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Abstract
1.	 Increasingly,	often	ecologist	collects	data	with	nonlinear	trends,	heterogeneous	
variances,	 temporal	 correlation,	 and	hierarchical	 structure.	Nonlinear	mixed‐ef‐
fects	models	offer	a	flexible	approach	to	such	data,	but	the	estimation	and	inter‐
pretation	of	these	models	present	challenges,	partly	associated	with	the	lack	of	
worked	examples	in	the	ecological	literature.

2.	 We	illustrate	the	nonlinear	mixed‐effects	modeling	approach	using	temporal	dy‐
namics	of	vegetation	moisture	with	field	data	from	northwestern	Patagonia.	This	
is	a	Mediterranean‐type	climate	region	where	modeling	temporal	changes	in	live	
fuel	moisture	content	are	conceptually	relevant	(ecological	theory)	and	have	prac‐
tical	 implications	 (fire	management).	We	used	this	approach	to	answer	whether	
moisture	 dynamics	 varies	 among	 functional	 groups	 and	 aridity	 conditions,	 and	
compared	 it	with	 other	 simpler	 statistical	models.	 The	modeling	 process	 is	 set	
out	“step‐by‐step”:	We	start	translating	the	ideas	about	the	system	dynamics	to	
a	statistical	model,	which	is	made	increasingly	complex	in	order	to	include	differ‐
ent	sources	of	variability	and	correlation	structures.	We	provide	guidelines	and	R	
scripts	(including	a	new	self‐starting	function)	that	make	data	analyses	reproduc‐
ible.	We	also	explain	how	to	extract	the	parameter	estimates	from	the	R	output.

3.	 Our	modeling	approach	suggests	moisture	dynamic	to	vary	between	grasses	and	
shrubs,	 and	 between	 grasses	 facing	 different	 aridity	 conditions.	 Compared	 to	
more	classical	models,	the	nonlinear	mixed‐effects	model	showed	greater	good‐
ness	of	fit	and	met	statistical	assumptions.	While	the	mixed‐effects	approach	ac‐
counts	for	spatial	nesting,	temporal	dependence,	and	variance	heterogeneity;	the	
nonlinear	function	allowed	to	model	the	seasonal	pattern.

4.	 Parameters	 of	 the	 nonlinear	mixed‐effects	model	 reflected	 relevant	 ecological	
processes.	From	an	applied	perspective,	the	model	could	forecast	the	time	when	
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1  | INTRODUC TION

Classic	statistical	approaches	(e.g.,	linear	regression	or	ANOVA)	have	
assumptions	that	often	are	not	met	by	ecological	data,	such	as	when	
variances	change	with	predictors	or	responses	are	nonlinear	(Bolker	
et	al.,	2013;	Zuur,	Ieno,	Walker,	Saveliev,	&	Smith,	2009).	Mechanistic	
or	semimechanistic	descriptions	often	benefit	from	nonlinear	func‐
tions	(Bolker,	2008)	because	their	parameters	have	an	ecologically	
meaningful	 interpretation	 (Miguez,	 Archontoulis,	 &	 Dokoohaki,	
2017),	helping	to	clarify	system	processes.	Furthermore,	ecological	
processes	operate	at	multiple	spatio‐temporal	scales	 (Peters	et	al.,	
2008)	producing	data	sets	with	hierarchical	structures	better	han‐
dled	by	the	use	of	random	effects	 (Nakagawa	&	Schielzeth,	2013).	
Therefore,	nonlinear	mixed‐effects	models	can	expand	capabilities	
by	 including	 nonlinear	 regression	 and	 fixed	 and	 random	 effects	
(Lindstrom	&	Bates,	1990).

While	 nonlinear	mixed‐effects	models	 are	 not	 novel	 (Davidian	
&	Giltinan,	2003),	they	still	present	several	challenges	to	ecologists	
without	 formal	 training	 in	 statistics	 (Bolker	 et	 al.,	 2013).	 Some	 of	
these	 challenges	 arise	 from	 (a)	 the	 need	 to	 choose	 a	 suitable	 re‐
sponse	function;	there	are	many	candidate	functions	and	the	variety	
can	be	overwhelming	(Miguez	et	al.,	2017);	(b)	patterns	of	correlation	
and	variance	usually	occurs	when	experimental	units	(e.g.,	individu‐
als,	plots)	are	measured	more	than	once	(Davidian	&	Giltinan,	2003);	
(c)	 parameter	 estimation	 has	 no	 analytical	 solution	 and	 iterative	
methods	must	be	applied	(Bates	&	Watts,	2007)	often	leading	to	ad‐
ditional	hurdles	(e.g.,	provide	reasonable	starting	values	and	model	
convergence;	Bolker	et	 al.,	 2013).	While	 the	 last	one	 represents	a	
technical	challenge,	on	the	firsts	two	lies	part	of	the	answer	to	when	
or	why	to	apply	this	complex	modeling	approach	(Figure	1).

Regarding	the	first	challenge,	ecologists	seek	to	match	patterns	
to	 ecological	 theory	 or	 simply	models	 to	 data	 (Richards,	 2005).	 A	
large	number	of	 ecological	 process	have	nonlinear	 responses,	 and	
many	deterministic	 functions	have	been	proposed	 (a	 list	of	 typical	
examples	are	found	in	Table	1).	For	instance,	asymptotic	patterns	are	
commonly	observed	in	ecology	and	could	be	described	using	ratio‐
nal	functions	(Bolker,	2008).	One	well‐known	example	comes	from	
predator–prey	 dynamics	 (Kalinkat	 et	 al.,	 2013).	 Ecological	 theory	
predicts	that	per	capita	consumption	rate	of	predators	(y)	varies	with	
prey	density	 (x)	 according	 to	predator's	 capture	 rate	 and	handling	
time	(Rall	et	al.,	2012).	When	capture	rate	(a)	and	handling	time	(b)	
are	not	supposed	to	vary	with	density,	the	pattern	is	called	“type‐II	
functional	response”	(Holling,	1959)	and	mathematically	formalized	

as	y = ax/(1	+	abx).	 In	addition,	 it	 is	possible	 to	 reparameterize	 re‐
sponse	 functions	according	 to	ecological	questions	 (Bolker,	2008).	
For	 example,	 in	 the	 type‐II	 functional	 response	 as	 presented,	 the	
parameters	to	estimate	are	a,	a	measure	of	hunting	efficiency	or	suc‐
cessful	search,	and	b,	which	 indicates	 the	time	used	to	kill,	 ingest,	
and	 digest	 a	 prey	 (Jeschke,	 Kopp,	&	 Tollrian,	 2002).	However,	we	
can	rewrite	a	as	1/a′	and	b	as	1/a′b′	and	re‐express	the	function	as	
y = a′x/(b′	+	x).	Now,	a′	represents	the	maximum	per	capita	consump‐
tion	rate	reached	when	density	is	large	(the	asymptote	of	the	func‐
tion)	and	b′	is	the	density	(x‐value)	at	the	half‐maximum	consumption	
rate.	 In	 fact,	 several	 strategies	 to	 address	 nonlinear	 patterns	 are	
widely	used	in	ecology	(e.g.,	transformations,	polynomials,	“splines”)	
but	the	main	argument	against	those	is	that	nonlinear	models	have	
meaningful	parameters	(other	arguments	are	lack	of	parsimony	and	
nonvalidity	beyond	range	of	fit;	Pinheiro	&	Bates,	2000).

