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Abstract 

The metamorphosed banded iron formation from the Nogolí Metamorphic Complex of western Sierra 

de San Luis, Eastern Sierras Pampeanas of Argentina (Nogolí area, 32°55’S – 66°15’W) is classified 

as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an 

island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole 

rock geochemical features. The banded iron formation origin is mainly related to chemical 

precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical 

precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with 

significant dilution by mafic-ultramafic volcanic and siliciclastic materials. Multi-stage TDM model 

ages of 1670, 1854 and 1939 Ma and positive, mantle-like ξNd(1502) values of +3.8, +1.5 and +0.5 from 

the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of 

Nogolí Metamorphic Complex, which are between 1679 - 1765 Ma and +2.64 to +3.68 respectively. 

This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and 

mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous 

Sm - Nd whole rock isochron of ~1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to 

the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded 

iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the 
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banded iron formation, with three distinctive trajectories: (1) Relict prograde M1-M3 segment with 

gradual P and T increase from greenschist facies at M1 to amphibolite facies at M3. (2) Peak P-T 

conditions at high amphibolite-low granulite facies during M4. (3) Retrograde counterpart of M4, that 

returns from amphibolite facies and stabilizes at greenschist facies during M5. Each trajectory may be 

regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 

and 3) orogenies, during the Early to Middle Paleozoic. The Nogolí Metamorphic Complex is 

interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of 

the Eastern Sierras Pampeanas of Argentina. 

Keywords: banded iron formation, oxide facies, Algoma Type, Sierra de San Luis, Eastern Sierras 

Pampeanas of Argentina. 

Resumen 

El mapeo de campo, la mineralogía y texturas y las características geoquímicas de roca total de la 

formación ferrífera bandeada metamorfizada del Complejo Metamórfico Nogolí, Sierras Pampeanas 

Orientales de Argentina (área de Nogolí, 32°55’S – 66°15’O) permiten clasificarla como una 

formación ferrífera de facies de óxidos y tipo Algoma. El ambiente tectónico se asocia posiblemente 

con un arco de islas o retroarco. El origen del BIF está relacionado principalmente con precipitación 

química de sedimentos hidrógenos desde el agua de mar en ambientes oceánicos. El precipitado 

químico primario es un resultado de soluciones que representan mezcla de agua de mar y fluidos 

hidrotermales, y significativa disolución con materiales silicoclásticos y volcánicos máfico-

ultramáficos. El BIF tiene edades modelo TDM de 1670, 1854 y 1939 Ma y valores mantélicos 

positivos de ξNd(1502) de +3.8, +1.5 y +0.5, que están en el rango de aquellos de las rocas volcánicas 

máficas-ultramáficas del Complejo Metamórfico Nogolí, cuyos valores varían entre 1679 - 1765 Ma y 

+2.64 a +3.68 respectivamente. Esta conexión isotópica Sm-Nd sugiere una estrecha vinculación 

genética entre las rocas volcánicas máficas-ultramáficas y las ferruginosas, como parte del mismo 

ambiente da arco de islas o retroarco. Una isocrona Sm-Nd roca total previa, proveniente de las rocas 

volcánicas máficas-ultramáficas, de ~1.5 Ga permite interpretar que para el BIF es posible una edad de 

sedimentación química tan antigua como Mesoproterozoico. Un patrón P-T horario puede ser inferido 

para la evolución metamórfica regional del BIF, con tres trayectorias distintivas: (1) Segmento 
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relíctico progrado M1-M3, con incremento gradual de P y T desde facies esquistos verdes en M1 hasta 

facies anfibolita en M3. (2) Pico de P-T en facies anfibolita alta-granulita baja durante M4. (3) 

Contraparte retrógrada de M4, que retorna desde facies anfibolita y se estabiliza en facies esquistos 

verdes durante M5. Cada trayectoria puede ser vinculada con diferentes eventos tectónicos 

relacionados con las orogenias Pampeana? (1) y Famatiniana (2 y 3) del Paleozoico Temprano a 

Medio. El Complejo Metamórfico Nogolí es interpretado como parte de un greenstone belt dentro del 

Terreno Pampeano de edad meso- a neoproterozoica de las Sierras Pampeanas Orientales de 

Argentina. 

Palabras clave: formación ferrífera bandeada, facies de óxidos, Tipo Algoma, Sierra de San Luis, 

Sierras Pampeanas Orientales de Argentina. 

1. Introduction 

Banded iron formations (BIFs) are highly controversial Precambrian chemical sedimentary rocks 

characterized by the presence of iron-rich layers containing at least 15% iron and commonly 

alternating with silica-rich layers (James, 1954; Trendall, 1983). This primary compositional layering 

is typically thin-bedded or finely laminated, whereas on a microscopic scale the boundary between the 

ferruginous and siliceous layers are distinctly sharp. 

The primary layering reflects compositional differences and is preserved even when the rock 

is metamorphosed to high-grade conditions. The siliceous layers are composed of silica-rich material 

with variable crystallinity, from amorphous to microcrystalline chert, which becomes granoblastic 

quartz when metamorphosed. James (1954, 1966) established four distinctive facies of iron formation 

on the basis of predominant iron minerals within the iron-rich layers: (1) Oxide facies, composed of 

magnetite, magnetite and hematite, or hematite. Where magnetite dominates, siderite and iron silicates 

are usually present. (2) Carbonate facies, in which the most prominent carbonate minerals are siderite 

and ankerite. (3) Silicate facies, with primary iron silicate minerals and its metamorphic equivalents. 

(4) Sulphide facies, frequently formed by pyrite plus pyrrhotite mixed with siderite and other 

carbonates (± chert or quartz). 

The classification of iron formation into Algoma and Lake Superior types was made on the 

basis of the contrasting conditions in the sedimentary and tectonic environments in which they have 



 

 

 

ACCEPTED MANUSCRIPT 

 

 4 

formed (Gross, 1980, 1996). The Algoma Type iron formations are relatively small in size and 

thickness, and are associated with mafic–ultramafic to felsic volcanic or volcaniclastic rocks and 

greywackes in island arc - back arc regions or intracratonic rift zones. Their tectonic setting is also 

comparable to present day spreading ridges on the ocean floor. The Lake Superior Type iron 

formations are part of thick sedimentary units, which cover large areas of up to 105 km2. This type of 

iron formation was deposited in relatively shallow marine environments under more stable tectonic 

conditions, over passive margin continental shelves. Despite the clear geological difference between 

the Algoma and Lake Superior types, some transitional iron formation occurrences are mentioned, 

especially in areas where sediments extend from continental shelf to deep-water environments. 

The key aspects of BIFs related to their role in early Earth evolution, their composition, 

classification, temporal and spatial distribution, facies associations and depositional environment, and 

genesis have largely been discussed in the geological literature for nearly hundred years. Despite the 

major controversies involving interpretation of these features, the main geological understanding was 

based on well-known examples from classical greenstone belt sequences in Precambrian cratonic 

shields from almost all continents (Abitibi-Lake Superior, Isua, Krivoy Rog, Transvaal, Hamersley, 

Imataca, Quadrilátero Ferrífero and Itabira, among others; see synthesis in James and Sims, 1973; 

Trendall, 1983 and Huston and Logan, 2004). Less known but well documented BIFs are the Paleo? to 

Mesoproterozoic one in the Río de la Plata craton or Piedra Alta Terrane (Ellis, 1998) and the 

Neoproterozoic ones in Nico Pérez Terrane (Bossi and Navarro, 1998; Gaucher, 2000; Gaucher et al., 

2003), both from Uruguay. 

To the south of Uruguay, in the southernmost Río de La Plata craton at Tandilia (Argentina), 

banded iron formations have not been reported up to now, neither in the Paleoproterozoic basement 

nor in the Neoproterozoic sedimentary cover. However, recent lithological and structural mapping 

performed in the Eastern Sierras Pampeanas of San Luis, located to the west of Tandilia, led to the 

identification of a few iron-rich beds metamorphosed into high-grades, and consisting of alternating 

magnetite-, iron silicate- and silica-rich laminae and bands that were interpreted as an oxide facies iron 

formation of Algoma Type, with a tectonic setting possibly related to island arc or back arc regions 

(González, 2000, 2003, 2004). Their host rocks are high-grade rocks of the Nogolí Metamorphic 
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Complex, which consist of multiply deformed mafic to ultramafic and felsic volcanic rocks 

intercalated in psammitic to pelitic sedimentary protoliths (González et al., 2004). 

In this contribution we present information on field occurrence, mineral and textural 

arrangements, deformational and metamorphic features of BIF from the Nogolí Metamorphic 

Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogolí area, 

32°55’S – 66°15’W, Fig. 1). The geological information is complemented with whole rock 

geochemical analyses, electron probe microanalytical data (EPMA) on garnets and amphiboles and a 

few whole rock-garnet Sm - Nd isochrons. With all these data we discuss the depositional environment 

and genetic relationship with coeval volcanism, the timing of sedimentation, and the age of 

metamorphism and deformation. Additional discussion covers the possible geotectonic context for the 

Nogolí Metamorphic Complex as part of the Meso- to Neoproterozoic Pampean Terrane of the Eastern 

Sierras Pampeanas of Argentina. 

2. Geological setting 

The Early Paleozoic Famatinian Orogeny of Eastern Sierras Pampeanas has been related to the 

accretion of the allochthonous or para-autochthonous Cuyania terrane to the southwestern Gondwana 

margin during the Ordovician (Ramos, 1988; Dalla Salda et al., 1992; Ramos et al., 1998; Aceñolaza 

et al., 2002). The tectonic and metamorphic processes related to the collision affected both the 

Cuyania terrane and the Gondwana autochthon, already deformed by previous orogenies, whereas the 

Famatinian magmatic arc was emplaced only along the autochthonous margin. Despite the intense 

Famatinian deformational, metamorphic and magmatic overprint, the interpretation of previous 

geological history assigned to the Pampean Orogeny in the Gondwana authochton is possible through 

a few relics of relatively well-preserved protoliths in the Nogolí Metamorphic Complex. 

The high amphibolite facies rocks of the Nogolí Metamorphic Complex are considered to be 

the basement to the lower grade rocks (greenschist to medium amphibolite facies), represented by the 

San Luis Formation and Micaschist Group (Sims et al., 1998; von Gosen and Prozzi, 1998; González 

and Llambías, 1998). The Nogolí Metamorphic Complex is widely exposed throughout the study area, 

whereas the San Luis Formation and Micaschist Group crop out only as narrow strips along the eastern 

side of the higher-grade rocks (Fig. 1). Granitoid plutons were emplaced at different stages during the 
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Famatinian Orogeny, and they were classified, following the scheme presented by Llambias et al. 

(1998), into pre- and post-orogenic granitoids, relative to the main Famatinian deformation event that 

occurred during the Ordovician. 

The pre-orogenic granitoids represent the arc magmatism emplaced prior to the peak 

Ordovician deformation and share the same penetrative Famatinian NNE-SSW to NE-SW foliation as 

that of the country rocks (Llambias et al., 1998). These granitoids crop out as small plutons of 

deformed hornblende – biotite tonalites intruded within the Nogolí Metamorphic Complex to the 

northwest of the study area (Fig. 1). Conventional U-Pb zircon ages of 490 to 472 Ma constrain their 

emplacement to the Early Ordovician (see synthesis in Sato et al., 2002, 2003a, 2004). 

The El Molle and Barroso post-orogenic plutons cut the Famatinian NNE-SSW to NE-SW 

fabric of the Nogolí Metamorphic Complex, indicating that they intruded after the main Ordovician 

deformation. However, these post-orogenic plutons were later affected by reactivations of some 

previously developed ductile shear zones (Fig. 1). The El Molle and Barroso plutons are composed 

mainly of biotite – magmatic epidote (± amphibole) monzonites and amphibole – biotite – 

clinopyroxene diorites and gabbros, with minor two mica granodiorites and granites (González and 

Sato, 2000; González et al., 2006). A conventional U-Pb zircon age of 417 ± 6 ± 7 Ma constrains the 

El Molle pluton crystallization to Late Silurian (Sato et al., 2003 b). 

2.1. Nogolí Metamorphic Complex 

This unit is composed of paragneisses, micaschists, metaquartzites and migmatites, with minor 

orthoamphibolites, metakomatiites, komatiitic metabasalts, high-Fe tholeiite metabasalts, marbles and 

banded iron formation. Small lenses of two mica, garnet leucogranites of anatectic origin (now 

orthogneisses) are interlayered with paragneisses and migmatites. The deformation and metamorphic 

phase sequence was described in detail by González et al. (2004), and therefore only a brief summary 

is given here (Table 1). 

