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Abstract

A new dinosaurian track-bearing site, with tridactyl foot-
prints from the Lower Jurassic (pre-middle Pliensbachian)
volcanogenic and epiclastic rocks of the Marifil Volcanic
Complex, Patagonia, Argentina, is presented and described.
The best-preserved footprint, classified as cf. Anomoepus,
confirms the utility of the Anomoepus-like tracks for the
Early Jurassic biochronology. Palaeobiogeographically, this
record supports the idea that the South American Early Jur-
assic dinosaur fauna presents elements of Pangaean distribu-
tion, and others with Gondwanan relationships with preval-
ent southern African affinities. Dinosaur records from South
America between the Rhaetian and the Pliensbachian are
very scarce, and this find contributes to the knowledge of
early radiation and evolution of Dinosauria.

Keywords: Anomoepus-like tracks, pre-middle Pliensba-
chian, ichnology, South America, volcanogenic rock

1. Introduction

Dinosaurs originated, radiated and became the dominant ver-
tebrate group in continental tetrapod communities of the
world during most of the Mesozoic (Benton, 1983; Brus-
atte et al. 2008, 2010). An important part of their history
is preserved in the sedimentary successions cropping out in
Patagonia, Argentina (e.g. Casamiquela, 1964; Bonaparte &
Vince, 1979; Salgado & Bonaparte, 1991; Coria & Salgado,
1995; Novas, 2009), ranging from the early stages after their
origin in the Late Triassic up to their extinction in the up-
permost Cretaceous rocks (see Novas, 2009, and references
therein). Nevertheless, the history is far from being com-
pletely known and any new data will be crucial to under-
stand both the early radiation of Dinosauria in Patagonia and
the first steps of the Mesozoic tetrapod fauna that evolved in
Gondwana.

During the 1950s, a new dinosaurian track-bearing layer
was found in a flagstone quarry in the Lower Jurassic
age (pre-middle Pliensbachian; see below) Marifil Volcanic
Complex (MVC), in the SE of Río Negro province, Patago-
nia, Argentina. To date, there have been no discoveries of
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vertebrate remains in the MVC. For the large temporal in-
terval of c. 26 Ma from the Rhaetian (uppermost Triassic)
to the Pliensbachian (middle Early Jurassic), dinosaur re-
mains have been very scarce in South America (Barrett et al.
2008, 2014; Martínez, 2009; Apaldetti et al. 2011; Pol, Gar-
rido & Cerda, 2011; Langer et al. 2014). This contrasts with
the abundant information available from younger and older
levels (e.g. Bonaparte, 1971; Báez & Marsicano, 2001; Ar-
cucci, Marsicano & Caselli, 2004; Salgado & Gasparini,
2004; Langer, 2005; Rauhut et al. 2005; Pol & Powell, 2007;
de Valais, 2011; Pol, Rauhut & Becerra, 2011; Pol & Rauhut,
2012).

This study aims to present, describe and analyse the new
ichnological material found in the MVC. In addition, the
biochronological and palaeobiogeographical significance of
these dinosaur footprints is discussed in the context of the
geological evolution and global tetrapod faunal composition
of Patagonia and also Gondwana.

2. Geological setting

The MVC represents a large magmatic Mesozoic event in the
eastern North Patagonian Massif, Argentina (Pankhurst et al.
1998, and references therein). It comprises a large volume of
acidic (rhyodacites to rhyolites) ignimbrites with minor rhy-
olitic and andesitic lava flows, and sedimentary lenses inter-
bedded within the acidic volcanic succession (Cortés, 1981).
A variety of igneous rocks from the MVC have been dated
by several radiometric methods (Rb–Sr, K–Ar, Ar–Ar and
U–Pb), ranging from 221 to 165 Ma (Cortés, 1981;
Pankhurst et al. 1998, 2000; Féraud et al. 1999, and refer-
ences therein). Because of its overall rhyolitic composition
and the proposed Jurassic age, the MVC has been included
in the Chon Aike Large Silicic Igneous Province (Pankhurst
et al. 2000).