Regarding	the	second	challenge,	when	nonlinear	ecological	pat‐
terns	are,	as	commonly	occurs	 in	ecology,	observed	from	grouped	
data	 (e.g.,	 observations	 spatially	 clustered,	 subjects	 measured	
more	 than	 once,	 individuals	 from	 the	 same	 family,	 species	 with	
phylogenetic	 relationships;	 Barnett,	 Koper,	 Dobson,	 Schmiegelow,	
&	 Manseau,	 2010),	 mixed‐effects	 approaches	 allow	 correlations	
within‐group	 observations	 to	 be	 considered	 and	modeling	 of	 het‐
eroscedasticity	(Davidian	&	Giltinan,	2003).	For	example,	we	might	
be	interested	in	studying	regional	fruit	production	and	designing	an	
experiment	where	size	of	 individual	 fruits	was	 recorded	over	 time	
(growth	is	usually	sigmoidal),	allowing	for	fruits	to	be	nested	in	trees,	
trees	in	orchards,	and	orchards	in	regions.	In	such	an	experiment,	a	
nonlinear	mixed‐effects	model	would	allow	us	to	fit	temporal	curves	
to	each	fruit	and	to	evaluate	whether	(some	parameter	of)	the	curves	
depend	on	fruit	location,	tree	species,	orchard	management,	or	cli‐
mate,	all	of	these	being	incorporated	in	the	model	as	predictors	at	
different	 clustering	 levels	 (West,	Welch,	 &	 Galeki,	 2007).	 Indeed,	
one	 of	 the	 most	 intuitive	 applications	 of	 nonlinear	 mixed‐effects	
models	 is	 to	describe	 temporal	within‐individual	 responses	and	 to	
identify	factors	determining	variability	among	individual	responses	
(Davidian	&	Giltinan,	2003).	In	short,	nonlinear	mixed‐effects	mod‐
els	are	nonlinear	response	functions	allowing	among‐groups	random	
variation	 in	 (one	or	more)	parameters	which	can	be	modeled	from	
group‐level	predictors	(Bolker,	2008);	these	are	convenient	to	apply	
with	grouped	data	to	describe	a	nonlinear	ecological	response,	but	
their	use	entails	more	complexity	than	classical	statistics.

Live	 vegetation	moisture,	 termed	 as	 live	 fuel	moisture	 content	
(LFMC)	in	the	fire	ecology	context,	is	a	typical	ecological	variable	in	

fuel	moisture	becomes	critical	to	fire	occurrence.	Due	to	the	lack	of	worked	exam‐
ples	for	nonlinear	mixed‐effects	models	in	the	literature,	our	modeling	approach	
could	be	useful	to	diverse	ecologists	dealing	with	complex	data.

K E Y W O R D S

correlation	structures,	hierarchical	modeling,	nonlinearity,	spatio‐temporal	variability,	time	
series
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which	nonlinearity	and	correlation	structures	make	it	difficult	to	apply	
classical	statistical	methods.	To	burn,	an	ecosystem	requires	precipi‐
tation	for	plant	biomass	(fuel)	to	be	produced,	and	dry	weather	con‐
ditions	to	make	that	biomass	available	for	burning	(Bradstock,	2010).	
LFMC	is	an	ecological	variable	determining	fuel	biomass	availability,	
thus	 influencing	outbreak	 and	 spread	of	wildfires	 (Rossa,	 2017).	 In	
other	words,	because	removing	the	water	from	fuel	requires	energy	
(Jolly	et	al.,	2012),	higher	moisture	content	means	longer	heating	time	
to	ignition	and	slower	fire	spread	(Finney,	Cohen,	McAllister,	&	Jolly,	
2013).	Consequently,	LFMC	modeling	becomes	relevant	in	fire‐prone	
ecosystems,	such	as	those	of	Mediterranean	regions,	where	it	is	im‐
portant	to	predict	the	vegetation	moisture	threshold	at	which	fires	
are	highly	probable	(Dennison	&	Moritz,	2009).	Temporal	changes	in	
LFMC	are	determined	by	physiological	and	phenological	factors	as‐
sociated	with	weather	seasonality.	This	seasonality	influences	plant	
growth	rates,	water	loss	by	transpiration,	and	changes	in	soil	water	
availability	 (Nelson,	 2001).	 Hence,	 in	 Mediterranean‐type	 climate	
regions	(cold	and	humid	winters,	temperate	and	dry	summers),	such	
as	northwestern	Patagonia	 (Kottek,	Grieser,	Beck,	Rudolf,	&	Rubel,	
2006),	 seasonality	 causes	plants	 to	have	 a	 relatively	high	moisture	

during	 spring	 (when	 sprouting	 takes	 place)	 and	 then	 lower	 values	
during	the	autumn	senescence	(Keeley,	Bond,	Bradstock,	Pausas,	&	
Rundel,	 2012).	 Therefore,	 LFMC	 is	 expected	 to	 reach	 a	 maximum	
during	 the	 growing	 season	 and	 steadily	 decrease	 through	 the	 dry	
season	 (when	 fires	 occur),	 until	 it	 stabilizes	 at	 a	 minimum;	 this	 is,	
naturally,	 a	 nonlinear	 response.	 In	 northwestern	Patagonia,	 for	 ex‐
ample,	vegetation	growth	season	starts	 in	early	 spring	and	ends	 in	
late	summer/early	autumn	(Jobbágy,	Sala,	&	Paruelo,	2002)	overlap‐
ping	part	of	the	fire	season,	which	starts	in	late	spring/early	summer	
(Oddi	&	Ghermandi,	2016).	Since	plants	develop	varied	strategies	to	
access	water	and	regulate	their	water	content	status,	LFMC	modeling	
should	consider	how	moisture	seasonal	variation	differs	among	plant	
functional	types	(Castro,	Tudela,	&	Sebastià,	2003).	For	example,	in	
extra‐Andean	Patagonia,	grass	and	shrubs	have	different	water‐use	
strategies	 (Sala,	Golluscio,	 Lauenroth,	&	Soriano,	1989);	 shrubs	ob‐
tain	water	 from	deeper	 soil	 layers	 (Golluscio	&	Oesterheld,	 2007).	
Furthermore,	 phenological	 water‐use	 strategies	 within	 the	 same	
functional	 group	can	vary	 among	coexisting	 species,	 as	 appears	 to	
occur	 with	 the	 shrubs	Mullinum spinosum	 (Cav.)	 Pers.	 and	 Senecio 
filaginoides	 DC	 (Fernández,	 Nuñez,	 &	 Soriano,	 1992),	 the	 first	 one	

F I G U R E  1  Decision‐tree	scheme	
summarizing	when	the	type	of	model	
introduced	in	this	article	would	be	useful	
to	analyze	ecological	data.	Decisions	are	
categorized	according	to	contexts	linked	
to	classical	statistic	assumptions	(linear	
regression,	ANOVA).	Classical	statistic	
is	applied	when	linearity,	independence,	
and	homoscedasticity	(and	normality)	can	
be	guaranteed	(green);	otherwise,	other	
approaches	should	be	used	(blue).	This	
decision‐tree	does	not	address	all	possible	
situations	and	approaches,	for	example,	
nonlinear	patterns	could	be	well	modeled	
by	using	other	linear	approaches	such	as	
polynomials	or	generalized	linear	models	
[for	more	details,	see	Bolker	(2008,	p.	
397)]
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with	deeper	root	system	(Fernandez	&	Paruelo,	1988),	or	along	arid‐
ity	gradients,	 in	 response	to	changes	 in	water	availability	dynamics	
in	soil	(Golluscio	&	Oesterheld,	2007).	Therefore,	in	this	region,	it	is	
expected	 that	parameters	of	 the	LFMC	temporal	 curve	depend	on	
type	of	vegetation	and	aridity	conditions.	Lastly,	because	field	sam‐
pling	must	consider	LFMC	within‐sampling	location	variability	(Yebra	
et	al.,	2013),	observations	are	commonly	clustered	in	space	(Desbois,	
Deshayes,	&	Beudoin,	 1997).	Hence,	 LFMC	data	 obtained	 through	
field	 monitoring	 appear	 suitable	 to	 be	 analyzed	 using	 nonlinear	
mixed‐effects	models.