The deformation structures of the Nogolí Metamorphic Complex were grouped into two sets 

with different orientations: (1) W to NW trending remnant structures attributed to pre-Famatinian 

(Pampean?) D1 to D3 phases and (2) NNE to NE trending penetrative structures related to the 

Famatinian D4 and D5 phases (González, 2003; González et al., 2004). 
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D1 structures are axial plane foliation S1 and isoclinal folds F1 affecting compositional 

layering S0 (pelite-psammite banding in paragneisses and micaschists) plus mm- to cm-thick quartz-

plagioclase veins. Structures attributed to D2 are foliation S2, stretching lineation L2 developed on S2 

surfaces and tight folds F2 that refolded S0 plus S1 planes (and also F1 folds). Late-D2 and early- to 

syn-D3 injection of granitic veins plus emplacement of anatectic granitoid lenses and migmatite 

formation are associated with ductile shear zones and their mylonitic foliation S3 and stretching 

lineation L3. Late-D3 open folds F3 affected the whole previous structures. Since the compositional 

layering S0 is usually subparallel to S1 and S2, González et al. (2004) interpreted the D1 – D2 phases as 

reflecting different stages of a continuous deformation with a similar co-axial compressive regime. 

Prograde regional metamorphism accompanied D1 to D3 deformational phases, from at least 

middle greenschist facies M1 during D1, up to the peak P-T conditions at high amphibolite facies M3 

contemporaneous with D3 (Table 1). 

The timing of the pre-Famatinian D1 - M1 to D3 - M3 phases is not yet well constrained by 

radiometric dates. This older fabric is exclusively associated with Nogolí Metamorphic Complex, and 

does not appear within the San Luis Formation and Micaschist Group. The U-Pb monazite age range 

between 520 and 490 Ma obtained on a paragneiss from the Nogolí Metamorphic Complex (González 

et al., 2004) is not accurate enough to assign the age of the D1-M1 / D3-M3 pre-Famatinian phases. 

However, we cannot rule out the effects of Mid-Cambrian Pampean Orogeny in this older fabric. The 

U-Pb zircon crystallization age of 507 Ma from the pre-orogenic La Escalerilla granitic pluton (von 

Gosen et al., 2002), which intrudes a thin strip of the Nogolí Metamorphic Complex to the southeast of 

our study area, also supports a pre-507 Ma tectonic and metamorphic evolution of the complex. On the 

other hand, the protoliths from Nogolí Metamorphic Complex, including the banded iron formation 

and mafic to ultramafic volcanic rocks, should be older than the D1-M1 to D3-M3 phases. Based on 

conventional and SHRIMP U-Pb analyses of zircon from meta-komatiite and komatiitic metabasalt, 

Sato et al. (2006) suggested a primary crystallization age older than 516 Ma for mafic-ultramafic 

volcanic protoliths of the Nogolí Metamorphic Complex, which can be as old as Mesoproterozoic time 

(~1.5 Ga), as shown by a previous Sm - Nd whole rock isochron (Sato et al., 2001a). 
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The older and multiply deformed NW-SE trending foliation was refolded and reoriented to a 

NNE-SSW Famatinian trend during the younger D4 and D5 deformational phases, and the previous 

high-grade metamorphoic rocks were re-metamorphosed to a new high amphibolite facies (González, 

2003; González et al., 2002, 2004). The structures ascribed to D4 phase are a foliation S4, mineral and 

stretching lineation L4 developed on S4, and tight to isoclinal folds F4. Several NNE-SSW trending, E 

or W dipping, low- to high-grade ductile shear zones also acted during D4 and were conspicuous at D5. 

This youngest deformation phase was continuous in time with D4 and is characterized by growth and 

expansion of Famatinian ductile shear zones, showing S-C fabric and mylonitic foliation S5, and 

reactivation of high strain zones formed in pre-Famatinian times. 

The D4 phase acted together with a medium P (Barrovian type) / high T prograde regional 

metamorphism M4 which is transitional between high amphibolite- and granulite facies. A P-T range 

of ca. 8 kb and 636° to 820°C was obtained for metamorphism M4 on both the metaclastic and mafic 

to ultramafic metavolcanic rocks (González, 2003; González et al., 2004). The D5 deformational phase 

is ascribed to local retrograde amphibolite to greenschist facies dislocation metamorphism M5, active 

only within shear zones. Away from these high strain zones, rocks of Nogolí Metamorphic Complex 

underwent widespread static retrograde greenschist facies metamorphism M5, in syn- to late-D5 

conditions and in relation to the basement exhumation process. 

Conventional U-Pb monazite and zircon, chemical Th-U-total Pb monazite, and Ar-Ar 

hornblende plateau ages from paragneisses, orthogneisses and amphibolites range between 475 and 

457 Ma and constrain the timing of regional high-grade metamorphism M4 and coeval D4 deformation 

to Early to Mid-Ordovician (González et al., 2002, 2004; Sato et al., 2005, 2006). These Ordovician 

deformation and metamorphism, added to the granitoid arc magmatism, define the main phase of the 

Famatinian Orogeny in the Sierra de San Luis (Sato et al., 2002, 2003a). 

The successive D5 deformation and retrograde M5 metamorphism are broadly constrained by 

K-Ar, Ar-Ar and Sm-Nd ages between 445 and 364 Ma (Ortiz Suárez, 1999; González and Sato, 2000; 

Sato et al., 2001b, 2002; González et al., 2004). This Late Ordovician to Late Devonian time is 

referred to as the late- to post-orogenic stage of Famatinian Orogeny, when post-orogenic granitoids 

were emplaced as well (Sato et al., 2002, 2003a). 
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3. Local geology of the banded iron formation 

Four main beds of iron formation are intercalated with plagioclase – biotite – muscovite – quartz (± 

rutile) paragneisses, quartz-bearing orthoamphibolites, amphibole + orthopyroxene-rich / spinel-

bearing komatiitic metabasalts and minor metachert lenses of the Nogolí Metamorphic Complex, at 

the top of the Barroso hill (Figs. 1 and 2). This sequence of alternating chemical plus siliciclastic 

sedimentary- and volcanic protoliths is included as a set of roof pendants within the post-orogenic 

Barroso pluton. The roof pendants together with the pluton are then cut by at least two groups of 

granitic dykes, some of which are depicted in Fig. 2. 

The iron formations are thin lens-shaped beds 0.3 to 2 m thick and up to ~150 m long. They 

are boudinaged along strike and consist of fine- to medium-grained, reddish to brownish laminae and 

bands composed of variable amounts of iron oxides (mainly magnetite) plus minor hydroxides, iron 

and magnesium silicates and quartz. As magnetite is the most prominent iron-rich mineral, these 

ferruginous layers are classified as oxide facies iron formation. 

The lamination and banding reflect the primary layering S0 of the protolith, which is well 

preserved despite the regional and contact metamorphism (Figs. 3a to d). In order to avoid confusion 

related to the hierarchical names of layers proposed by Trendall (1965, 1983; e.g., “macro-“, “meso-“ 

or “microband”), the term band is applied in this contribution to layers thicker than 1 cm. The term 

lamina is used as the thinnest recognizable unit layer less than 1 cm thick, and commonly between 

0.05 to 1.00 mm (Bates and Jackson, 1980). The BIF bands interbedded in Nogolí Metamorphic 

Complex are generally thinner than 1.3 cm (Fig. 3a), whereas the average lamina is 5.00 mm thick 

(Figs. 3 b to d). 

The geological features described below refer to the largest bed of the iron formation (location 

number 1 in Fig. 1). The other layers are not treated in the text because they share the same geological 

features as those of the largest bed of the iron formation. 

4. Deformation structures 

The mesoscopic structural features of the iron formation are the same as those of the interbedded 

paragneisses and orthoamphibolites. The main structure attributed to D2 is a decameter-scale tight F2 

synformal fold of the primary layering S0 (Fig. 2). In the western limb S0 strikes approximately N-S 
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and dips gently to moderately (20° - 55°) to the east (Fig. 4). The eastern limb has a NE-SW strike and 

a northwest dip with steeper angles (40° to 65°, Fig. 4). The F2 fold hinge closes to the south and the 

fold axis plunges 24° to the NNE. 

The S1 and S2 foliations are not well recognized within the ferruginous rocks, and this is also a 

common situation for other lithologies of the Nogolí Metamorphic Complex in the area (González et 

al., 2004). We consider that the relict foliations S1 and S2 are presently parallel to the penetrative S4. 

Remnants of W- to WNW trending S2 foliation, dipping between 32° and 60° to N-NNE, are poorly 

preserved only within meter-scale paragneiss strips at the eastern limb. Stretching and/or mineral L2 

lineation developed on S2 is NE-plunging with low angles of 20° to 40°, and is almost parallel to the 

F2 synform axis (Fig. 4). Although their parallelism might represent some relict kinematic feature 

related to D2 deformation phase, it does not necessarily imply a direction of tectonic transport, in view 

of the fact that the iron formation layer and the hosting paragneisses are part of a roof pendant. Hence, 

these lineations could have been displaced, rotated or distorted during the Barroso pluton 

emplacement, changing their original attitude. 

Several centimeter-scale parasitic tight F2 folds are additionally found on both limbs of the 

large F2 synform. Although large-scale F1 folds are not clearly identified within the iron formation 

layer and paragneisses, many centimeter-scale isoclinal F1 folds appear refolded by F2 folds 

throughout the western limb. 

An open to gentle F3 or F4 fold, ascribed to D3 or D4 phase and deforming S0 plus S1-S2, 

refolded the axial trace of the F2 synform (Fig. 2). The foliation S4 is the penetrative planar feature in 

the iron formation and paragneisses; it is ascribed to the Famatinian D4 deformation and trends NNE-

SSW to NE-SW with a moderate dip (30° to 45°) to the ESE-SE (Fig. 4). 

5. Petrography 

The iron formation consists of alternating fine- to medium grained, reddish to brownish laminae and 

bands composed of magnetite, garnet, Fe-Mg clinoamphibole, apatite, minor quartz, and accessory 

minerals. At microscopic scale, boundaries between laminae and bands tend to be sharp, although 

complete gradation is also observed. 
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The following seven types of laminae-bands are recognized on the basis of the predominant 

iron-rich mineral and their textural arrangement (Fig. 5). 

Type 1: Trails of idioblastic to sub-idioblastic magnetite dominate these thin (up to 3.0 mm thick) 

tabular or lens-shaped laminae, often accompanied by quartz either as isolated equant grains (Fig. 5a) 

or granoblastic polygonal aggregates. The borders of magnetite crystals are affected by martitization, 

which also penetrates along micro-fractures, possibly as a result of the last thermal effect related to the 

emplacement of the Barroso pluton (see details of metamorphism below). Apatite and garnet are 

distinctively absent or very scarce at the contacts with type 4 laminae, with which they alternate. 

Type 2: Quartz is the main constituent of these fine-grained (<400 µm) laminae with up to 2.0 mm 

thickness (Fig. 5b). A typical polygonal granoblastic texture is defined by quartz with normal 

extinction, straight to curved boundaries and triple junctions, which suggest a late stage static 

recrystallization under temperature dominated conditions. Variable amounts of idioblastic apatite (5.0 

mm long prisms) are accompanied by minor idioblastic to sub-idioblastic garnet and martitized 

magnetite. Garnet and magnetite mostly occur along contacts with type 4 laminae. Occasionally, 

garnet porphyroblasts show straight inclusion trails in their cores. 

Type 3: are mainly composed of idioblastic garnet and interstitial quartz, with minor magnetite and 

apatite (Fig. 5c). The poikiloblastic garnet (up to 2.0 mm) contains quartz and magnetite inclusions 

homogeneously distributed from core to rim. Short rounded apatite prisms (< 0.5 mm long) appear 

within quartz whereas idioblastic to xenoblastic magnetite is randomly distributed among garnet 

grains. 