In the study area, rhyolitic ignimbrites of 188 Ma (Rb–Sr
age, in Pankhurst & Rapela, 1995) overlay a series of acidic
to mesosilicic igneous and pyroclastic rocks and thin epi-
clastic lenses. The ichnosite is located 50 km SW of Sierra
Grande, Río Negro province, in a farm owned by the Per-
domo family (Fig. 1). The 30 m succession containing the
flagstone quarry, which had fielded the track-bearing slabs,
is dominated by pyroclastic acidic flows with a thin vol-
canogenic epiclastic lens (Fig. 2). The track-bearing slabs
are composed of coarse-grained light-pinkish sandstone with
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2 R A P I D C O M M U N I C AT I O N

Figure 1. (Colour online) Local geological map with the location of Sierra Grande – Arroyo de la Ventana area and the new dinosaurian
track-bearing site.

quartz, k-feldspar and pyroclastic material (ash and pumice
fragments), which come from the base of the 1 m thick epi-
clastic lens in the analysed succession (Fig. 2). The coarse
sandstones are interbedded with fine-grained brownish sand-
stone on which the dinosaur probably stepped, given that the
tracks studied here are the infill of the original footprints.
At the top of epiclastic lenses, plant remains attributable to
equisetals (M. G. Passalia & A. Iglesias, pers. comm., 2015)
were found. Flat lamination and ripple marks are also present
at the epiclastic levels.

The described epiclastic rocks and dinosaur tracks are
time-constrained by the andesitic rocks at the base of the
MVC (221 Ma, Carnian, Late Triassic) and the upper acidic
rhyolitic ignimbrites at the top (188 Ma, early Pliensbachian,
Early Jurassic). Because of their acidic pyroclastic compon-
ent precedent from the overlaying rhyolitic complex, the
epiclastic lenses are assigned to the Early Jurassic gap of
the Marifil Volcanism (pre-middle Pliensbachian) (Cortés,
1981; Pankhurst & Rapela, 1995).

The thickness of the epiclastic succession and the ob-
served palaeontological and sedimentological features sug-
gest that the sedimentation occurred in a small fluvial sys-
tem, where the sandstones correspond with the erosion of
the ignimbrites infilling small palaeochannels by medium-
energy currents. The volcanism of the MVC may have con-
trolled the sedimentation and the development of the fluvial
system.

3. Material and methods

The tracks were collected in situ by the Perdomo family
in the 1950s, from a flagstone quarry; in the 2000s, the
material was donated to the Museo Regional Provincial de
Valcheta, Valcheta town, Río Negro province, and housed
under the acronym MRPV. The specimens are six trace

fossils preserved as positive relief, in four sandstone slabs
(Fig. 3). Their collection numbers are MRPV 427/P/13,
428/P/13, 429/P/13, 430/P/13.1, 430/P/13.2 and 430/P/13.3
(the last three specimens are in the same slab).

The ichnotaxonomic approaches to tridactyl footprints of
Gierliński (1991), Olsen & Rainforth (2003) and Li et al.
(2012) have been followed. Measurements and nomenclature
are mainly based on the criteria of Leonardi (1987) and
Haubold (1971). The measurements (Table 1) were: foot-
print length (FL), footprint width (FW), digit impression
length (II, III and IV) and digit impression divarication
angles (II–III, III–IV, II–IV). A further parameter is the ratio
between the maximum height and the perpendicular trans-
verse base of the anterior triangle (AT) formed by digit II,
III and IV tip imprints (sensu Lockley, 2009, and references
therein).

Photogrammetric models (Mallison & Wings, 2014)
(Fig. 3) were obtained using Agisoft PhotoScanTM (ver-
sion 0.8.5.1423) software (Grupo Aragosaurus, Universidad
de Zaragoza License), and imported into Meshlab (version
v1.3.3) and Paraview (version 3.14.1) software packages in
which depth and contour line analysis was produced.

4. Results

The four pedal impressions are tridactyl, subsymmetric and
mesaxonic. They are longer than wide and present the ‘heel’
impression almost directly or directly aligned with the axis
of digit III impression.

MRPV 427/P/13 (Fig. 3a) is a natural cast, 131.3 mm long
and 100.3 mm wide (length/width ratio: 1.31). The digit im-
pressions are slender, longer than wide and are 55.5, 81 and
61 mm long for digits II, III and IV imprints, respectively.
Claw and pad impressions are not evident. The divarication
angles are II–III 31°, III–IV 51° and II–IV 68°. The AT is
0.51.
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Figure 2. (Colour online) General, simplified, stratigraphic sec-
tion of MVC and detailed stratigraphic section of Perdomo’s
quarry. Ages are based on references in the text.