Although	nonlinear	mixed‐effects	approaches	are	useful	in	many	
areas	 (Davidian	 &	 Giltinan,	 2003),	 including	 ecology	 and	 environ‐
mental	sciences	(Crecente‐Campo,	Tomé,	Soares,	&	Diéguez‐Aranda,	
2010;	Miguez,	Villamil,	Long,	&	Bollero,	2008),	very	few	worked	ex‐
amples	exists	 (Bolker	et	 al.,	 2013).	 In	order	 for	 statistical	methods	
to	be	gradually	applied	by	users,	 these	must	be	demonstrated	and	
illustrated	 with	 examples	 (Qian,	 Cuffney,	 Alameddine,	 McMahon,	
&	Reckhow,	2010).	Here,	we	 illustrate	 the	nonlinear	mixed‐effects	
modeling	approach	using	an	ecological	example	involving	the	tempo‐
ral	dynamics	of	live	vegetation	moisture	in	northwest	extra‐Andean	
Patagonia.	 From	 an	 ecological	 perspective,	 we	 apply	 a	 nonlinear	
mixed‐effects	approach	to	model	temporal	changes	in	LFMC.	In	par‐
ticular,	we	test	if	moisture	content	and	drying	pattern	over	the	fire	

season	differ	(a)	between	grasses	and	shrubs,	(b)	between	coexisting	
species,	and	(c)	between	sites	with	different	aridity	conditions.	From	
a	methodological	 point	 of	 view,	we	 aimed	 to	 (a)	 describe	 a	 “step‐
by‐step”	 statistical	modeling	 process	 and	 (b)	 show	 that,	 compared	
to	other	 linear	 and	more	 classical	 approaches,	 nonlinear	mixed‐ef‐
fects	models	 improve	 the	description	of	 ecological	 processes	with	
seasonality	such	as	temporal	dynamics	in	LFMC.	This	“improvement”	
is	assessed	in	terms	of	goodness	of	fit,	model	assumptions,	and	eco‐
logical	meaning.	We	start	with	a	nonlinear	function	linked	to	a	simple	
statistical	model,	which	is	made	increasingly	complex	to	include	the	
different	sources	of	variability	and	correlation	structures.	While	the	
modeling	process	is	illustrated	on	LFMC,	the	framework	is	useful	for	
other	 ecological	 variables	 with	 nonlinear	 patterns	 and	 correlation	
structures.	To	make	this	procedure	easily	reproducible,	we	provide	
the	R	codes	used	to	perform	the	statistical	analyses.

2  | METHODS

2.1 | Study area

Field	 data	 were	 gathered	 from	 northwestern	 Patagonia	 (east	 of	
Nahuel	 Huapi	 Lake,	 Río	 Negro,	 Argentina;	 Figure	 2).	 The	 area	 is	
characterized	 by	 a	 semiarid	 climate	 with	 a	 Mediterranean‐type	

TA B L E  1  Some	common	nonlinear	patterns	in	ecology	and	(two	possible)	response	functions	for	describing	them	[for	a	more	complete	
list	of	nonlinear	functions	see	Miguez	et	al.	(2017)]

Pattern Function Ecological context

J‐shaped Exponential y = aebx Population	ecology	(population	growths	without	resource	
constrains).
Eco‐physiology	(temperature	responses).
Epidemiology	(outbreaks).

Power y = axb

Saturating Michaelis–
Menten

y = ax/(b + x) Population	ecology	(type‐II	functional	response	in	predator–prey	
dynamics).
Community	ecology	(resource	competition).
Eco‐physiology	(photosynthetic	curves).
Forest	ecology	(light	availability	in	canopy).
Production	ecology	(fisheries,	fruit	quality).
Epidemiology	(infection	rates).

Monomolecular y = a[1	−	e−bx]

S‐shaped	
(sigmoidal)

Logistic y=1∕
[

1+e−(a+bx)
]

Life	history	(individual	biological	growths).
Population	ecology	(population	growths	with	resource	con‐
strains,	type‐III	functional	response	in	predator–prey	dynamic).
Forest	ecology	(stand	dynamics).

Gompertz y=ae−e
−bx

Hump‐shaped	
(unimodal)

Ricker y = axebx Population	ecology	(capture	rates	varying	with	prey	size	in	
predator–prey	dynamic).
Community	ecology	(richness	species	varying	with	productivity	
or	disturbance	gradients).
Eco‐physiology	(optimums).
Fire	ecology	(fire	activity	along	global	productivity	gradient).

Beta
y=a

[

1+
b−x

b−c

] [

x

b

]
b

b−c

Note: Terms	in	equations:	y	=	response	variable;	x	=	explanatory	variable;	e	=	constant	(the	base	of	the	natural	logarithm);	a,	b,	c	=	parameters.	
Parameter	values	must	be	in	a	certain	range	to	match	the	pattern	(e.g.,	power	functions	result	J‐shaped	curves	when	b	>	1,	but	inverted	J‐shaped	
if	b	<	0	and	decreasing	increments	with	0	<	b <	1).	Function	names	and	parameterization	vary	according	to	the	context	in	which	they	are	used	(see	
Bolker,	2008).
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precipitation	regime,	and	annual	precipitation	decreases	in	a	steep	
50‐km	west–east	 gradient	 from	580	 to	260	mm	 (San	Ramón	and	
INTA	Pilcaniyeu	weather	stations).	Along	this	climatic	gradient,	we	
established	two	sampling	sites	separated	by	60	km	(Figure	2)	with	
different	aridity	and	plant	physiognomy.	The	western	(W)	site,	the	
wettest,	is	a	grass	steppe	dominated	by	the	perennial	grass	Festuca 
pallescens	 (St.	 Yves)	 Parodi,	 and	 shrub	 cover	 is	 less	 than	5%.	 The	
eastern	(E)	site,	the	driest,	is	a	shrub–grass	steppe	with	60%	shrub	
cover	where	 communities	 are	 codominated	 by	Papostipa speciosa 
and	 by	 the	 shrubs	M. spinosum and S. filaginoides	 (Godagnone	 &	
Bran,	2009).

2.2 | Experimental design

We	carried	out	the	field	sampling	during	80	days	(seven	sampling	
dates	distributed	as	evenly	as	possible)	 from	13	November	2013	
to	10	February	2014.	Due	to	the	differences	in	the	plant	physiog‐
nomies	of	the	sites,	we	measured	LFMC	in	grasses	at	the	W	site	
and	 both	 grasses	 and	 shrubs	 (M. spinosum and S. filaginoides)	 in	
the	E	site.	In	both	sites,	we	established	three	500	×	500	m	plots	
and	average	distance	between	plots	was	≈2	km	(Figure	1).	All	plots	
were	near	the	road	(National	Road	No.	23)	(Figure	2)	and	on	flat‐
level	 terrain	 to	 avoid	 changes	 in	 LFMC	caused	by	differences	 in	

F I G U R E  2  The	upper	map	shows	the	
study	area	(located	in	the	northwestern	
region	of	extra‐Andean	Patagonia,	in	
Río	Negro	province,	Argentina).	At	each	
sampling	site,	we	established	three	plots	
(dark	gray	squares).	The	lower	figure	
shows	the	detailed	spatial	sampling	
design.	In	each	plot,	we	randomly	selected	
three	points	and	harvested	biomass	from	
the	four	nearest	individuals	to	the	point.	
Sites	have	different	plant	physiognomies:	
W	site	is	an	herbaceous	steppe	and	E	
site	is	a	grass–shrub	steppe	where	M. 
spinosum and S. filaginoides	are	the	main	
shrub	species
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topography.	On	each	sampling	date	and	plot,	we	randomly	selected	
three	spatial	points	(i.e.,	spatial	locations	within	plots)	for	each	leaf	
type	(grasses	and	the	two	shrub	species);	we	collected	80–100	g	
of	 live	biomass	from	the	nearest	 four	 individuals	 to	these	points	
(i.e.,	each	observation	came	from	a	composite	sample,	Figure	2).	
Therefore,	our	 total	observations	 resulted	 in	252	measurements	
of	LFMC	(3	 leaf	types	×	3	points	×	3	plots	×	7	sampling	dates	 in	
the	E	site,	plus	1	leaf	type	×	3	points	×	7	sampling	dates	in	the	W	
site)	from	which	five	were	lost	(n	=	247).	This	experimental	design	
allowed	us	to	compare	plant	functional	types	within	the	same	site	
(grasses	vs.	shrubs	in	E	site),	sites	within	the	same	functional	type	
(grasses	in	the	W	site	vs.	grasses	in	the	E	site),	and	species	within	
the	same	 functional	 type	and	site	 (M. spinosum	 vs.	S. filaginoides 
in	the	E	site).