Type 4: consist essentially of idioblastic to sub-idioblastic garnet and sub-idioblastic to xenoblastic 

magnetite, with or without quartz. Garnet is distinctively poikiloblastic, with magnetite inclusions 

arranged in concentric shells that alternate rhythmically with inclusion free zones (Fig. 5d). These 

magnetite inclusions are much smaller than matrix magnetite. From border to core in garnets, the 

magnetite-rich shells are distributed as follows: 

o Outer rim: <50 µm thick, discontinuous and tabular-shaped zone, in which magnetite is arranged 

in a fine and dense mesh of minute crystals. 
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o Inner rim: almost continuous and up to 100 µm thick, with magnetite crystals in a looser network 

than the outer rim. Clots of massive magnetite may be erratically distributed around the mesh. 

o Outer core: <100 µm thick zone consisting of an unwoven mesh of magnetite crystals that 

gradually becomes denser towards the core. 

o Core: entirely composed of massive limonitized magnetite. Occasionally, some quartz grains are 

included within them. 

Type 5: consist of massive garnet aggregates, with or without magnetite and < 1% quartz, and apatite 

distinctively absent (Fig. 5e). When magnetite is present it appears as a dissemination of sub-

idioblastic large crystals of up to ~1.0 mm in diameter. 

Type 6: are composed of seriate irregular to polygonal granoblastic garnet, inclusion-free and often 

accompanied by interstitial quartz, biotite, clinoamphibole, and minor xenoblastic magnetite, rutile 

and pyrite (Fig. 5f). Thin (<190 µm thick) intercalations of apatite lenses with polygonal granoblastic 

texture are conspicuous in these laminae (Fig. 5g). Some garnet crystals replace small flakes of brown 

biotite, and their boundaries are successively replaced by a moat of epidote or iron oxides–hydroxides. 

This reaction rim suggests changes in P-T conditions during the latest stages of the complex regional 

metamorphic history (see details in section 8). Clinoamphibole borders are intimately inter-grown with 

fine quartz and magnetite and are partly retrogressed to greenalite and crocidolite. 

Type 7: are essentially dominated by sub-idioblastic clinoamphibole (belonging to the cummingtonite–

grunerite series) and minor quartz, garnet, magnetite and orthoamphibole (belonging to the 

anthophyllite–gedrite series). Complex textural arrangements among these metamorphic minerals 

(including at least two generations of clinoamphiboles) represent several periods of superposed 

metamorphism associated with their respective deformation phases (see below). Cummingtonite–

grunerite show their typical multiple twinning, and anthophyllite–gedrite are distinguished by their 

straight extinction (Fig. 5h). Inclusion-free sub-idioblastic garnet together with xenoblastic magnetite 

and quartz define the granoblastic texture of these laminae. Some clinoamphiboles are scarcely 

replaced by brownish patches of cryptocrystalline greenalite or bluish to greenish aggregates of 

crocidolite fibers. These replacement minerals are ubiquitous as moats surrounding the clinoamphibole 



 

 

 

ACCEPTED MANUSCRIPT 

 

 13 

or growing along their cleavage. Veinlets sealed by greenalite, crocidolite, limonites and minnesotaite 

cut earlier mineral arrangements and are possibly related to fluid mobilization during the latest stages 

of regional metamorphism. 

6. Mineral chemistry 

Electron microprobe analyses of Fe-Mg clinoamphiboles and garnets were performed with a JEOL-

SUPERPROBE JXA-8600 S electron microprobe at Instituto de Geociencias, São Paulo University. 

The microanalyzer includes an energy dispersive system (EDS), five wavelength dispersive 

spectrometers (WDS) and the Voyager-ThermoNORAN automation system with PROZA correction 

on line. The analytical conditions were: beam current of 20.10 ± 0.10 nA, acceleration voltage of 

15.00 kV and a focused probe diameter of 5 µm. Natural and artificial oxides and minerals were used 

as standards. Na and K were counted first for 5 s to minimize loss by volatilization, and then all the 

other elements were counted for at least 20 s. The results were used in combination with textural 

information to appraise the metamorphic grades reached by the iron formation. Unfortunately, suitable 

mineral assemblages for quantifying the P-T conditions were absent in the studied rocks. 

The minerals analyzed are from type 6 laminae of sample Fe-5 (see location in Fig. 2). 

Inclusion-free garnets and the freshest cores of the latest generation of clinoamphibole were analyzed, 

whereas borders of clinoamphiboles were discarded for analytical purposes because of their reaction 

coronas (see above). For amphibole classification the scheme of Leake et al. (1997) was followed. 

Selected amphibole and garnet microanalytical data are presented in Table 2. 

The amphiboles are classified as monoclinic because of their oblique extinction angle. Their 

belonging to the Mg - Fe2+ - Mn2+ - Li member is supported by their composition, with (Ca + Na)B < 1 

apfu and (Mg + Fe2+ + Mn2+ + Li)B ≥ 1 apfu (Table 2). With Mg# (Mg/Mg + Fe2+) variable between 

0.50 and 0.52, and Si between 7.82 and 7.88 apfu, the amphiboles plot along the borderline between 

grunerite and cummingtonite, only slightly shifted towards the cummingtonite field (Table 2; Fig. 6a). 

Cummingtonite is commonly found in rocks derived from regional metamorphism of Ca-poor 

and Fe- and Mg-rich protoliths (Deer et al., 1992), such as an iron formation. Fe and Mg replacement 

by Mn in these cummingtonites is generally scarce. However, under high-grade metamorphic 

conditions Mn content may reach up to 2 apfu in B-C sites (0.051 – 0.054 apfu for amphibolite facies 
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rocks, see Table 24, analyses 3 and 4, pp. 228 in Deer et al., 1992). Thus, the moderate Mn range 

variable between 0.1004 and 0.1060 apfu in the studied cummingtonites (Table 2) support the high-

grade character of regional metamorphism that affected the iron formation. 

This moderate Mn content is additionally accompanied by low Ca (0.0044 – 0.0146 apfu), Al 

(0.0709 – 0.1324 apfu) and alkalis (Na + K = 0.009 – 0.035 apfu), as well as a high bulk Fe# (FeO / 

FeO + MgO) = 0.93 (Table 4, sample Fe-5). This Ca- and Al-poor feature characterizes iron-bearing 

cummingtonites stable at bulk Fe# ≥ 0.40, which is another indicator of high-grade metamorphism in 

iron formation (Ghiorso and Evans, 2002). 

The garnets are almandine rich (Xalm = 0.7376 - 0.7578), with higher content of spessartine 

(Xspess = 0.1202 - 0.1226) than pyrope (Xpyr = 0.1032 - 0.1115) and grossular (Xgros = 0.0174 - 

0.0361), and an almost constant XFe that varies only between 0.8691 and 0.8801 (Table 2, Fig. 6b). 

Each individual cation content does not vary significantly between cores and rims, and this suggests 

that the garnet was possibly homogenized during peak metamorphic conditions. Spear (1993, and 

references therein) attributes this kind of homogenization to diffusion with increasing metamorphic 

grade, so that garnets usually reach typical almandine-rich homogeneous compositions only when 

attaining high amphibolite facies. According to this, the almandine-rich homogeneous composition of 

the studied garnet must have been acquired at peak metamorphic conditions under amphibolite facies. 

The above interpretation about the metamorphic grade reached can be extended to the whole 

paragenesis containing equivalent cummingtonites and garnets in the iron formation from the Nogolí 

Metamorphic Complex. Well-documented examples related to the appearance of cummingtonite and 

almandine-rich garnet in high-grade metamorphosed iron formation can be found in Klein (1983). 

7. Microfabrics and metamorphic evolution 

For the Nogolí Metamorphic Complex, González (2003) and González et al. (2004) proposed a 

complex prograde Barrovian-type medium pressure / high temperature metamorphic evolution that 

reached granulite facies, on the basis of detailed analysis of schists, paragneisses and amphibolites 

(Table 1). Each metamorphic stage was linked to a coeval deformation phase. As part of the same 

succession, the iron formations share the same polyphase tectono-metamorphic evolution (Tables 1 

and 3). 
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In the following sections we describe the mineral assemblages and microfabrics related to the 

relict pre-Famatinian M1-D1 to M3-D3 phases, those related to the Famatinian M4-D4 and M5-D5 

phases, and an additional paragenesis attributable to contact metamorphism associated with the 

Barroso pluton, emplaced at a post-orogenic stage of the Famatinian orogeny. In addition, the P-T 

conditions of each metamorphic stage are broadly estimated using the already mentioned mineral and 

textural analyses. For the M4 episode, the P-T approximation was additionally aided by garnet and 

cummingtonite compositions. Table 3 summarizes the relationship between growth periods of 

metamorphic minerals and deformation phases. Although this evolution might involve some loss or 

gain of chemical components, the regional metamorphism of the iron formation appears to be 

essentially isochemical, based on the remarkable consistency of their bulk chemical analyses (Table 

4). 

7.1. Relict pre-Famatinian M1-D1  to M3-D3 phases 

The metamorphic mineral assemblages and microfabrics of the relict pre-Famatinian M1-D1 to M3-D3 

phases are almost entirely overprinted by the Famatinian M4-D4 (peak at high amphibolite facies) and 

M5-D5 phases (retrogression at greenschist facies). However, few relicts of the former are preserved 

among the latter mineral assemblages or as mineral inclusion trails in garnet poikiloblasts. 

The quartz + chlorite + greenalite + biotite + apatite association with granolepidoblastic 

texture characterizing the M1 assemblage (Table 3) is typical of greenschist facies metamorphosed iron 

formation, suggesting minimum P-T conditions of ~350°C and low pressures (Klein, 1983). Some of 

these M1 minerals may persist into medium grade assemblages (Fig. 7a) accompanying the typical M2 

magnetite + biotite + cummingtonite–grunerite1 association (Table 3), which in turn has been reported 

elsewhere as being conspicuous at the beginning of high-grade conditions, especially together with 

garnets in Al2O3-rich bulk compositions (Klein, 1983). The S1 foliation planes are marked by poor 

alignment of chlorite showing replacement moats of biotite around their cores (Fig. 7b). 

An interfacial dihedral angle of almost 130° between biotite and garnet grains suggests the 

coexistence of prograde M1 biotite with M2 garnet, the biotite remaining stable at least up to an early 

stage of the amphibolite facies M2 event (Fig. 7c). They are accompanied by quartz + magnetite + Fe-

Mg clinoamphibole (cummingtonite–grunerite1) in a granoblastic to nematoblastic arrangement, which 
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together characterize the relict M2 - M3 metamorphic episodes (Table 3). The alignment of biotite-

amphibole ± magnetite marks the relict S2 foliation planes (and possibly the subsequent S3 planes as 

well, Table 3, Figs. 7c and 8a). At least two generations of clinoamphibole (cummingtonite-grunerite) 

are identified, an early one related to the M2-M3 events and a later one related to the M4 event (see 

below). The early one is evidenced by syn-M4 garnet replacement of cummingtonite-grunerite1 (Fig. 

8a) and by some relicts of crenulated syn-M2/M3 cummingtonite-grunerite1 (Fig. 9e). 

The formation of clinoamphibole + magnetite since M2 possibly involved the following 

reaction: 

 

Quartz + Iron oxide / Hydroxide = Fe-Mg Clinoamphibole + Magnetite + H2O   (1) 

 

This reaction is regarded by Floran and Papike (1978) as resulting from increasing 

metamorphic conditions between low- and medium grades, which might also be our case. 

Relict foliations S1 and S2 are preserved not only throughout the matrix but also as simple to 

complex inclusions in garnet poikiloblasts. A few M4 garnets overprint small flakes of M1 chlorite 

(Fig. 7d) or contain simple, straight inclusion trails of M1 biotite and apatite (Fig. 7e). The M1 chlorite 

was possibly consumed by garnet that grew during prograde M2, M3 and subsequent peak M4 episodes. 

The first garnet formation during M2 possibly involved the following reaction, with quartz in excess: 

 

Chlorite + Quartz = Garnet + H2O   (2) 

 

Within the iron formation of the Nogolí Metamorphic Complex, reactions (1) and (2) might 

have taken place together to form the general M2 paragenesis of garnet + magnetite + clinoamphibole, 

the last mineral marking changes in metamorphic grade from the greenschist facies M1 episode to 

middle-high amphibolite facies M2-M3 (Table 3). 

