-

nal profiles obtained for PLYT EoS are shown in Fig-

ure 5. In order to mimic the SLY EoS within the range

we are interested in, 13 ≤ ξ ≤ 15, we set Γ2 = 2.6,
Γ1 = 1.25, ξ0 = 14.15 and ζ0(ξ0 = 14.15) = 32.7 in

Eqns. (17) and (18). We use ∆ = 10−1, 10−2 as ex-

amples that produce similar results to those obtained

with the SLY EoS in the previous Section. Mass-radius

configurations reach lower maximum masses when α is
increased, and the peculiar behaviour dm/dξ < 0 can

still be observed in the internal profiles, being more

pronounced for smaller ∆. Although the limiting case

∆ = 0 cannot be analysed in the present formalism
due to the discontinuity in the first derivative of the

EoS, the results shown in Figure 5 suggest that the

sequence of decreasing values of ∆ ultimate leads to

a discontinuity in m(r). This behaviour indicates that,

even if phase transitions in the EoS are allowed, the un-
desirable behaviour dm/dξ < 0 in the mass profile will

not removed. Furthermore, mass-radius configurations

do not allow heavier NSs than in GR for any plausible

α > 0 in this theory.

5 Discussion

In order to investigate whether f(R)-theories in the
Palatini formalism can be used to describe astrophysi-

cal scenarios in the strong curvature regime, we studied

the internal structure of NSs in the theory defined by

f(R) = R + αR2. In contrast to the metric formal-

ism, the modified TOV equations have derivatives of

8 See [55] for a discussion about astrophysical scenarios of
the formation of a mixed-phase core in neutron stars.
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the metric up to the second order, as in the GR case.
However, in spite of this advantage, the integration in-

volves some extra considerations since derivatives of the

EoS are present in the structure equations.

Considering the SLY EoS commonly used to com-

pute NSs, we obtained results consistent with previ-

ous studies (in which the FPS EoS was used [30]) re-

garding the static mass-radius configurations and in-

ternal mass profiles. Concerning the mass-radius rela-

tions, lower maximum masses than those in the GR

case are obtained, although the differences are not large

enough to fully constrain the parameter α by observa-
tional evidence of the most massive NSs. A more serious

problem is found when the internal structure of these

models is analysed. A counter-intuitive behaviour is ob-

served in the mass profiles, which include regions where
dm/dρ < 0. It was claimed in [30] that this feature

is a natural consequence of theories of gravity involv-

ing higher order derivatives in the matter fields than in

the metric. Assuming the validity of the realistic EoS,

it may be possible to limit the parameter α to values
lower than 109cm2 if dm/dr > 0 is required all through

the interior of the star. However, EoSs for matter in the

extremely high density regime are usually constrained

by fitting the structure of NSs in GR, where only the
zeroth-order relation between ρ and p is relevant. Then,

it seems inappropriate to use an EoS to constrain al-

ternative theories of gravity without imposing the bias

α = 0. This is of course an intricate problem because

NSs are actually the only natural laboratories where
properties of high density matter can be tested.

Thus, in this work we also studied an alternative

parametrisation for the EoSs, namely PLYT, that sim-

ply accounts for the core and the crust regions of the
NS. This is achieved by means of polytropic relations

connected continuously and analytically, which mimic

the phase-transition between both regions. This new

parametrisation of the EoS allows us to control its first

and second derivatives. The trends of mass-radius con-
figurations found using an analytic approximation to

realistic SLY and FPS EoSs are recovered, as well as

their internal profiles. We found that even in the lim-

iting case representing a hard phase transition between
the core and the crust of the compact star, the peculiar

behaviour of the mass parameter profile is unavoidable,

and lighter NSs than those calculated with GR are ob-

tained. Our results also indicate that in the limit∆ = 0,

there will be a singularity in the curvature, due to the
discontinuity in m(r). These features seem to suggest

that the problems claimed to be characteristic of NSs in

Palatini f(R) theories are indeed rooted to the nature

of the field equations, and core-crust phase transitions
in EoSs are not capable to counteract this dependence.

To conclude, we would like to mention two lines of

research that are a natural extension of this work. The

first one is the possible existence of wormhole-like solu-

tions that may arise from particular choices of the EoS
and the function f(R). The second is the study of the

stability of the calculated NSs, which would be very

important to ensure that configurations using different
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parametrisations of the EoS can be realised under R-

squared gravity. Such studies are left for future work.
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Journal of Cosmology and Astroparticle Physics 7,

20 (2011).
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