We	collected	all	samples	between	12:00	and	16:00	hr	local	time.	
Immediately	 after	 collection,	we	 packed	 the	 samples	 in	 individual	
hermetic	plastic	bags	and	 transported	 them	to	 the	 laboratory	 in	a	
portable	 fridge.	 Once	 in	 the	 laboratory,	 we	 weighed	 the	 samples	
in	 a	 precision	 balance	 (0.01	 g)	 to	 obtain	 their	 fresh	 weight	 (WF).	
Samples	were	oven‐dried	at	80°C	 for	48	hr	and	 reweighed	 to	ob‐
tain	 their	dry	weight	 (WD).	Finally,	we	calculated	the	LFMC	(%)	as:	
(WF −	WD)/WD	×	100.

2.3 | Nonlinear mixed‐effects model

According	 to	 weather	 seasonality	 in	 northwestern	 Patagonia,	
LFMC	 should	 be	 maximum	 during	 spring	 and	 reach	 a	 minimum	
at	the	end	of	summer.	Thus,	as	the	fire	season	progresses,	LFMC	
temporal	patterns	could	be	modeled	with	a	declining	logistic‐type	
function	(Dennison	et	al.,	2003),	that	is,	a	sigmoid	and	asymptotic	
curve.	Since	it	was	proposed	by	Verhulst	(1938),	different	param‐
eterizations	have	been	used	to	model	population	growth	and	other	
physical	or	social	features	(Tsoularis,	2001).	Among	these,	a	flex‐
ible	one	is	the	four‐parameter	logistic	function	(Pinheiro	&	Bates,	
2000):

where y and t	are,	respectively,	the	response	and	the	predictor	(time)	
variables,	e	is	a	constant	(the	base	of	the	natural	logarithm),	A and w 
are	respectively	the	upper	and	lower	horizontal	asymptotes,	m	is	the	
value	 (time)	at	which	y	 is	midway	between	A and w	 (the	 inflection	
point),	and	s	controls	the	curve	steepness	(Pinheiro	&	Bates,	2000).	
Applied	to	LFMC	dynamics	(Figure	3),	A	would	represent	the	maxi‐
mum	LFMC	reached	during	the	growing	season	(when	the	peak	oc‐
curs	and	shortly	before	the	fire	season	starts),	w	the	level	at	which	
the	moisture	is	stabilized	at	the	end	of	the	fire	season,	m	the	time	
when	the	highest	drying	speed	occurs	(i.e.,	the	maximum	in	the	first	
derivative	of	the	LFMC	curve,	Figure	3),	and	s	is	a	parameter	control‐
ling	the	drying	rate	(it	should	be	negative	because	LFMC	is	expected	
to	decrease	with	time).	Because	LFMC	is	modeled	as	a	function	of	

time,	the	first	derivative	of	the	response	function	represents	the	in‐
stantaneous	drying	speed	(∂LFMC/∂t):

The	resulting	statistical	model	is:

where i	 is	the	observation	and,	 in	our	model,	t	 is	expressed	as	the	
number	of	days	since	the	first	measurement.

(1)y=
A−w

1+e(m−t)∕s
+w

(2)
�LFMC

�t
=

(

w−A
)

e(m+t)∕s

s
[

2e(m+t)∕s+e2t∕s+e2m∕s
]

(3)LFMCi∼

(

�i;�
2
)

�i=
A−w

1+e(m−ti)∕s
+w

Cor(LFMCi;LFMCi
� )=0

F I G U R E  3  Live	fuel	moisture	content	(LFMC)	as	a	function	of	
time	(t).	According	to	a	logistic‐type	response	function	(top),	LFMC	
is	highest	at	the	beginning	of	fire	season	(A)	and	decreases	until	
it	stabilizes	at	the	end	of	season.	The	midway	between	A and w 
(point	of	inflection	of	the	curve)	occurs	at	t = m,	when	the	drying	
speed,	which	is	given	by	the	first	derivative	of	the	logistic	function	
(∂LFMC/∂t)	(bottom),	reaches	a	maximum
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The	parameters	defining	the	nonlinear	deterministic	response	
function	 (A,	m,	 s,	w)	 in	 Equation	 3	 can	 vary	 among	 groups	 that	
could	be	considered	as	fixed	or	random	effects	(Pinheiro	&	Bates,	
2000).	Our	aim	is	to	understand	if	moisture	content	dynamic	dif‐
fers	between	grasses	and	shrubs,	and	between	sites	with	different	
aridity	 conditions.	 Therefore,	 the	 next	 step	was	 to	 include	 “leaf	
type”	as	a	fixed	effect	with	four	levels:	grasses	in	the	W	site	(GW);	
grasses	 in	 the	 E	 site	 (GE);	M. spinosum	 shrub	 in	 the	 E	 site	 (SM);	
S. filaginoides	 shrub	 in	 the	E	site	 (SS).	The	clustering	 imposed	by	
the	sampling	design	(observations	grouped	in	plots)	could	lead	to	
data	with	spatial	correlation	structure,	that	is,	Cor(LFMCi,	LFMCi′)	
≠	 0	 (Aarts,	 Verhage,	Veenvliet,	Dolan,	&	 Sluis,	 2014).	 Thus,	 plot	
was	 considered	 as	 a	 random	 effect	 to	 represent	 the	 correlation	
structure	induced	by	the	spatial	nesting	(Zuur	et	al.,	2009).	Hence,	
the	new	model	 takes	 into	account	that	all	parameters	describing	
the	temporal	changes	in	LFMC	vary	with	both	leaf	type	(fixed	ef‐
fect)	and	plot	(random	effect).	The	nonlinear	mixed‐effects	model	
can	be	expressed	as:

Of	the	multiples	ways	in	which	mixed‐effects	models	can	be	writ‐
ten,	we	have	chosen	that	termed	as	“combining	separate	local	regres‐
sions”	(Gelman	&	Hill,	2007).	We	follow	the	Gelman	and	Hill's	(2007)	
notation,	who	use	subscript	i	to	represent	the	smallest	unit	of	observa‐
tion,	within‐plot	observation	(points)	in	our	experimental	design	(i	=	1,	
2,	…,	247);	and	j	to	indicate	groups,	plots	in	this	case	(j	=	1,	2,	…,	6).	GE,	
SM,	and	SS	are	binary	variables	taking	values	1	or	0,	used	to	code	leaf	
type	(see	Table	2	for	interpretation	of	the	associated	terms)	recorded	
for	point	 i.	With	this	notation,	we	try	to	establish	a	clear	connection	
between	mathematical	expression	and	software	output	(Appendix	S1).	
While	this	model	considers	observations	(i)	within	plot	j	to	be		correlated	
(ϕ	 is	 termed	 as	 intraclass	 correlation,	 and	 estimated	 as	 a	 function	
of	 among‐groups	 and	 within‐groups	 variability;	 Aarts	 et	 al.,	 2014),	
	residuals	are	assumed	to	be	independent	and	normally	distributed	with	

homogeneous	variances.	Normal	random	effects	(A0j,	w0j,	m0j,	s0j)	and	
independence	between	the	within‐plot	observations	and	random	ef‐
fects	are	also	assumed.