Apatite may participate in mineral reaction (2), at least partly since the M2 episode (Table 3), 

as the only source of grossular molecules in garnet. This interpretation is supported by large crystals of 

apatite showing interlobate to amoeboid grain boundaries with adjacent garnet (Fig. 7f), which 
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suggests some process of solid-state diffusion creep or grain boundary sliding under high grade 

metamorphic conditions (Passchier and Trouw, 1996), causing µm scale Ca2+ mobilization to form 

garnet contemporaneously with these deformation mechanisms. The conspicuous recrystallization of 

apatite during these relict metamorphic events is also denoted by inclusions of needles and short 

prisms within hosting garnet grains (Figs. 7e and f). 

Relict grains of greenalite-iron oxide/hydroxide (possibly hematite) are additionally found as 

small and scarce inclusions in M2 magnetite. The spherical granules of microcrystalline greenalite may 

represent replacement of relict primary oolitic sedimentary texture, preserved by armor magnetite (Fig. 

7g). The irregular bleb-like shape of relict iron oxide/hydroxide included in magnetite suggests their 

possible primary origin as hematite-rich grain (Fig. 7h). 

Complex and curved inclusion trails of quartz, apatite and magnetite in large garnet 

poikiloblasts also define relics of S1-2 foliation planes (Figs. 9a to d). This garnet growth can be 

interpreted as an intertectonic event (post D1-2 and pre- to syn-D4) because the internal foliations S1-2 

are oblique to the external S4. Therefore, the garnet porphyroblasts must have grown over relict 

foliations S1-2 and then surrounded foliation S4 that is marked by aligned quartz + magnetite + apatite 

+ cummingtonite (Figs. 9a to d). 

Some “ghosts” of tight F2-3 micro-fold hinges denoted by recrystallized quartz + magnetite + 

cummingtonite may be ascribed to polygonal arcs (Fig. 9e). This structure suggests that a relict 

foliation (S1?) was progressively obliterated by recrystallization of new grains under amphibolite 

facies conditions (Passchier and Trouw, 1996). Isoclinal F1 micro-folds of primary lamination S0 (Fig. 

9f) and micro-boudins with necks sealed by quartz and idioblastic magnetite (Fig. 9g) are additional 

pre-M4-D4 relict microstructures. 

Assemblages containing garnet and Fe-Mg clinoamphibole, comparable to those cited for the 

M2 and M3 events, are stable in a wide range of P-T conditions, from 450–615°C / 2-5 kb (Floran and 

Papike, 1978; Haase, 1982; Klein, 1983) to 650–750°C / 4–6 kb (Immega and Klein, 1976; Ghiorso 

and Evans, 2002). Taking into account that biotite consumption occurs during M2 while reaching high-

grade conditions and that the magnetite + garnet + cummingtonite-grunerite1 association characterizes 
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mainly the amphibolite facies, we estimate the ranges 650-750°C and 4-6 kb as the maximum P-T 

conditions reached by the M3 episode, whereas the M2 conditions must have been lower. 

7.2. Peak Famatinian M4-D4 phase 

The mineral assemblage for the peak M4-D4 phase is quartz + magnetite + almandine-rich garnet 

(Table 2) + cummingtonite (XFe 0.47 – 0.49, Table 2) + apatite ± rutile ± pyrite (Table 3). This 

cummingtonite represents the second generation of clinoamphibole in the iron formation. Their syn-

M4/D4 character is indicated by alignment of tabular crystals together with garnet grains which define 

the S4 foliation planes (Fig. 8a). Recrystallization and grain growth under high temperature conditions 

are probably the dominant factors controlling the S4 foliation development during the M4-D4 phase. 

Continuous recrystallization of apatite during M4-D4 is evidenced by polygonal granoblastic grains 

stable with syn-M4 garnets (Fig. 5g). 

Quartz, magnetite and garnet have grown since the M2 episode, but the recrystallization of 

garnet is especially ubiquitous during peak M4 conditions under high amphibolite facies, occurring at 

this stage together with the almandine-rich homogenization and the Mn enrichment of cummingtonite. 

Small syn-M4 garnet crystals are generally clean (with very little magnetite inclusions, Figs. 8a to c) 

but some large poikiloblastic crystals carry inclusions of chlorite and biotite (Figs. 7d and e) or 

magnetite (Figs. 9a to d) from previous metamorphic paragenesis. 

The complex distribution of magnetite inclusions in garnet suggests the possibility of their 

inclusion in a passive manner, without significant displacement by the growing garnet since at least 

the M2 episode (Table 3). As stated above, garnet might have grown at Al-Fe-Mg-Mn-rich sites 

replacing chlorite (and biotite) and found difficulty in replacing minerals lacking Al, such as magnetite 

or apatite. Since the mobility of Al ions is limited to µm-scale, the magnetite must have been 

randomly included, whereas some Ca ions were consumed by garnet production. Taking into account 

that magnetite crystals show homogeneous distribution only within the garnet from Type 3 laminae, 

we cannot rule out more complex growth mechanisms for garnets in other laminae, especially in those 

crystals where magnetite is arranged in concentric shells or curved inclusion trails. 

On the other hand, the grain size of magnetite in inclusions is smaller than in the matrix. 

Passchier and Trouw (1996) established that this could be caused either by partial diffusion or by a 
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reaction involving the shapes of included magnetite grains. According to these authors, the sharp 

contrast in size between small inclusions and large matrix crystals of magnetite can be explained by 

progressive coarsening of the matrix after garnet growth as a consequence of grain boundary area 

reduction (static recrystallization and grain growth). This can imply a complex and long history of 

metamorphism and deformation phases such as those found in the iron formation of Nogolí 

Metamorphic Complex (Table 3). 

The M4 paragenesis with almandine-rich garnet + Mn-bearing cummingtonite + magnetite + 

quartz characterizes upper amphibolite facies conditions under medium pressure (Klein, 1978, 1983; 

Immega and Klein, 1976; Floran and Papike, 1978; Haase, 1982; Evans, 1986; Deer et al., 1992). In 

the system CaO-MgO-FeO-SiO2-H2O, assemblages containing cummingtonite yielded a precise 

temperature range of 660° to 740°C at 5 kb under quartz saturated and water undersaturated conditions 

(aH2O = 0.5), also marked by a lack of orthopyroxene and olivine (Ghiorso et al., 1995; Ghiorso and 

Evans, 2002). In the system CaO-MgO-SiO2-H2O, Mg-Fe-Mn-rich amphiboles are stable up to 791°C 

and ~5 kb if bulk Ca/Ca+Mg composition is low, such as in iron formation. Above these P-T limits 

and at high Ca/Ca+Mg ratios, the Fe-Mg-Mn-rich amphiboles react to form clino- and orthopyroxene 

+ olivine (Ghiorso and Evans, 2002). Therefore, 791°C may be regarded as the maximum temperature 

(at 5 kb) reached by the iron formation in the Nogolí Metamorphic Complex during the peak M4 

episode, considering their lack of pyroxenes and olivine. A lower temperature limit during M4 can be 

placed at around 660°C for the same pressure. However, a peak pressure of ca. 8 kb is estimated for 

the iron formation on the basis of pressure values obtained by González et al. (2004) for their host 

rocks in connection with the maximum M4 temperature. Therefore, a broad P-T range of 5-8 kb and 

660-791ºC is suggested here as the possible conditions reached during the peak M4 episode. 

7.3. Retrograde Famatinian M5-D5 phase 

The regional retrograde greenschist facies M5 episode following the peak M4 metamorphism is 

indicated by retrogression of garnet, yielding massive epidote rims (Figs. 8b and c). The grossular 

component in garnet might have been consumed by this replacement during basement exhumation (see 

below), and under presence of water. An epidote rim surrounding garnet is typical of an iron formation 

that underwent retrogressive metamorphism after peak P-T conditions (Dziggel et al., 2002). The 
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absence of oriented epidote defining a foliation suggests their stress-free static crystallization during 

the M5-D5 phase. 

Replacement of some cummingtonite borders by secondary greenalite + minnesotaite ± 

crocidolite ± limonite is another texture associated with the M5 retrogression. Their textural 

arrangement includes: (1) incomplete and discontinuous rims or massive aggregates of greenalite and 

minnesotaite; (2) scarce fiber sheaves of greenish to bluish crocidolite; and (3) red massive limonite. 

In addition, rare prismatic bluish riebeckite replaces scarcely some central parts of cummingtonite. 

The greenalite-minnesotaite-crocidolite-limonite paragenesis is inferred as essentially related 

to aqueous fluid infiltration from host rocks towards the iron formation during cooling and exhumation 

associated with the M5 episode. This fluid phase is also manifested by veinlets composed of the same 

secondary minerals that cut across the high-grade assemblages. However, we cannot rule out the 

possible introduction of some hydrothermal fluid in relation to the Barroso pluton emplacement. 

Consumption of cummingtonite to form greenalite and minnesotaite possibly involved the 

following reactions (system CaO-FeO-SiO2-H2O) under quartz and H2O saturation conditions (after 

Tracy and Frost, 1991): 

 

3 Grunerite – Cummingtonite + 11 H2O = 7 Greenalite + 10 Quartz   (3) 

15 Grunerite – Cummingtonite + 20 Quartz + 20 H2O = 35 Minnesotaite   (4) 

 

Two reactions in the system FeO-SiO2-H2O-CO2-O2 (Tracy and Frost, 1991) can be associated 

with precipitation of greenalite and minnesotaite in veinlets: 

 

2 Magnetite + 8 Quartz + 2 H2O = 2 Minnesotaite + O2   (5) 

2 Magnetite + 4 Quartz + 4 H2O = 2 Greenalite + O2   (6) 

 

Reactions (5) and (6) provide not only veinlet filling but also free oxygen, and therefore they 

constitute the means of increasing the ƒO2 in the metamorphic system (see below). 
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The crocidolite forming reaction is not analyzed in detail here. However, the main issue 

regarding this mineral is the source of Na for its formation. The iron formation of Nogolí 

Metamorphic Complex shows the same low Na2O character (see Table 4) as other BIFs of the world 

and therefore the occurrence of crocidolite cannot be related to the primary whole rock composition. 

At this point, we cannot rule out some Na mobility from the nearby igneous activity as a possible 

source of alkali ions during contact metamorphism. 

The retrograde M5 assemblage is characterized by greenalite + iron oxides-hydroxides + 

epidote + crocidolite + minnesotaite, which suggest broad greenschist facies conditions at low 

pressure. This retrogressive assemblage is associated with the basement exhumation process, and the 

cooling and decompression needs to be accompanied by high fO2, H2O-rich fluid infiltration. 

7.4. Contact metamorphism 

The intrusion of the post-orogenic Barroso pluton into the Nogolí Metamorphic Complex followed 

closely the peak regional M4 metamorphic episode, and this was partially coeval with the retrograde 

metamorphism M5 (González, 2003; González and Sato, 2000). Mineral paragenesis of contact 

metamorphism is not evident in the iron formation at hand specimen scale, but it is observed at 

microscopic scale as a static growth assemblage overprinting the regional metamorphic minerals. The 

absence of true hornfels in both the iron formation and host rocks, together with the lack of a contact 

aureole were interpreted by González (2003) and González and Sato (2000) as a result of the country 

rock still preserving the regional M4 metamorphic conditions at the time of pluton emplacement. The 

addition of heat derived from the magmatic source in the contact area might have been disguised by 

the prevailing regional thermal conditions. 

The main contact metamorphic assemblage consists of anthophyllite-gedrite + hematite 

(martite). The random arrangement of scarce idioblastic tabular anthophyllite-gedrite partially 

overprinting cummingtonite (Fig. 8d) indicates their static recrystallization under thermal dominated 

conditions. The Al-poor character of overprinted cummingtonite (< 0.73 % Al2O3, Table 2) suggests 

the possible predominance of anthophyllite over the Al-rich gedrite as the end member present in this 

new paragenesis. 
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Anthophyllite and cummingtonite have similar theoretical chemical compositions (see Deer et 

al., 1992). Thus, the crystallization of anthophyllite instead of recrystallization of cummingtonite-

grunerite during contact metamorphism can related to an influx of aqueous phase or rise in ƒO2, rather 

than critical changes in P-T conditions. Anthophyllite tends to be stable in hematite-rich assemblages 

with high bulk Fe3+/Fe3+ + Fe2+ compositions under medium to high-grade metamorphic conditions 

(Klein, 1983). This means that anthophyllite must have grown under amphibolite facies (equivalent to 

hornblende hornfels facies of Yardley, 1989; see Smulikowski et al., 2004) and increasing oxygen 

fugacity conditions. Equations (5) and (6) may have contributed to the O2 production. 

According to the textural analysis, hematite occurs typically as massive pseudomorphous 

aggregates replacing magnetite borders. This textural arrangement and the absence of oriented 

hematite following foliations indicate a stress-free static recrystallization under thermal dominated 

conditions (Lagoeiro, 1998; Rosière et al., 2001). The oxidation of magnetite to form hematite during 

contact metamorphism is an in situ transformation controlled by the level of ƒO2 in the fluid phase 

(Lagoeiro, 1998), similar to that required for anthophyllite formation. The following reaction in the 

system FeO-SiO2-H2O-CO2-O2 (Tracy and Frost, 1991) possibly controlled the oxidation: 

 

4 Magnetite + O2 = 6 Hematite   (7) 

 

The stabilization of hematite requires high ƒO2 under the temperature range equivalent to high 

greenschist- and amphibolite facies (Klein, 1983; Tracy and Frost, 1991, Spear, 1993; Lagoeiro, 

1998). According to Sharp (1991), magnetite grains of 1 mm are stable up to 500°C in water-rich 

conditions and up to 660°C in anhydrous conditions. Following this information and considering the 

presence of an aqueous phase during the contact metamorphism, the temperature reached by the iron 

formation must be higher than 500ºC, at pressures equivalent to those of the regional M5 episode. 

7.5. P-T metamorphic evolution of the BIF 

On the basis of the mineral assemblage and textural analyses, complemented with microchemical data 

from selected amphiboles and garnets, a broad P-T path can be inferred for the metamorphic evolution 
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of the iron formation (Fig. 10). The path shows three distinctive trajectories: (1) Relict prograde M1-

M3 segment with gradual P and T increase from greenschist facies at M1 to amphibolite facies at M3. 

(2) Prograde P-T path with a peak at high amphibolite-low granulite facies during M4. (3) Retrograde 

counterpart of M4 that returns from amphibolite facies and stabilizes at greenschist facies during M5. 

This last segment possibly returns along a trajectory parallel to the former prograde M1-M3 segment 

(Fig. 10). The three segments thus combined show a clockwise P-T path. Each trajectory may be 

regarded as different tectonic events related to: (1) the Early Cambrian Pampean orogeny or even 

older cycles (e.g., Brasiliano-Pan African orogeny, von Gosen et al., 2002), and (2 and 3) the 

Ordovician to Devonian Famatinian orogeny. As part of the same succession, the iron formation 

shares the same clockwise P-T evolution followed by the paragneisses, micaschists, amphibolites, etc., 

of the Nogolí Metamorphic Complex (González, 2003). 

8. Whole rock geochemical characteristics 

Whole rock chemical analyses of the banded iron formation were carried out at Activation 

Laboratories Ltd., Ontario. Major elements and Au were determined by instrumental neutron 

activation analysis (INAA), while trace and rare earth elements were analyzed by inductively coupled 

plasma emission mass spectrometry (ICP-MS). Selected geochemical analyses from the iron formation 

of Nogolí Metamorphic Complex are presented in Table 4. 

8.1 Major, minor and trace elements 

The major oxide components are Fe2O3* (all iron as Fe3+) and SiO2, ranging between 42.70 - 54.50% 

and 30.83 – 41.94% respectively (Table 4). The abundance of these two oxides is related to the 

primary compositions of iron- and silica-rich protoliths and therefore their deposition must be mainly 

related to chemical precipitation. Other oxide contents show some variations, with Al2O3 ranging from 

3.27 to 8.39%, CaO from 1.08 to 4.67%, MgO from 0.57 to 3.15% and MnO from 1.34 to 2.34%. TiO2 

(0.13 – 0.28%), Na2O (0.01 – 0.05%) and K2O (0.01-0.17%) are minor oxides whose sum does not 

exceed 1% (Table 4). A remarkable feature is the high value of P2O5 from 2.20 to 2.98% that is 

reflected in lenses composed almost entirely of apatite (Fig. 5g). 

The Al2O3-SiO2 discrimination diagram (after Wonder et al., 1988) provides some suggestions 

about the deposition of the San Luis BIF (Fig. 11a). The diagram shows that most of the ferruginous 
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rocks plot in the hydrogenous field and therefore primary chemical precipitation might come mostly 

from sea water, by chemical reaction between oxygen in water and dissolved Si + Fe. REE patterns of 

the ferruginous rocks (see below) agree with this origin from sea water. However, one sample plots on 

the hydrothermal metalliferous side of the diagram, suggesting that some hydrothermal input might 

have affected the BIF. This implies that Si + Fe might have come mostly from hydrothermal vents. 

On the other hand, the positive correlation between Al2O3-SiO2 suggests that the chemical 

sediments were possibly diluted with Al2O3-rich clastic or volcanic material and that the Si 

contribution was not only supplied by hydrothermal input, but also might have had the same source as 

that of Al2O3. 

The Fe/Ti – Al/(Al+Fe+Mn) diagram (after Bostrom, 1973) is helpful to test the possible 

hydrothermal input into the hydrogenous sediments and their dilution with clastic or volcanic material. 

In this diagram, pure hydrothermal chemical sediments are enriched in Fe and Mn, whereas Al and Ti 

characterize the clastic or volcanic material. The diagram illustrates that the San Luis BIF plots close 

to modern metalliferous hydrothermal sediments and far away from modern pelagic-terrigenous 

sediments (Fig. 11b). Addition of Al2O3 to hydrogenous sediments imprinted by hydrothermal fluids 

decreases the Fe/Ti ratio and increases the Al content with respect to the hydrothermal elements, Fe 

and Mn. Thus, both the hydrothermal input and dilution with Al2O3 and TiO2-rich materials were of 

significant importance for the protolith of the San Luis BIF. 

The hydrothermal input is also supported by the high value of P2O5 (up to 2.98%, Table 4) and 

different positive inter-element correlations, such as P2O5 and Sb with Fe2O3 (Figs. 12e and f), and the 

Ge/Si ratio with Fe2O3 (Fig. 12g). Taking into account that iron formations particularly lack phosphate 

bearing minerals, the high P2O5 content might come from hydrothermal fluids. This P enrichment and 

also that of Sb and other cations as a result of large amount of hydrothermal input into iron formations 

was largely studied, discussed and corroborated (Klein and Beukes, 1993; Manikyamba and Naqvi, 

1995; Lottermoser and Ashley, 2000 and references therein). The Ge/Si positive correlation with 

Fe2O3 in BIFs have been recently used as an indicator of iron source, dominantly derived from 

hydrothermal fluids (Hamade et al., 2003; Höll et al., 2007). 

Other clues suggesting hydrothermal fluids input are high CaO / CaO + MgO ratios of 0.60 to 
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0.89 (sample Fe-5 is out of this range, Table 4) and some base and precious metal anomalies, such as 

V (167-288 ppm), Zn (30-297 ppm), Cu (56-405 ppm), Au (247-290 ppb) and Sn (17-158 ppm), 

among others (Fig. 12h). The high CaO / CaO + MgO (≈0.80) values were reported to be conspicuous 

in chemical sediments imprinted by hydrothermal fluids produced by basalt-seawater interaction close 

to the spreading ridge and active vents (Murray et al., 1991; Dasgupta et al., 1999). In the case of the 

iron formation from Nogolí Metamorphic Complex there is a genetic relationship between the 

ferruginous rocks and the intercalating mafic to ultramafic rocks which is supported not only by the 

above mentioned inter-element correlation but also by Sm and Nd isotopic data (see below). 

The influence of clastic and volcanic components into the primary chemical sediment is also 

corroborated by positive correlations of Hf and Zr with Al2O3 (Figs. 12a and c) and Sc and Hf with 

SiO2 (Figs. 12b and d). Within BIF worldwide, the positively correlated relationships between these 

trace and major elements were ascribed as mixing or dilution of clastic-volcanic material into chemical 

sedimentary precipitates (Horstmann and Hälbich, 1995; Manikyamba and Naqvi, 1995; Arora et al., 

1995; Tsikos and Moore, 1997; Klein and Ladeira, 2000; Lottermoser and Ashley, 2000). 

8.2 Rare earth elements 

Shale normalized REE patterns (subscript “SN”, normalized to NASC or North American Shale 

Composite, after Gromet et al., 1984) are consistent for all samples (Fig. 13). Ce and Eu anomalies are 

quantified by CeSN/(0.5xLaSN + 0.5xPrSN) and EuSN/(0.67xSmSN + 0.33xTbSN) respectively, following 

Bau and Dulski (1996). Yttrium is inserted between Dy and Ho according to its ionic radius because of 

the similar chemical behavior to those of the REE, so that they are described together (Henderson, 

1984; Bau and Dulski, 1996, 1999). 

The REE diagram shows a general flat pattern (La/YbSN = 0,67-1,04; Table 4), with only 

slight MREE (Gd to Ho) and HREE (Er to Lu) enrichment relative to LREE (La to Sm), a negative Ce 

anomaly (0.59-0.85) and positive Eu (1.10-2.22) and Y anomalies (Fig. 12 and Table 4). Such REE 

patterns and both the negative Ce and positive Y anomalies are considered chemical features inherited 

from interaction with seawater (Graf, 1978; Bau and Dulski, 1996, 1999; Tsikos and Moore, 1997; 

Klein and Ladeira, 2000, Lottermoser and Ashley, 2000, among others), and thus the REE + Y 

abundances in hydrogenous sediments reflect interaction with seawater. On the other hand, the 
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positive Eu anomaly might well result from hydrothermal input, since other elements clearly suggest a 

hydrothermal imprint on the BIF. 

9. Sm-Nd isotopic data 

In order to obtain information on the timing of the M4 metamorphism we attempted three pairs of 

whole rock – garnet Sm-Nd isochrones. The whole rock samples and garnet concentrates preparation 

(crushing, milling and mineral separation with water-based elutriation and Frantz Isodynamic 

magnetic separator) were performed at the Centro de Investigaciones Geológicas, La Plata. Sm - Nd 

isotope dilution analyses of these materials were performed following the technique described by Sato 

et al. (1995) at the Centro de Pesquisas Geocronológicas (Instituto de Geociencias, São Paulo 

University). The Sm - Nd ages were calculated using the Isoplot/Ex version 2.49 program (Ludwig, 

2001). 

Selection of garnet was based on the fact that this mineral achieved major element 

homogenization during peak M4 metamorphism within upper amphibolite facies conditions, with 

temperatures higher than 660°C, which are in the range of the closure temperature expected for garnets 

(Mezger et al., 1992). Locations of the samples selected, Fe-1, Fe-3 and Fe-5, are in Fig. 2, and the 

isotopic data in Table 5. Although strongly poikiloblastic garnets were avoided, within the separated 

grain size (88 to 125 �m) it was not possible to avoid tiny inclusions, mainly of magnetite, apatite and 

clinoamphibole. The optical assessment of impurities in garnet concentrates were less than 0.5% for 

Fe-5, about 1% for Fe-3 and 2% for Fe-1. 

Nd contents of garnets are rather high, with 6.1 ppm (Fe-5), 6.8 ppm (Fe-3) and 14.1 ppm (Fe-

1), which yield 147Sm/144Nd ratios of only 0.18, 0.20 and 0.15 respectively, with only little difference 

from their whole rock ratios (0.14, 0.13 and 0.12 respectively). These contents and ratios suggest that 

they do not represent primary garnet compositions but are most probably influenced by inclusions 

containing high REE, as shown by Thöni (2003), especially in the case of Fe-1. Regression lines of 

two-point isochrones define the following scattered dates: sample Fe-1 121 ± 100 Ma, sample Fe-3 

390 ± 33 Ma, and sample Fe-5 448 ± 230 Ma (Fig. 14a to c). 

All these dates are younger than the 475-457 Ma time span previously defined for the long-

lasting M4 metamorphic event that affected the paragneisses, orthogneisses and amphibolites of the 
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area (González et al., 2004; Sato et al., 2005, 2006). The oldest date of 448 Ma corresponds to the 

garnet separates least affected by inclusions and is close to the ~445 Ma determined by Ar-Ar and Sm-

Nd methods and regarded as an early stage of retrogressive M5 metamorphism related to ductile shear 

zones (González et al., 2004). Isotopic equilibration between garnet and inclusions might have been 

complete during M4 metamorphism, and we may tentatively interpret this date as representing some 

post-peak, late stage of the M4 event or an early stage of the M5 event. 