However,	 because	measurements	 near	 in	 time	 tend	 to	 be	more	
similar	 than	when	 far	apart	 (Davidian	&	Giltinan,	2003),	 correlations	
usually	 arise	 in	 time	 series	 violating	 the	 independence	 assumption	
(Lindstrom	 &	 Bates,	 1990).	 Such	 temporal	 dependence	 can	 be	 ad‐
dressed	from	a	mixed‐effects	modeling	framework	(Zuur	et	al.,	2009).	
We	explored	ARMA	 (autoregressive–moving	 average)	 structures	 for	
modeling	temporal	correlation	(Pinheiro	&	Bates,	2000).	ARMA	tem‐
poral	correlation	structures	have	two	components	defining	their	order	
(u,	v).	In	our	model,	the	first	component	(u)	indicates	that	the	within‐
plot	 observations	 at	 time	 t	 are	modeled	 as	 a	 function	of	 s	 previous	
times	and	are	named	“autoregressive”	parameters	(ρ).	The	second	com‐
ponent	(v)	refers	to	the	number	of	moving	average	parameters	(θ)	and	
states	that	these	observations	are	modeled	as	a	function	of	v	previous	
noise	(η).	For	example,	an	ARMA(1,1)	model	(i.e.,	u = 1 and v	=	1)	states	
that,	in	plot	j,	the	moisture	content	at	time	t	(LFMCji(t))	is	influenced	by	
that	one	at	time	t‐1	(LFMCji(t−1))	according	to:

In	practice,	these	correlations	are	modeled	on	residuals	(sometimes	
are called R‐side effects),	in	contrast	to	that	induced	by	grouping	(called	
G‐effects)	which	enter	 the	model	 in	 terms	of	correlation	of	observa‐
tions	(Bolker,	2015).	The	statistical	model	is	now	expressed	as:

A0j∼

(

�A0j
;�2

A0

)

; w0j∼

(

�w0j
;�2

w0

)

; m0j∼

(

�m0j
;�2

m0

)

; 

s0j∼

(

�s0j ;�
2
s0

)

It	is	also	important	to	consider	the	variance	pattern	(Davidian	
&	Giltinan,	2003);	 ecological	 variables	 are	often	heteroscedastic	
(Bolker	 et	 al.,	 2013),	 and,	many	 times,	 variance	 components	 are	
biologically	as	important	as	mean	values	(Schielzeth	&	Nakagawa,	
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)
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+w
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2013).	We	used	variance	functions	(components	of	a	model	with	
Gaussian	 distribution	 that	 allows	 for	 heterogeneity)	 to	 model	
LFMC	variability	at	the	within‐plot	 level	 (�2

i
)	as	a	function	of	 leaf	

type:

A0j∼

(

�A0j
;�2

A0

)

; w0j∼

(

�w0j
;�2

w0

)

; m0j∼

(

�m0j
;�2

m0

)

; 

s0j∼

(

�s0j ;�
2
s0

)

Specifically,	we	 used	 varIdent	 as	 variance	 function	 (Pinheiro	&	
Bates,	 2000).	 In	 a	 varIdent	 function,	 the	 groups	 of	 a	 stratification	
variable	(e.g.,	leaf	types)	are	allowed	to	have	different	variance:

where σbase	is	the	standard	deviation	in	the	W	site,	and	δ1,	δ2,	δ3 are 
the	quotients	between	the	standard	deviation	of	the	respective	leaf	
types	and	σbase.

The	proposed	nonlinear	mixed‐effects	model,	therefore,	relaxes	
three	of	the	four	assumptions	of	classical	regression	(Figure	1):	lin‐
earity	 (through	 the	 logistic‐type	 response	 function),	 homogeneity	
(through	 the	 variance	 function),	 and	 independence	 (through	 the	
random	effects—spatial	clustering—and	the	ARMA	model—temporal	
correlation	structure):

A0j∼

(
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(
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Equation	9	 refers	 to	 the	more	complex	or	global	model,	which	
includes	variance	modeling,	temporal	correlation,	and	fixed‐effects	
(leaf	 type)	 and	 random	 effects	 (plot)	 on	 all	 parameters	 of	 the	 re‐
sponse	function.	Nevertheless,	not	all	of	these	components	neces‐
sarily	need	to	be	in	the	model.	 If	any	of	them	is	not	important	but	
included	 (the	 predictive	 capacity	 is	 not	 increased),	 the	model	will	
be	 overparameterized	 (Aho,	 Dewayne,	 &	 Peterson,	 2014),	 which	
could	 cause	 convergence	 problems	 (Grueber,	 Nakagawa,	 Laws,	 &	
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Model
Number of 
parameters log‐Likelihood AIC ∆AIC

Nonlinear	mixed‐effects	
(M1)

15 −950.8 1,931.7 –

Linear	mixed‐effects	
(M3)

15 −984.2 19,998.5 66.8

Nonlinear	fixed‐effects	
(M2)

27 −1,015.6 2,085.2 153.6

Classical	regression	(M4) 25 −1,030.5 2,111.0 179.3

Null	(M5) 2 −1,423.9 2,851.7 920.1

Note: AIC	is	a	goodness	of	fit	measure	(likelihood	or	log‐likelihood)	that	penalizes	for	complexity	
(number	of	parameters).

TA B L E  2  Akaike	information	criterion	
(AIC)	for	contrasting	models	of	the	
temporal	dynamics	in	live	fuel	moisture	
content	(LFMC)
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Jamieson,	2011).	When	convergence	problems	occur,	 reducing	the	
model	complexity	is	a	possible	solution	(Bolker	et	al.,	2009).

Therefore,	we	followed	the	Zuur's	et	al.	(2009)	protocol	for	fitting	
mixed‐effects	models,	first	assessing	the	random	structure	and	then	
the	fixed	effects.	We	compared	models	of	different	complexity	level	
by	using	the	Akaike	information	criterion	(AIC),	a	goodness‐of‐fit	mea‐
sure	(likelihood)	that	penalizes	for	complexity	(number	of	parameters;	
see	 next	 section	 for	more	 detailed	 discussion	 about	AIC	 and	multi‐
model	inference).	Although	the	model	with	the	lowest	AIC	value	can	
be	chosen	as	the	best	one	(Burnham	&	Anderson,	2002),	 in	order	to	
consider	model	uncertainty,	differences	in	AIC	should	be	large	enough	
(Richards,	2005).	We	used	delta	AIC	>	2,	but	other	cutoffs	could	be	
chosen	as	rule	of	thumb	(Harrison	et	al.,	2018).	To	fit	the	model	(see	the	
R	code),	we	first	explored	the	variance–covariance	structure	(Barnett	
et	al.,	2010;	West	et	al.,	2007).	Then,	we	evaluated	if	any	of	the	four	
parameters	(A,	w,	m,	s)	varied	across	the	plots	through	random	effects.	
For	instance,	to	determine	whether	the	maximum	LFMC	varied	with	
plot	we	compared	the	model	where	A	is	random	(A0j	in	Equation	9)	with	
the	model	where	A	 is	unique	for	all	the	plots	(A0).	Later,	we	decided	
about	the	inclusion	of	the	temporal	correlation	and	variance	functions	
assessing	whether	 the	data	 fit	 obtained	 from	 the	model	 introduced	
in	Equation	4	were	improved	by	that	from	Equations	6	and	9.	Lastly,	
we	modeled	the	fixed	effects	examining	what	parameters	of	the	re‐
sponse	 function	varied	with	 leaf	 type.	For	 instance,	 to	assess	 if	 leaf	
type	influences	the	maximum	LFMC	we	compared	the	model	in	which	
A	depends	on	leaf	type	(A = A0	+	A1GE	+	A2SM	+	A3SS)	with	the	model	
where A	is	unique	(i.e.,	general	to	all	leaf	types).	When	the	effect	of	leaf	
type	on	any	parameter	was	found	 important	 (i.e.,	delta	AIC	>	2),	we	
assessed	differences	among	its	levels	(our	ecological	question).

2.4 | Alternative models

We	 fitted	 four	 alternative	 models,	 which	 were	 compared	 to	 the	
nonlinear	mixed‐effects	model.	 The	 first	 one	was	 a	 (logistic‐type)	
nonlinear	 fixed‐effects	 model.	 In	 this	 case,	 time,	 leaf	 type,	 and	
plot	are	 treated	as	 fixed	effects,	 and	normality	and	 independence	
among	data	are	assumed	 (M2).	The	second	alternative	 (M3)	was	a	
linear	mixed‐effects	model	with	 time	 and	 leaf	 type	 (and	 its	 inter‐
action)	as	fixed	effects	and	plot	as	random	effect	 (spatial	nesting).	
This	 model	 included	 an	 ARMA	 temporal	 structure	 and	 the	 same	
variance	 function	 as	 the	 one	 used	 in	 the	 nonlinear	mixed‐effects	
model.	The	 third	alternative	model	 (M4)	was	a	classical	 regression	
(i.e.,	assuming	that	 the	relation	with	time	 is	 linear,	 residuals	 follow	
a	normal	distribution	and	data	are	 independent	 in	 space	and	 time	
and	show	homogeneous	variances).	We	also	fitted	a	null	model	(i.e.,	
without	predictors,	M5)	which	was	considered	as	the	baseline	in	the	
comparisons.	 In	short,	we	compared	five	models:	nonlinear	mixed‐
effects	 (M1),	 nonlinear	 fixed‐effects	 (M2),	 linear	 mixed‐effects	
(M3),	classical	regression	(M4),	and	null	(M5).	M1	and	M2	share	the	
deterministic	response	function	(logistic‐type)	but	differ	in	the	sto‐
chastic	structure;	similarly,	M3	and	M4	share	a	linear	deterministic	
response	function	but	differ	in	the	stochastic	structure.	M1	and	M3	
share	 the	 random	 structure	 (mixed‐effects)	 and	 differ	 in	 the	 type	

of	temporal	relationship	assumed	(nonlinear	vs.	linear),	similarly,	M2	
and	M4	share	the	random	structure	and	differ	in	temporal	relation‐
ship	 assumptions.	Before	 comparison,	 each	 alternative	model	was	
fitted	 according	 to	 parsimony,	 just	 as	 the	 nonlinear	mixed‐effects	
model	(M1).

Model	comparison	was	carried	out	under	a	multimodel	inference	
framework	 (Burnham	 &	 Anderson,	 2002)	 using	 the	 AIC	 (Burnham,	
Anderson,	 &	 Huyvaert,	 2011).	 This	 inference	 framework	 is	 espe‐
cially	 suitable	 for	 selecting	 among	 non‐nested	 models	 (Burnham	 &	
Anderson,	 2004);	 the	 fitting	 process	 of	 each	 model	 also	 involved	
model	comparison	but	in	this	case,	they	were	nested	(see	previous	sec‐
tion).	Our	modeling	approach	was	carried	out	using	AIC	as	an	index	of	
parsimony	but	other	related	statistics	exist	(modifications	of	AIC,	such	
as	AICc,	and	others,	such	as	BIC	or	DIC).	All	of	these	criterions	share	a	
similar	goal,	that	is,	to	find	a	balance	between	goodness	of	fit	and	com‐
plexity.	They	have	advantages	and	 limitations	and	should	be	chosen	
according	to	the	context	and	needs	(statistical	paradigm,	assumptions,	
data	structure;	Barnett	et	al.,	2010).	For	instance,	Bayesian	approaches	
could	provide	advantages	when	fitting	complex	models	with	few	data	
points	by	incorporating	prior	distribution	for	parameters	(Davidian	&	
Giltinan,	1995;	Gelman	et	al.,	2013).	Our	approach,	however,	is	useful	
beyond	the	 information	criteria	chosen	to	select	models	 (for	 further	
discussions,	 see	Aho	 et	 al.,	 2014;	Murtaugh,	 2009;	 Richards,	 2005;	
Spiegelhalter,	Best,	Carlin,	&	Linde,	2014;	Yang,	2005).

The	models	were	fitted	using	the	nlme(),	lme(),	and	gls()	func‐
tions	 of	 the	 nlme	 package	 (Pinheiro,	 Bates,	 DebRoy,	 Sarkar,	 &	
Core	Team,	2016)	 in	R	3.3.5	 (R	Core	Team,	2017).	When	the	ef‐
fects	of	leaf	type	were	found	important,	we	used	the	emmeans()	
function	of	the	emmeans	package	(Lenth,	2018).	Pearson	residuals	
were	visually	assessed	 (residuals	vs.	 fitted	values	plot,	 residuals	
vs.	predictors	plot,	and	normal	Q‐Q	plot)	for	checking	the	mod‐
els'	 assumptions.	 The	 analysis	 is	 available	 in	 the	Supplementary	
Material.

3  | RESULTS AND DISCUSSION

3.1 | Model comparison

We	found	stronger	support	(lower	AIC)	for	the	nonlinear	mixed‐ef‐
fects	 model	 with	 these	 datasets	 (M1,	 Table	 2).	 Both	 the	 residual	
analysis	and	the	visual	analysis	of	the	fitted	curves	confirm	a	tem‐
poral	pattern	of	LFMC	during	the	fire	season	to	be	well‐described	
by	a	declining	 logistic‐type	function.	 Indeed,	 the	 (nonlinear)	deter‐
ministic	component	of	this	model	was	enough	to	capture	all	the	tem‐
poral	changes	suggesting	it	is	not	necessary	to	include	the	temporal	
correlation	 structure.	According	 to	 the	 residual	 pattern	 (Figure	4),	
assumptions	 are	 reasonable	 under	 the	 linear	mixed‐effects	model	
(M3).	In	this	model,	however,	the	LFMC	nonlinear	temporal	pattern	
was	captured	by	the	residuals'	autocorrelation	(ARMA).	On	the	other	
hand,	neither	the	nonlinear	fixed‐effects	model	(M2)	nor	the	classi‐
cal	 regression	 (M4)	was	appropriate	to	model	 temporal	changes	 in	
LFMC	 (the	 residual	 analyses	 show	violation	 to	 the	assumptions	of	
these	models,	see	Figure	4).
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F I G U R E  4  Residual	analyses	to	evaluate	model	assumptions.	In	both	mixed‐effects	models	(nonlinear	and	linear),	residuals	indicate	that	
the	model	assumptions	are	reasonable.	On	the	contrary,	in	the	fixed‐effects	models,	assumptions	are	violated.	Mixed‐effects	models,	which	
include	correlation	structures	and	variance	modeling,	remove	the	variance	heterogeneity	(standardized	residuals	vs.	fitted	values	and	vs.	
leaf	type),	the	temporal	autocorrelation	(standardized	residuals	vs.	time),	and	the	lack	of	normality	(observed	vs.	normal	quantiles).	The	four	
levels	of	the	leaf‐type	factor	are	grasses	in	the	site	W	(GW);	grasses	in	the	site	E	(GE);	M.	spinosum	shrub	(SM);	S.	filaginoides	shrub	(SS)
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The	 fact	 that	 both	 linear	 and	 nonlinear	 mixed‐effects	 mod‐
els	 were	 suitable	 highlights	 the	 importance	 for	 variables	 such	 as	
LFMC	 to	 be	 addressed	 from	 a	 mixed‐effects	 modeling	 approach.	
Nonetheless,	the	nonlinear	strategy	was	better	than	the	linear	one.	
While	the	general	mixed‐effects	approach	accounts	for	spatial	nest‐
ing,	temporal	dependence,	and	heterogeneity	among	leaf	types,	the	
nonlinear	response	function	adds	the	capability	to	model	seasonal	
patterns.	 In	this	 regard,	 the	 logistic‐type	model	answers	questions	
such	 as	 “what	 is	 the	minimum	moisture	 content	 of	 a	 species	 and	
when	 is	 it	 reached?”	 and	 enables	 estimation	of	 the	 instantaneous	
drying	speed	(in	a	linear	model	it	is	only	possible	to	know	the	aver‐
age	drying	speed;	the	first	derivative	is	constant;	Paine	et	al.,	2012).	
Hence,	the	nonlinear	temporal	relationship	is	not	only	underpinned	
by	 data	 but	 is	 also	 conceptually	 more	 relevant.	 In	 fact,	 nonlinear	
approaches	allow	statistical	models	based	on	physical,	biological	or	
ecological	ideas	(Jonsson	et	al.,	2014).