The Early Devonian date of 390 Ma (sample Fe-3) also has two possible interpretations: (1) 

Age of retrogressive metamorphism M5 and ductile shearing D5 related to the post-orogenic stage of 

the Famatinian orogeny, whose activity outlasted the emplacement of the post-orogenic Barroso 

pluton. Available K-Ar, Ar-Ar and Sm-Nd M5-D5 dates between 414 and 351 Ma for this stage (Sato 

et al., 2003b) support this interpretation. (2) Reset age produced by contact metamorphism associated 

with emplacement of the Barroso pluton (post-M4-D4 and pre- to syn-M5-D5). This pluton together 

with the El Molle pluton form a sub-circular intrusion of about 9 km by 8 km, while the iron formation 

and intercalating gneisses and amphibolites crop out as roof pendants within the Barroso pluton. Since 

417 Ma is the U-Pb crystallization age of the El Molle pluton (Sato et al., 2003b, González et al., 

2006), the date of 390 Ma may represent a cooling age after the thermal input. 

The remaining date of 121 Ma defined by sample Fe-1 is considered as a spurious age, 

without geological meaning, because by the Late Paleozoic all tectono-thermal events had already 

ceased in the Sierras Pampeanas basement and the analyzed sample was the most inclusion-affected 

one. 

Therefore, from the Sm-Nd dating, only vague constraints of post-peak-M4 events can be 

derived. Despite this, and assuming that the Sm-Nd isotopic system remained undisturbed since the 

deposition of the BIF, we can draw some additional information from the data. 

TDM model ages were calculated according to DePaolo et al. (1991) for the whole-rock 

samples of ferruginous rocks, and they yielded 1670 Ma, 1854 Ma and 1939 Ma (samples Fe-1, Fe-3 

and Fe-5 respectively, Table 5). ξNd(t) was calculated assuming a sedimentation age of the iron 

formation of 1502 Ma, on the basis of a Sm-Nd whole rock isochron of 1502 ± 95 Ma obtained from 
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mafic to ultramafic lavas intercalated with ferruginous rocks within the same sequence of the Nogolí 

Metamorphic Complex (Sato et al., 2001a). The calculated ξNd(1502) values are +3.8, +1.5 and +0.5. 

These positive, mantle-like ξNd(1502) values are around the range of those mafic to ultramafic 

rocks of Nogolí Metamorphic Complex, which are between +2.64 and +3.68 (Tables 5 and 6). The 

TDM model ages obtained are also similar to the 1679 to 1765 Ma range for the mafic to ultramafic 

rocks (Tables 5 and 6), with slightly higher values. However, an additional comparison of 147Sm/143Nd 

ratios indicates that the 0.124 to 0.136 range for the ferruginous rocks are lower and more fractionated 

than the near chondritic range of 0.158 to 0.193 for the mafic to ultramafic rocks. 

10. Origin and tectonic setting of the banded iron formation 

The lamination and banding of the iron formation reflect their primary compositional layering S0 and 

therefore the origin of their protolith must be related mainly to chemical precipitation of hydrogenous 

sediments from seawater in oceanic environments. Predominance of magnetite allows the 

classification of the BIF as oxide facies iron formation. Alternating iron-rich (Type 1) and silica-rich 

(Type 2) laminae and bands would reflect cyclic changes in seawater chemical parameters, such as 

pH, Eh and ion concentrations. 

The remarkable consistency of the bulk compositions suggests that despite the high-grade 

metamorphism and poly-deformational history of the San Luis BIF, some primary depositional 

features and major oxide, trace and rare earth element compositions of their protolith are basically 

preserved, and therefore could represent the primary composition of hydrogenous sediments. Klein 

(1973) compared several chemical analyses of iron formation affected by low- to high-grade 

metamorphism and concluded that apart from the loss of volatiles, particularly CO2 and H2O, major 

element oxide concentrations do not appear significantly affected by regional metamorphism. Effects 

of metamorphism on the REE distribution in iron formation have been found to be only of minor 

importance in most cases (Bau and Dulski, 1996) or directly the REE were also directly considered 

immobile (Bingen et al., 1996). 

Major and minor oxide and inter-element ratios in iron formation are complex because 

chemical precipitates commonly reflect contributions of several sources, including seawater, volcanic 

and clastic material and hydrothermal fluids (Hatton and Davidson, 2004 and references therein). In 
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the case of the San Luis banded iron formation, the geochemical signature of the primary chemical 

precipitates represents mixtures of seawater and hydrothermal fluids, with significant participation of 

mafic-ultramafic volcanic and clastic materials. 

The seawater inheritance can be recognized from the almost flat REE pattern (La/YbSN = 0.67-

1.04), with a slight LREE depletion and HREE enrichment, negative Ce plus positive Y anomalies. 

The hydrothermal imprint can be traced through enrichment of Si, Fe, P, Ca, Mg, metals (V, Zn, Co, 

Cu, Au, among others), in addition to a positive Eu anomaly. The temperature of these hydrothermal 

fluids is difficult to assess. However, some inference can be made using EuCN values (subscript “CN” 

refers to chondrite normalized after Nakamura, 1974). According to Bau and Dulski (1996, 1999), 

values of EuCN ≈ 1 characterize low temperature hydrothermal fluids (< 250°C), whereas highly 

pronounced positive EuCN anomalies are typical of high temperature (> 350°C) present day black 

smoker solutions. These chemical features of EuCN are not ubiquitous in the ferruginous rocks treated 

here, and therefore on the basis of EuCN > 1 [(Eu/Eu*)CN = 1.33-2.85, Table 4] we suggest a range of 

moderate temperature variable between 250° and 350°C for the hydrothermal fluids that contributed to 

the bulk chemistry of the San Luis BIF. 

Al-Ti (and other cations such us Zr, Hf, Sc ± Si) might come from contemporaneous volcanic 

and clastic protoliths of the Nogolí Metamorphic Complex. This is illustrated in the Fe/Ti – 

Al/(Al+Fe+Mn) diagram (Fig. 11b) by a “mixing curve”, upon which the ferruginous rocks are plotted 

towards the hydrothermal-rich side, while the paragneisses and micaschists from the same complex are 

on the clastic side, and the meta-komatiites, komatiitc meta-basalts and high-Fe tholeiite meta-basalts 

are midway between the two extremes. The mafic to ultramafic rocks appear to be the main 

contaminant for the pure chemical sediment of the iron formation, whereas felsic volcanic rocks and 

pelites-psammites appear as less important. 

Precambrian iron formations around the world free from clastic contaminators display similar 

REE signatures, with (Sm/Yb)SN < 1, (Eu/Sm)SN > 1 and (La/Sm)CN > 1 (Bau and Dulski, 1996 and 

references therein). In the studied ferruginous rocks, the ranges of these ratios are (Sm/Yb)SN 0.67 - 

0.89, (Eu/Sm)SN 1.24 - 2.34, and (La/Sm)CN 0.62 – 0.72 (Table 4). Although the ratio (La/Sm)CN < 1 

may indicate volcanic and clastic contamination, the first two ratios are in good agreement with those 
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from iron formations around the world, suggesting that the volcanic-clastic contribution could have 

been only of relative importance. 

The genetic relationship between ferruginous and mafic-ultramafic volcanic rocks is further 

corroborated by Sm and Nd isotopic data. The interaction between solutions related to chemical 

precipitation (mixtures of seawater and hydrothermal fluids) and mafic-ultramafic volcanism can be 

traced by the mantle-like positive ξNd (t) of ferruginous rocks (see section 9). Many authors, such as 

Jacobsen and Pimentel-Klose (1988), Alibert and McCulloch (1993), Bau et al. (1997) and Frei et al. 

(1999), have modeled the influence of hydrothermal circulation of seawater through mid-ocean ridge 

basalts during the formation of banded iron formation on the basis of Nd isotopic characterization. 

Following their arguments, we suggest that although the seawater from which the San Luis BIF 

precipitated shows clear hydrothermal influence from the mafic to ultramafic rocks (positive ξNd 

values and the similar TDM ages), a pre-existing continental component cannot be denied because of 

the fractionated 147Sm/143Nd ratios and some very slightly older TDM ages. Both components are 

consistent with those detected through the major, trace and whole REE analyses. 

Small size, scarce distribution, association with volcanic rocks, geochemical signature, some 

metal contents (Cu, V, Zn, Co, among others), and Sm-Nd isotopic data characterize the San Luis BIF 

as an Algoma Type iron formation. The Sc content is lower than that of typical Algoma type and closer 

to that of Lake Superior type iron formation, in which clastic sedimentary rocks predominate over 

volcanic successions (Fig. 12h). Therefore, this situation favors the idea of contamination by volcanic 

and clastic components, as previously stated by major elements. 

Island arc or back arc regions are the possible tectonic setting of the banded iron formation, 

where they are intercalated with mafic to ultramafic rocks. This interpretation is supported by: (1) 

Major, trace and rare earth element composition of the mafic to ultramafic rocks, consistent with 

island arc tholeiites or MORB-like basalts of spreading ridge centers (González et al., 2002; González, 

2003). (2) The main contaminant of the primary chemical hydrogenous sediment is mafic to ultramafic 

volcanism, with minor contributions of felsic volcanism, pelites and psammites. The significant 

importance of the volcanic contribution leads to the interpretation that the banded iron formation was 

deposited in a volcanic island arc setting or close to it. (3) Mantle-like positive ξNd (t) values of the 
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mafic-ultramafic rocks ranging between +2.64 and +3.68 (Table 6) are consistent with a primitive 

island arc or back arc origin (Dickin, 1995), and (4) Mantle-like positive ξNd (t) and Paleoproterozoic 

TDM model ages of ferruginous rocks, as a result of hydrothermal circulation associated with mafic to 

ultramafic volcanic rocks (Jacobsen and Pimentel-Klose (1988). 

11. Temporal constraints of the BIF and evolution of the Nogolí Metamorphic Complex 

Banded iron formations are usually void of suitable minerals to apply direct isotopic datings (e.g., 

zircon or monazite for U-Pb method) and for this reason many of them are ambiguous in age. For 

several BIFs, a synchronous age with associated volcanic rocks has been assumed (James, 1983; 

Chemale et al., 1994, among others). The sedimentation of the San Luis banded iron formation might 

be as old as Mesoproterozoic (~1.5 Ga), on the basis of a Sm-Nd whole rock isochron of coeval mafic 

to ultramafic volcanism (Sato et al., 2001a). 

If the Mesoproterozoic age of the banded iron formation and mafic to ultramafic meta-

volcanic rocks was correct, then it would be reasonable to assume a Precambrian age for the whole 

Nogolí Metamorphic Complex. Further Precambrian age constraints are: (1) A U-Pb zircon 

crystallization age of 507 Ma from the La Escalerilla pluton (von Gosen et al., 2002), which intrudes a 

thin strip of the complex to the southeast of our study area. (2) Conventional and SHRIMP U-Pb 

zircon data from meta-komatiite and komatiitic metabasalt. Based on these data, Sato et al. (2006) 

suggested a primary magmatic crystallization age older than 516 Ma for the extrusion of komatiitic to 

basaltic lava flows, and (3) The preliminary U-Pb zircon age of 554 ± 5 Ma for a feldspar biotite 

gneiss from the complex, interpreted as the crystallization age of the gneiss (Vujovich and Ostera, 

2003). These U-Pb ages suggest a pre-Early Cambrian timing of sedimentation, metamorphism and 

deformation (M1-D1 to M3-D3 events) for the relict pre-Famatinian geological history of the Nogolí 

Metamorphic Complex. 

The Sm-Nd dating of ferruginous rocks were not appropriate to constrain the timing of peak 

M4 tectono-metamorphic conditions, and it gave only imprecise indications for the post-M4 events. 

However, it is reasonable to assume an Early to Middle Ordovician age (between 475 and 457 Ma) as 

the timing of regional high-grade metamorphism M4 and the coeval D4 deformation, according to the 

ages presented by González et al. (2002, 2004) and Sato et al. (2005, 2006) from paragneisses, 
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orthogneisses and amphibolites intercalated in the Nogolí Metamorphic Complex. The 448 Ma and 

390 Ma Sm-Nd isochron ages obtained in this contribution from ferruginous rocks allow a broad 

estimation of the M5 event as post-457 Ma, within Silurian to Devonian times. 

The association of banded iron formation with komatiitic volcanic rocks and Ba-Ca exhalites 

described in González et al. (2005) make up a peculiar rock group within the Nogolí Metamorphic 

Complex of the western Sierras de San Luis. Up to now, no other comparable rocks or association 

have been reported in the surrounding area of the Sierra de San Luis or the entire Eastern Sierras 

Pampeanas. They are protoliths typically found in supracrustal successions of greenstone belts, in 

Precambrian cratonic shields from almost all continents (Condie, 1997; Huston and Logan, 2004). 

Therefore, it appears reasonable to consider the Nogoli Metamorphic Complex as having been part of 

a Precambrian greenstone belt, later affected by polyphase deformation and regional high-grade 

metamorphism during Early Paleozoic Pampean and Famatinian orogenies. The ca. 1.5 Ga age of the 

banded iron formation and mafic to ultramafic volcanic rocks may suggest a Mesoproterozoic timing 

of formation for this greenstone belt in Eastern Sierras Pampeanas. 

Greenstone belts can be equated to a terrane, and more specifically to an oceanic terrane 

(Condie, 1997). Following this idea, we suggest that the Nogolí Metamorphic Complex might 

represent a small piece (island arc-back arc setting?) of a larger terrane, such as the previously 

envisaged Pampean- (Ramos, 1988) or Pampia Terrane (Ramos and Vujovich, 1993a). This terrane 

was originally proposed as comprising Meso- to Neoproterozoic basement rocks, partially overlapping 

the blocks of the Eastern Sierras Pampeanas of Argentina (Ramos and Vujovich, 1993b). 

It is noteworthy that island arc to back arc settings were formerly proposed by Ramos (1991) 

for all the mafic-ultramafic exposures of the Sierras de San Luis, including the meta-volcanic rocks of 

the Nogolí Metamorphic Complex. At least two island arcs were considered by Ramos (1991) as 

developing during Meso- to Neoproterozoic times, and later colliding against the western margin of 

the Río de la Plata craton. This would suggest that Pampean Terrane could represent a protracted 

island arc-back arc system developed to the west of the Río de la Plata craton, as part of the Western 

Gondwana supercontinent (see, e.g. Unrug, 1996; Brito Neves et al., 1999). 
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We are carrying out new geochronological, geochemical and isotopic studies on several 

protoliths of the Nogolí Metamorphic Complex to better define their age, whole rock compositional 

features, extension in the Sierras de San Luis and correlation with other basement blocks from Eastern 

Sierras Pampeanas. All these data will provide not only more accurate evidences for the Precambrian 

evolution of the Nogolí Metamorphic Complex, but also supply a better understanding of their 

geotectonic context as part of the Pampean Terrane in this segment of the western Gondwana margin. 

12. Conclusions 

The petrologic, geochemical and isotopic data of the banded iron formation from the Nogolí 

Metamorphic Complex of San Luis, combined with structural analyses, allow the delineation of the 

following conclusions: 

(1) The origin of the oxide facies Algoma Type banded iron formation is related to primary chemical 

precipitation of hydrogenous sediments from seawater in oceanic environments. The geochemical 

signature of the hydrogenous sediments represents mixtures of seawater, hydrothermal fluids and 

mafic-ultramafic volcanic sources, with a minor contribution of felsic volcanism and clastic 

materials. The most likely setting in which the banded iron formation was deposited is an island 

arc to back arc region, influenced by mafic to ultramafic volcanic flows. 

(2) The banded iron formation and mafic–ultramafic volcanic rocks share similar mantle-like positive 

ξNd (t) values and Paleoproterozoic TDM model ages. These rocks have synchronous timing of 

formation, which may be as old as Mesoproterozoic (ca. 1.5 Ga). 

(3) At least five stages of deformation under medium- to high-grade regional metamorphism affected 

the banded iron formation. The pre-Famatinian tectonic and metamorphic evolution (D1-M1 to D3-

M3) can be related to the Early Cambrian Pampean orogeny or even older cycles (e.g. Brasiliano-

Pan African orogeny, von Gosen et al., 2002), whereas the Famatinian D4-M4 and D5-M5 events 

can be respectively ascribed to Early to Middle Ordovician and Devonian times. 

(4) The Nogolí Metamorphic Complex is a volcano-dominated supracrustal succession, in which the 

intercalating ferruginous-, mafic to ultramafic volcanic rocks and exhalites are unique protoliths in 

western Sierras de San Luis. This rock association suggests a greenstone type model for the 

genesis of the whole Nogolí Metamorphic Complex. 
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(5) The Nogolí Metamorphic Complex is interpreted as part of the large Meso- to Neoproterozoic 

Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. After its deposition, the 

polyphase deformation and regional metamorphism constrained to the Early Paleozoic might have 

taken place in relation to complex terrane amalgamation processes along the western Gondwana 

margin. 
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Figure Captions 

Fig. 1. Simplified geological map of the banded iron formation from the Nogolí Metamorphic 

Complex of western Sierra de San Luis (Nogolí area), Eastern Sierras Pampeanas of Argentina 

(adapted after González, 2003). 

Fig. 2. Detailed geological map of the largest bed of the banded iron formation, showing location of 

samples cited in the text. See Fig. 1 for location of map. 

Fig. 3. (a) to (d). Polished hand specimen of the banded iron formation showing the fine- to medium-

grained laminae and bands composed of variable amounts of iron oxides (mainly magnetite), minor 

hydroxides, iron and magnesium silicates, and quartz. The lamination and banding reflect the primary 

layering S0 of the protolith. 

Fig. 4. Lower hemisphere, equal area stereographic projections of fabric elements from the banded 

iron formation and its country rocks. 

Fig. 5. Photomicrographs from thin sections showing the mineralogy and textural arrangement of 

seven types of laminae-bands from the banded iron formation. (a). Type 1: magnetite-rich laminae-

bands. (b). Type 2: quartz-rich laminae-bands. (c). Type 3: poikiloblastic garnet-rich laminae-bands. 

(d). Type 4: details of garnets with magnetite inclusions arranged in concentric shells. (e). Type 5: 

massive garnet aggregates. (f). Type 6: polygonal granoblastic garnet with intercalations of apatite 

lenses (this last mineral is not shown here). (g). Type 6: details of apatite lenses. (h). Type 7: 

amphibole-rich laminae-bands. Mineral abbreviations after Kretz (1983). Transmitted light, parallel 

nicols. See details discussed in text. 
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Fig. 6. Compositional diagrams of (a) amphibole (after Leake et al. 1997) and (b) garnets, performed 

with selected electron microprobe analyses given in Table 2 (sample Fe-5) and unpublished data 

(samples NG-29 and Fe-1) from González (2003). 

Fig. 7. Photomicrographs from thin sections showing mineral assemblages and microfabrics of the 

banded iron formation. (a) and (b). Greenschist facies M1 assemblage. (c). Amphibolite facies M2 

assemblage. (d) and (e). Amphibolite facies M4 garnets. (f). Apatite and garnet showing interlobate to 

amoeboid grain boundaries. (g) and (h). Relict grains of greenalite - iron oxide/hydroxide in 

magnetite. Mineral abbreviations after Kretz (1983). Transmitted light, parallel nicols (only (b) with 

crossed nicols). See details discussed in text. 

Fig. 8. Photomicrographs from thin sections showing some details of mineral assemblages and 

microfabrics of the banded iron formation. (a). Peak M4-D4 assemblage with garnet. (b) and (c). 

Retrograde greenschist facies M5 assemblage with epidote. (d). Contact metamorphism. Mineral 

abbreviations after Kretz (1983). Transmitted light, parallel nicols. 

Fig. 9. Photomicrographs from thin sections. (a) and (c). Complex inclusion trails of quartz, apatite 

and magnetite in large intertectonic (post D1-2 and pre- to syn-D4) garnet poikiloblasts. (b) and (d). 

Line drawing from pictures (a) and (c) respectively. (e). Possible polygonal arcs of recrystallized 

quartz + magnetite + cummingtonite. (f). Isoclinal F1 micro-fold of primary lamination S0. (g). Micro-

boudin in granoblastic garnet aggregate. Mineral abbreviations after Kretz (1983). Transmitted light, 

parallel nicols in (a), (c), (f) and (g). Crossed nicols in (e). 

Fig. 10. P-T diagram of the San Luis banded iron formation based on mineral assemblages, textural 

analyses, and electron probe micro-analytical data of amphiboles and garnets. The broadly estimated 

P-T conditions show a clockwise metamorphic evolution with three distinctive trajectories: (1) Relict 

prograde M1-M3 segment (subgreenschist facies at M1 to amphibolite facies at M3). (2) Peak at high 

amphibolite-low granulite facies during M4. (3) Retrograde counterpart of M4, stabilized at greenschist 

facies during M5. 

Fig. 11. (a). Diagram after Wonder et al. (1988) to illustrate the primary chemical precipitation of the 

San Luis BIF from seawater, based on Al2O3-SiO2 contents. (b). Fe/Ti – Al/(Al+Fe+Mn) 

discrimination diagram (after Bostrom, 1973) showing the hydrothermal input and volcanic-clastic 
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components in the hydrogenous sediment. The well-known hydrothermal chemical sediment of the 

Soldier Cap Group iron formations (after Hatton and Davidson, 2004) is plotted here (grey field) to 

show the hydrothermal input into the San Luis BIF. NMC=Nogolí Metamorphic Complex. 

Fig. 12. (a) to (g). Inter-element scatter diagrams from San Luis banded iron formation used as clues 

suggesting both, the hydrothermal fluids input and the influence of volcanic and clastic components 

into the primary chemical sediment. Arrows indicate the positive inter-element correlations. (h). Some 

metal contents (ppm) in San Luis banded iron formation (black squares) compared with those from 

classical Algoma- (white squares) and Lake Superior Type trends (white diamonds). 

Fig. 13. Shale-normalized REE plots for the San Luis banded iron formation. Normalized to NASC 

(North American Shale Composite) after Gromet et al. (1984). 

Fig. 14. Sm-Nd whole rock + garnet isochron diagrams of three samples from the banded iron 

formation. See Fig. 2 for samples locations. 
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Tables 

Table 1. Sequence of deformation and metamorphic phases in the Nogolí Metamorphic Complex. Adapted after 
González et al. (2004). 
 

 DEFORMATION METAMORPHISM AGE 

D5: ductile shear zones, mylonitic 
foliation S5 and S-C fabric. 

M5: local retrograde amphibolite to 
greenschist facies. 445-364 Ma 

   
PENETRATIVE 
NNE-SSW TO 
NE-SW 
FAMATINIAN 
FABRICS 

D4: foliation S4, stretching plus mineral 
lineation L4 and tight to isoclinal folds 
F4. 

M4: prograde regional medium P 
(Barrovian type) / high T, transitional 
between high amphibolite and granulite 
facies. (ca. 8 kb and 636° - 820°C). 

475-457 Ma 

D3: mylonitic foliation S3, stretching 
lineation L3, injection of second 
generation of granitic veins 
accompanied by syn-tectonic intrusions 
of granitoid lenses. Final stage of open 
folds F3. 

M3: peak P-T conditions at high 
amphibolite facies (<700°C) 

  
cm-thick ductile shear zones associated 
with mylonitic foliation S3. Injection of 
second generation of granitic veins. 

 

  
D2: foliation S2, stretching lineation L2 
and tight folds F2. 

M2: middle amphibolite facies. 
(3 - 5 kb and 525° - 640°C) 

  

RELICT W-E TO 
NW-SE PRE-
FAMATINIAN 
FABRICS 

D1: injection of first generation of 
quartz-plagioclase (± biotite) veins, 
growth of muscovite flakes, axial plane 
foliation S1 and isoclinal folds F1. 

M1: prograde regional metamorphism 
from at least middle greenschist facies. 
(2 - 4 kb and 450° - 575°C) 

Pre-507 Ma 

Pelitic and psammitic siliciclastic and mafic-ultramafic to felsic volcanic protoliths with interlayered 
oxide facies Algoma type iron formation and Ba-bearing exhalites. ca. 1500 Ma 
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Table 2. Selected electron probe microanalyses of cummingtonites and garnets from sample Fe-5. Mg# 
= Mg/Mg + Fe2+ and Fe# = 1.0-Mg#. XFe = Fe2+ / Fe2+ + Mg. i. rim: inner rim. 