3.2 | Interpreting the nonlinear mixed‐effects model

Nonlinear	functions	provide	an	interesting	approach	to	understand‐
ing	the	temporal	dynamics	of	ecological	variables	(Pascual	&	Ellner,	
2000).	The	proposed	logistic‐type	curve	described	LFMC	temporal	
changes	(Figures	4	and	5)	using	four	parameters	(A, w,	m,	s)	varying	
with	 leaf	 type	as	a	 fixed	effect.	LFMC	of	both	shrubs	and	grasses	
decreased	from	mid‐spring	to	summer,	tracking	the	temporal	trend	
of	 the	 Mediterranean‐type	 precipitation	 regime.	 The	 same	 over‐
all	sigmoidal	pattern	 is	observed	for	all	of	 the	 leaf	 types,	although	
considerable	 variation	 among	 them	 exists	 (Figure	 5).	 In	 particular,	
our	modeling	effort	suggests	that	leaf	types	differed	in	their	maxi‐
mum	 (A)	 and	minimum	LFMC	 (w)	 (Table	3).	 In	Patagonian	 steppes,	
soil	moisture	increases	with	depth	(Sala	et	al.,	1989)	and	water	from	
deeper	soil	layers	is	available	for	longer	periods	than	shallow	water	
since	 it	 is	 less	affected	by	evaporative	demand	 (Ferrante,	Oliva,	&	
Fernández,	2014).	Because	shrubs	can	reach	water	from	deeper	soil	
layers	(Golluscio	&	Oesterheld,	2007),	higher	LFMC	in	shrubs	than	
grasses	 should	be	expected.	Accordingly,	 shrubs	moisture	content	
at	the	beginning	of	the	fire	season	 (Â)	was,	on	average,	 four	times	
higher	 than	 for	 grasses	 and	 the	 stabilization	 value	 (ŵ)	 was	 three	
times	higher	(Figure	5,	Table	S4).	This	implies	different	drying	speed	
(slopes)	between	the	functional	groups,	as	inferred	from	the	deriva‐
tives	of	their	temporal	curves	(Figure	5).

Grass	 LFMC	 dynamics	 differed	 between	 sites	 (Figure	 5).	
Specifically,	grasses	showed	different	saturation	moisture	and	mini‐
mum	moisture	content	(A1	≠	0,	and	w1	≠	0,	respectively;	see	Table	3	
and	Appendix	S1	to	interpret	both	parameters).	These	different	re‐
sponses	could	be	caused	by	environmental	differences	between	sites	
and/or	functional	differences	between	grass	species.	At	the	begin‐
ning	of	the	study	(mid‐spring,	when	water	availability	begins	to	de‐
crease	in	Patagonia;	Sala	et	al.,	1989),	moisture	content	was	higher	in	
grasses	from	the	E	site	(Â	=	85%)	than	that	from	the	W	site	(Â	=	54%).	
The	95%	confidence	interval	for	such	difference	(31%)	in	the	maxi‐
mum	LFMC	between	the	grasses	of	the	both	sites	(A1)	spanned	from	
13%	 to	 48%	 (Table	 3),	 reflecting	 the	 degree	 of	 uncertainty	 in	 the	

true	value	of	the	point	estimate.	While	the	W	site	is	dominated	by	
F. pallescens,	the	dominant	grass	in	the	E	site	is	P. speciosa.	Both	spe‐
cies	have	xerophytic	 foliar	 traits	associated	 to	 resistance	 to	water	
stress	(Latour,	1979),	but	P. speciosa	has	more	convoluted	blades	and	
stomatal	 crypts	with	 higher	 trichome	 density	 (L.	Ghermandi,	 data	
not	published)	and	thus	would	prevent	water	loss	more	efficiently.	
In	 addition,	 in	 arid	 and	 semiarid	 areas,	 shrubs	 act	 as	 thermal	 buf‐
fers,	increasing	water	availability	(Villagra	et	al.,	2011).	Hence,	shrub	
presence	 could	 benefit	 superficial	 soil	 water	 availability	 in	 the	 E	
site	 (shrubs	are	not	present	 in	 the	W	site),	 increasing	grass	LFMC.	
These	factors	could	allow	grasses	at	the	E	site	to	maintain	relatively	
high	moisture	during	the	initial	phase	of	water	stress	(i.e.,	higher	A; 
Figure	5).	However,	as	the	dry	period	(i.e.,	the	fire	season)	progresses,	
greater	aridity	at	 the	E	site	could	overcome	the	 initial	advantages.	
The	model	suggests	higher	drying	speed	in	site	E	grasses,	mainly	in	
the	middle	of	the	fire	season	(Figure	5),	causing	late	December	LFMC	
to	become	lower	than	that	of	grass	growing	in	the	W	site	(i.e.,	lower	
w;	Figure	5).	The	effect	of	shrubs	on	the	grasses	LFMC	dynamics,	
and	thus	on	fire	probability,	could	be	other	of	the	ecological	 inter‐
actions	commonly	observed	in	Patagonia	between	these	two	func‐
tional	groups	(Cipriotti,	Aguiar,	Wiegand,	&	Paruelo,	2014;	Gonzalez	
&	Ghermandi,	2019).	Although	both	 shrubs	 species	have	different	
root	 systems	 (Fernandez	 &	 Paruelo,	 1988),	 their	 LFMC	 dynamics	
appear	similar	(Â	=	295%,	ŵ	=	56%	in	S. filaginoides,	and	 Â	=	278%,	
ŵ	=	61%	in	M. spinosum)	(Figure	5).	Again,	it	is	worthy	to	recognize	
uncertainty	 around	 estimates	 (A2 and A3	 in	 this	 case)	 and,	 hence,	
given	the	confidence	intervals	(Table	3).

In	 contrast	 to	 that	 observed	 in	A and w,	 the	 steepness	 of	 the	
curves	 (s)	was	similar	 for	all	 the	 leaf	 types	and	 the	 time	when	 the	
drying	was	highest	(m)	occurred	simultaneously	(31	days	since	begin‐
ning	of	the	experiment).	In	other	words,	it	is	reasonable	to	assume	s1,	
s2,	s3,	m1,	m2,	and	m3	(Equation	9)	to	be	zero.	These	results	suggest	
absolute	 levels	 of	 moisture	 content	 to	 be	 leaf‐type‐specific	 while	
the	drying	rate	could	be	a	functional	trait	operating	at	ecosystem	or	
plant	community	level.	In	ecological	terms,	selecting	a	simpler	model	
implies	that	we	are	treating	the	different	leaf	types	as	behaving	as	a	
group	with	similar	drying	responses.

Mixed‐effects	models	allow	us	to	understand	and	predict	ecolog‐
ical	variables	at	different	hierarchies	(Qian	et	al.,	2010).	In	our	exam‐
ple,	the	proposed	model	considered	LFMC	temporal	curves	varying	
with	plot	as	a	random	effect	(Figure	5);	the	results	indicate	that	the	
random	effect	of	plot	was	only	important	for	A	(i.e.,	�2

w0
=�2

m0
=�2

s0
=0

).	The	later,	along	with	the	fact	that	plots	had	similar	minimum	LFMC	
(i.e.,	 data	 suggested	w	 not	 to	 vary	with	 plot),	 could	 have	 implica‐
tions	for	the	behavior	of	fires	occurring	at	different	times	along	the	
fire	 season.	Fires	occurring	at	 the	beginning	of	 the	season	 (higher	
LFMC	 variability)	 should	 be	 more	 heterogeneous	 and	 less	 severe	
than	at	the	end,	when	LFMC	is	lower	and	its	spatial	pattern	is	 less	
variable.	Nonetheless,	because	vegetation	water	status	responds	to	
rainfall	 variability,	particularly	 in	arid	and	semiarid	 regions	such	as	
extra‐Andean	Patagonia	 (Golluscio,	Sigal	Escalada,	&	Pérez,	2009),	
LFMC	dynamics	models	should	incorporate	interannual	variability	in	
precipitation	as	an	explanatory	variable.	While	our	sampling	period	
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covered	 only	 one	 fire	 season,	 the	 proposed	 model	 allows	 adding	
precipitation	 (or	other	 climatic	 variable)	 as	 a	 fixed	effect	 (A,	w,	m, 
s = f[precedent	precipitation])	or	via	a	random	effect	(incorporating	
year	(k)	as	an	additional	hierarchy:	A0k,	w0k,	m0k,	s0k)	(Bolker,	2015).	
Both	 strategies	 would	 represent	 different	 conceptual	 models.	 If	
precipitation	is	 incorporated	as	a	fixed	effect	(i.e.,	a	covariate),	the	
model	would	be	rather	mechanistic	(we	would	model	the	effect	of	
water	availability).	If	precipitation	gets	into	the	model	as	a	random	
effect	of	year,	we	would	estimate	among‐years	variability	due	to	cli‐
matic	 differences.	 In	 addition,	 it	would	be	possible	 to	 incorporate	
a	plot‐level	predictor	(e.g.,	productivity)	to	model	spatial	variability	
in	 parameters	 at	 this	 level	 (�A0j

,�w0j
,�m0j

,�s0j = f[plot	 productivity])	
or	even	 to	add	other	 spatial	hierarchies	 (e.g.,	 site)	 and	 to	quantify	
spatial	variability	at	greater	scales.	The	unexplained	variance	could	
be	reduced	because	of	adding	a	plot‐level	predictor,	allowing	more	
precise	estimation	of	fixed	effects	(Schielzeth	&	Nakagawa,	2013).

Variance	 heterogeneity	 is	 expected	 in	many	 ecological	 variables	
(Benedetti‐Cecchi,	2003).	Within‐plot	LFMC	variability	was	three	times	

higher	in	shrubs	than	in	grasses	but	was	similar	between	grasses	from	
the	two	sites	(𝛿1	=	0.97)	and	between	the	two	shrub	species	(𝛿2 = 2.79; 
𝛿3	=	3.17).	Certainly,	the	model	could	be	further	simplified	by	applying	
a	two‐level	variance	function	(grasses/shrubs,	that	is,	�2

i
	as	a	function	

of	plant	functional	type	or	growth	form).	The	observed	heteroscedas‐
ticity	between	growth	 forms	 could	 respond	 to	differences	 in	 LFMC	
(higher	values	in	shrubs),	as	commonly	the	variances	tend	to	increase	
with	the	mean	of	the	response	variable.	However,	it	could	be	also	re‐
lated	 to	 environmental	 conditions	 such	 as	 more	 homogeneous	 soil	
water	availability	for	grasses	than	for	shrubs	(Golluscio	&	Oesterheld,	
2007).	 In	 fact,	 variation	 in	water	availability	 is	minimal	 in	 superficial	
soil	layers	(where	grasses	obtain	the	water)	and	increases	with	depth	
(Bucci,	Scholz,	Goldstein,	Meinzer,	&	Arce,	2009).	In	addition,	variance	
components	of	a	LFMC	mixed‐effects	model	could	contain	 relevant	
information	for	planning	field	sampling	linked	to	vegetation	moisture	
monitoring	 from	 remote	 sensing.	 For	 instance,	 plot‐level	 informa‐
tion	should	be	prioritized	if	random‐effect	variance	was	significantly	
larger	 than	 residual	 variance	 (Schielzeth	 &	 Nakagawa,	 2013).	 Here,	

F I G U R E  5  Overall	(upper	panels)	and	plot‐level	(medium	panels)	predictions	from	the	nonlinear	mixed‐effects	model	(M1)	for	each	leaf	
type.	The	drying	rate	(lower	panels)	was	obtained	analytically	as	the	first	derivative	of	each	logistic‐type	curve.	The	x‐axis	shows	the	number	
of	days	since	the	first	measurement	(13	November	2013),	which	was	close	to	the	beginning	of	the	fire	season
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random‐effect	 variance	 (among‐plot	 variability)	was	 quantified	 from	
the	standard	deviation	of	A	 (�̂�A0

	=	9%),	which	was	similar	to	intraplot	
standard	deviation	of	grasses	from	the	W	site	(�̂�base	=	7%).	This	type	of	
information	is	critical	for	developing	sampling	protocols	that	improve	
estimates	of	plant	moisture	content	(Yebra	et	al.,	2013)	and	other	sea‐
sonal	variables	(Watson,	Restrepo‐Coupe,	&	Huete,	2019)	from	satel‐
lite	images.

4  | CONCLUSIONS

Our	work	covers	a	poorly	addressed	topic	in	ecology:	illustrate	the	
statistical	modeling	process	using	a	nonlinear	mixed‐effects	frame‐
work.	Similar	to	many	other	ecological	variables,	time	series	of	veg‐
etation	 moisture	 do	 not	 fit	 into	 classical	 statistical	 methods.	 We	

applied	a	nonlinear	approach	to	model	vegetation	moisture	dynamics	
proposing	a	logistic‐type	function	based	on	ideas	about	the	dynam‐
ics	of	 the	system.	Our	model	had	greater	support	 than	alternative	
(and	 less	complex)	models.	Parameter	 interpretation	can	be	 linked	
to	vegetation	features	and	environmental	conditions	showing	how	
nonlinear	mixed‐effects	models	could	be	used	to	advance	ecological	
theory	and	practice.	For	instance,	we	addressed	ecological	questions	
about	LFMC	dynamic	of	grasses	and	shrubs	under	different	aridity	
conditions,	 which	 could	 have	 applications	 in	 fire	 management.	 In	
this	respect,	we	encourage	researchers	to	propose	statistical	mod‐
els	based	on	conceptual	ideas	rather	than	adjusting	data	to	standard	
models	that	many	times	involve	data	transformation	to	meet	model	
assumptions.	Due	to	the	lack	of	worked	examples	in	the	literature,	
our	approach	can	be	useful	to	researchers	addressing	different	eco‐
logical	problems.

Parameter Estimate Meaning

�A0
54.3%	[42.5:66.0] Maximum	LFMC	(Â)	of	grasses	in	the	W	site.	A	

varies	with	plot	and	therefore	a	hyperparameter	
is	estimated.

A1 30.9%	[13.5:48.3] Difference	between	Â	of	grasses	in	the	E	site	and	Â 
of	grasses	in	W	site.

A2 223.4%	
[191.9:254.6]

Difference	between	Â	of	M. spinosum and Â	of	
grasses	in	the	W	site.

A3 240.3%	
[207.1:273.5]

Difference	between	Â	of	S. filaginoides and Â	of	
grasses	in	the	W	site.

w0 29.1%	[25.7:32.4] Minimum	LFMC	(ŵ)	of	grasses	in	the	W	site.

w1 −20.7%	[−25.8:	
−15.6]

Difference	between	ŵ	of	grasses	in	the	E	site	and	ŵ 
of	grasses	in	the	W	site.

w2 31.7%	[16.4:47.0] Difference	between	ŵ	of	M. spinosum and ŵ	of	
grasses	in	the	W	site.

w3 26.7%	[11.1:42.9] Difference	between	ŵ	of	S. filaginoides and ŵ	of	
grasses	in	the	W	site.

m 30.9	days	
[26.9:35.0]

Day	when	the	LFMC	half‐maximum	occurs	(m̂)	in	
the	study	area	(data	suggest	one	general	value	for	
all	the	leaf	types).

s −16.1	[−20.8:	−11.5] Parameter	controlling	speed	of	change	(Ŝ)	of	the	
LFMC	(data	suggest	one	general	value	for	all	the	
leaf	types,	the	negative	value	indicates	vegetation	
to	be	drying	during	the	fire	season).

�base 7.1%	[6.0:8.6] LFMC	variability	within‐plots	(residual	standard	
error)	of	grass	(�̂�gw)	in	Site	W	at	the	beginning	the	
fire	season.

δ1 0.9	[0.7:1.2] Ratio	between	the	within‐plots	standard	error	of	
the	LFMC	of	grasses	in	Site	E	(�̂�ge)	and	grasses	in	
W	site	(�̂�gw)

δ2 3.2	[2.4:4.0] Ratio	between	the	within‐plots	standard	error	of	
the	initial	LFMC	M. spinosum	(�̂�sm)	and	grasses	in	
W	site	(�̂�gw)

δ3 3.0	[2.4:3.9] Ratio	between	the	within‐plots	standard	error	of	
the	initial	LFMC	S. filaginoides	(�̂�ss)	and	grasses	in	
W	site	(�̂�gw)

�A0
9.4%	[3.9:15.8] Variability	among	plots	(standard	deviation)	in	the	

maximum	LFMC	(random	effects	on	A).

TA B L E  3  Parameter	estimates	with	
their	units	(95%	confidence	intervals	in	
square	brackets)	and	their	meaning	for	the	
fitted	nonlinear	mixed‐effects	model	of	
live	fuel	moisture	content	(LFMC)
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