 

 cummingtonites   garnets 
% 1 2 3 4 5   crystal 1 crystal 2 
SiO2 52.110 51.355 51.339 51.662 51.958  % i. rim core rim i.rim core rim 
TiO2 0.000 0.000 0.011 0.048 0.000  SiO2 36.527 36.563 36.809 36.741 36.748 36.858 
Al2O3 0.678 0.428 0.737 0.521 0.397  TiO2 0.000 0.015 0.000 0.001 0.026 0.026 
FeO 27.802 27.104 27.373 27.521 26.346  Al2O3 20.845 20.887 20.835 20.901 20.758 21.375 
MnO 0.832 0.775 0.813 0.801 0.795  FeO 33.721 33.449 33.642 33.699 33.888 34.228 
MgO 15.769 15.730 15.638 15.579 16.284  MnO 5.539 5.485 5.404 5.426 5.458 5.420 
CaO 0.091 0.027 0.062 0.041 0.028  MgO 2.762 2.775 2.775 2.726 2.862 2.616 
Na2O 0.020 0.008 0.013 0.009 0.018  CaO 1.162 1.283 1.142 1.031 0.975 0.613 
K2O 0.005 0.006 0.000 0.000 0.017  Na2O 0.000 0.010 0.029 0.028 0.023 0.007 
F 0.000 0.004 0.053 0.020 0.000  K2O 0.000 0.003 0.000 0.005 0.000 0.000 
Cl 0.000 0.003 0.012 0.000 0.000  Total 100.56 100.47 100.64 100.56 100.74 101.14 
Total 97.31 95.44 96.05 96.20 95.84  

cations per 23 oxygens  
cations per 24 oxygens 

Si 7.8335 7.8598 7.8214 7.8541 7.8798  Si 5.9169 5.9204 5.9469 5.9415 5.9378 5.9240 
AlIV 0.1201 0.0772 0.1324 0.0983 0.0709  AlIV 0.0831 0.0796 0.0531 0.0585 0.0622 0.0760 
Sum T 7.9536 7.9370 7.9538 7.9524 7.9507  Sum Z 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 
              
AlVI 0.0000 0.0000 0.0000 0.0000 0.0000  AlVI 3.8965 3.9065 3.9141 3.9250 3.8910 3.9730 
Ti 0.0000 0.0000 0.0012 0.0054 0.0000  Ti 0.0000 0.0018 0.0000 0.0001 0.0032 0.0032 
Mg 3.5339 3.5889 3.5516 3.5308 3.6817  Sum Y 3.8965 3.9083 3.9141 3.9251 3.8942 3.9762 
Fe2+ 1.4661 1.4111 1.4472 1.4638 1.3183         
Sum C 5.0000 5.0000 5.0000 5.0000 5.0000  Mg 0.6669 0.6699 0.6684 0.6572 0.6895 0.6268 
       Fe2+ 4.5682 4.5296 4.5454 4.5575 4.5793 4.6007 
Fe2+ 2.0290 2.0580 2.0404 2.0352 2.0232  Mn 0.7599 0.7523 0.7394 0.7433 0.7470 0.7378 
Mn 0.1060 0.1004 0.1032 0.1032 0.1022  Ca 0.2017 0.2226 0.1977 0.1787 0.1688 0.1056 
Ca 0.0146 0.0044 0.0102 0.0067 0.0046  Na 0.0000 0.0032 0.0091 0.0089 0.0071 0.0023 
Na 0.0000 0.0000 0.0000 0.0000 0.0000  K 0.0000 0.0006 0.0000 0.0010 0.0000 0.0000 
Sum B 2.1496 2.1628 2.1538 2.1451 2.1300  Sum X 6.1967 6.1782 6.1600 6.1466 6.1917 6.0732 
              
Na 0.0059 0.0024 0.0037 0.0026 0.0052  Total 16.093 16.086 16.074 16.071 16.085 16.049 
K 0.0009 0.0011 0.0000 0.0000 0.0032         
Sum A 0.0068 0.0035 0.0037 0.0026 0.0084  Pyrope 0.1076 0.1085 0.1087 0.1071 0.1115 0.1032 
       Alman 0.7372 0.7336 0.7390 0.7427 0.7404 0.7578 
Total 15.1100 15.1033 15.1113 15.1001 15.0891  Spess 0.1226 0.1218 0.1202 0.1211 0.1208 0.1215 
Mg# 0.5028 0.5085 0.5045 0.5023 0.5242  Gros 0.0325 0.0361 0.0321 0.0291 0.0273 0.0174 
Fe# 0.4972 0.4915 0.4955 0.4977 0.4758  XFe 0.8726 0.8711 0.8718 0.8739 0.8691 0.8801 

 



 

 

 

ACCEPTED MANUSCRIPT 

 

 49 

Table 3. Relationships between growth periods of metamorphic minerals and deformation phases. * 
Clinoamphibole2 = cummingtonite. 
 
 RELICT FABRICS PENETRATIVE FABRICS 

DEFORMATION 
PHASE 

D1 
 

schistosity 

D2 
axial plane 
foliation 

D3 
mylonitic 
foliation 

D4 
 

foliation 

emplacement 
of Barroso 

pluton 

D5 
mylonitic 
foliation 

METAMORPHISM 

M1 
 

greenschist 
facies 

M2 
 

middle 
amphibolite 

facies 

M3 
 

upper 
amphibolite 

facies 

M4 
 

upper 
amphibolite 

facies 

CONTACT 
 

hornblendic 
hornfels 
facies 

M5 
retrograde 

amphibolite 
to greenschist 

facies 
    QUARTZ 
    

  

   
BIOTITE 

   
    

  
CHLORITE        

   
GREENALITE 

 
   

  
? ?   Fe OXIDES-

HYDROXIDES ? ? 
   

  
    

MAGNETITE  
    

  

  Xalm 0.73 - 0.75 GARNET  
   

  

cu-gr1 cu-gr1 *XFe 0.47 – 0.49 
CLINOAMPHIBOLE  

   
  

    
APATITE 

    
  

?  
RUTILE   

?  
  

?  
PYRITE   

?  
  

 
EPIDOTE      

 
 

ANTHOPHYLLITE     
 

 

  
CROCIDOLITE     

  
  

MINNESOTAITE     
  
 

HEMATITE (martite)     
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Table 4. Major (wt.%), trace and REE (ppm, except Au in ppb) selected analyses from oxide facies iron 
formations of Nogolí Metamorphic Complex from western Sierra de San Luis. Fe# = FeO/FeO+MgO. Ca# = 
CaO/CaO+MgO. SN: shale normalized (NASC, Gromet et al., 1984). CN: chondrite normalized (Nakamura, 
1974). (Eu/Eu*)SN and (Ce/Ce*)SN calculated according Bau and Dulski (1996). * All Fe as Fe3+. (-) Not 
determined. 
 

 NG 29  FE-1  FE-3  FE-4  FE-5 

SiO2 37.02  31.26  41.94  30.83  33.87 
Al2O3 7.70  4.62  8.39  3.27  5.80 
Fe2O3* 43.56  51.61  42.70  54.50  49.51 
MnO 2.28  1.34  2.00  2.34  1.52 
MgO 1.06  0.57  0.73  1.80  3.15 
CaO 4.40  4.67  1.08  3.56  2.13 
Na2O 0.02  0.01  0.03  0.01  0.05 
K2O 0.06  0.17  0.07  0.01  0.01 
TiO2 0.28  0.14  0.28  0.13  0.17 
P2O5 2.81  2.76  2.20  2.98  2.44 
LOI 0.50  1.35  0.88  0.16  0.03 
Total 99.71  98.50  100.30  99.23  98.68 
          
V 288.00  227.41  202.19  232.80  167.87 
Cr 77.00  48.33  70.00  49.19  58.88 
Co 21.00  22.60  26.26  31.83  45.81 
Ni 38.00  20.00  20.00  20.00  20.00 
Cu 278.00  56.74  393.16  405.00  76.18 
Zn 139.00  30.00  55.03  214.64  297.11 
Ga 25.00  17.81  19.25  16.81  12.37 
Ge 6.50  7.54  5.39  6.80  6.92 
As 5.00  1.70  37.60  37.38  8.50 
Rb 3.00  3.31  1.88  1.00  1.00 
Sr 46.00  127.18  140.84  92.08  41.58 
Ba 125.00  73.55  70.84  43.84  61.73 
Y 36.20  30.49  42.23  45.77  23.95 
Zr 68.00  37.62  66.78  28.70  41.50 
Sc 6.00  4.50  9.00  3.00  6.00 
Nb 4.60  1.63  5.90  3.68  2.27 
Mo 4.00  2.66  6.46  2.58  2.91 
Ag 0.50  0.50  0.50  0.50  0.50 
Au (ppb) -  290.00  247.00  -  268.00 
In 3.20  1.24  1.21  3.55  2.36 
Sn 72.00  17.59  28.13  158.76  58.09 
Sb 0.20  0.45  0.10  0.32  0.20 
Cs 0.10  0.24  0.23  0.10  0.10 
La 21.40  24.61  31.30  24.14  15.85 
Ce 34.70  38.96  46.77  28.08  23.94 
Pr 4.71  4.60  8.04  5.11  3.06 
Nd 18.80  19.82  27.77  21.07  12.44 
Sm 4.03  4.06  5.83  4.65  2.63 
Eu 1.44  1.99  1.51  1.94  0.71 
Gd 4.40  3.98  6.40  5.55  2.77 
Tb 0.78  0.67  1.15  1.01  0.48 
Dy 4.79  4.07  7.24  6.25  2.97 
Ho 1.00  0.82  1.60  1.34  0.65 
Er 3.14  2.52  4.63  4.07  2.17 
Tm 0.49  0.37  0.68  0.60  0.32 
Yb 2.97  2.36  4.12  3.63  1.99 
Lu 0.45  0.35  0.63  0.51  0.30 
Hf 1.80  0.98  1.75  0.75  1.04 
Ta 1.40  1.31  1.59  0.68  1.09 
Tl 0.05  0.05  0.19  0.05  0.05 
Pb 5.00  5.00  17.99  23.56  5.00 
Bi 10.60  0.10  8.20  46.10  21.04 
Th 5.57  4.40  7.20  3.23  4.54 
U 3.69  2.75  5.40  2.70  1.81 
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Fe# 0.97  0.92  0.98  0.96  0.93 
Ca# 0.81  0.89  0.60  0.66  0.40 
(Eu/Eu*)SN 1.52  2.22  1.10  1.70  1.19 
(Ce/Ce*)SN 0.81  0.85  0.69  0.59  0.80 
(Sm/Yb)SN 0.70  0.89  0.74  0.67  0.69 
(Eu/Sm)SN 1.71  2.34  1.24  1.99  1.29 
(La/Yb)SN 0.72  1.04  0.76  0.67  0.80 
(La/Sm)CN 0.63  0.72  0.64  0.62  0.72 
(Eu/Eu*)CN 1.85  2.85  1.33  1.99  1.48 
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Table 5. Analytical results of Sm-Nd datings from the oxide facies iron formation. TDM model ages calculated according to 
the model of De Paolo et al. (1991). 
 

Sample Material Sm (ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Nd TDM (Ma) ξ Nd(1502) 
Fe-1 whole rock 4.461 21.595 0.1249 ± 0.0004 0.512127 ± 0.000010 1670 +3.8 
Fe-1 garnet 3.391 14.132 0.1451 ± 0.0006 0.512143 ± 0.000010   
Fe-3 whole rock 5.831 26.968 0.1307 ± 0.0004 0.512069 ± 0.000012 1854 +1.5 
Fe-3 garnet 2.331 6.883 0.2048 ± 0.0008 0.512258 ± 0.000011   
Fe-5 whole rock 2.763 12.297 0.1359 ± 0.0005 0.512064 ± 0.000014 1939 +0.5 
Fe-5 garnet 1.828 6.089 0.1815 ± 0.0007 0.512198 ± 0.000068   

 
Table 6. TDM model ages of mafic to ultramafic metavolcanic rocks of Nogolí Metamorphic Complex calculated according to 
the model of De Paolo et al. (1991). Original data were taken from Sato et al. (2001a). 
 

Sample Rock Type TDM (Ma) ξ Nd (1502) 
RQ-25-1 Komatiite 1679 + 3.68 
RQ-25-3 Amphibolite 1731 + 3.06 
SL-16-A Amphibolite 1710 + 3.31 
RQ-16-1 Amphibolite 1718 + 3.22 
PN-22 Komatiite 1765 + 2.64 
VQ-101-2 Amphibolite 1733 + 3.03 
RQ-7-2 Amphibolite 1717 + 3.24 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 

 