MRPV 428/P/13 is a very irregular and poorly preserved
natural cast, with a centimetric layer (undertrack cast) cover-
ing the footprint (Fig. 3b). The digit impressions are broad,
wider than long. The track is about 172 cm long and 135 cm
wide but we consider these measurements unrepresentative
due to poorly-preservation.

MRPV 429/P/13 (Fig. 3c) is a natural cast that is 175 mm
long and 127 mm wide (length/width ratio: 1.37). The digit
impressions are slender and longer than wide. The digit III
impression is 111 mm long. The other digit impressions are
too poorly preserved to provide reliable measurements. The
divarication angle II–IV is 52°. The AT is 0.53.

The three impressions of MRPV430/P/13 are preserved as
natural casts. MRPV 430/P/13.1 (Fig. 3d–f) is the best pre-
served. It is a footprint 187 mm long and 128.3 mm wide
(length/width ratio: 1.46). The digit impressions are slender,
longer than wide and show clear digital pad imprints. The
digit II impression is shifted anteriorly with respect to digits
III and IV, displaying a characteristic posteromedial notch,
indicating this is a right pes. The relative digit lengths are
III > IV > II (106, 81 and 71 mm). The metatarsophalangeal

pad trace is very clear, as well as the claw traces of digit II
and III impressions, laterally and anteriorly directed respect-
ively. The impression of digit IV projects slightly further
than the digit II impression. The divarication angle II–IV is
58° (II–III is 19°, III–IV is 27°). The AT is 0.50. On the same
slab, there are two ovoid traces positioned close to the tridac-
tyl track MRPV 340/P/13.1 (Fig. 3d–f). One (430/P/13.2),
of about 80 mm diameter, is located 100 mm on the left of
the ‘heel’ impression, and the other (430/P/13.3), of about
50 mm diameter, is 70 mm in front of the anterior part of the
digit III impression.

5. Discussion and conclusions

5.a. Ichnotaxonomy

The studied footprints display different kinds of preserva-
tion. With this in mind, the general and recurrent tridactyl
shape shows that the tracks are all very alike and variation in
the morphology may represent the product of taphonomical
variability. Because of the observed preservational variants
due to taphonomy, tracks were classified in different ich-
notaxonomical levels, from the best-preserved track MPV
430/P/13.1, assigned to a higher ichnotaxonomical status,
to the other three tracks. In fact, the poorly preserved MVP
427/P/13, 428/P/13 and 429/P/13 do not display sufficiently
clear morphological details to undertake an ichnotaxonom-
ical assignment with confidence.

The principal features shared by the footprints (i.e. tri-
dactyl, roughly symmetrical, mesaxonic, longer than wide,
‘heel’ impression in line with the axis of digit III impres-
sion) are common in some theropod and ornithischian ich-
notaxa, such as Anomoepus Hitchcock, 1848, Ornithomim-
ipus Sternberg, 1926, Saurexallopus Harris, 1997 or Dine-
hichnus Lockley et al. 1998, among others (Wright, 2004).
MVP 428/P/13 presents broader digit impressions than the
other three tracks, likely due to the natural-cast flattening
phenomenon (Lockley & Xing, 2015). In the case of MVP
427/P/13, 428/P/13 and 429/P/13, their general features are
approximately their whole description and they have no other
peculiarities to relate them to a particular ichnotaxon. There-
fore, we classify these footprints as indeterminate dinosaur
footprints.

MPV 430/P/13.1 is the best-preserved specimen from
the Perdomo site. It mainly differs from the typical Late
Triassic–Early Jurassic theropod ichnotaxa Eubrontes Hitch-
cock, 1845, Anchisauripus Lull, 1904 and Grallator Hitch-
cock, 1858 because the former is roughly symmetrical and
presents a metatarsophalangeal pad impression in line with
the axis of the digit III impression, while the latter are
asymmetrical with the metatarsophalangeal pad impression
laterally located.

MPV 430/P/13.1 displays similar ichnotaxobases to some
ichnogenera that belong to the ornithischian ichnofamily
Anomoepodidae Lull, 1904 (i.e. symmetry, position and
the shape of the metatarsophalangeal pad impression and
digital pad impressions; Fig. 3d–f), such as Anomoepus,
Moyenisauropus Ellenberger, 1970, and Shenmuichnus Li
et al. 2012 (Anomoepus-like ichnotaxa in this work). These
ichnogenera share several features (bipedal or quadrupedal
trackways, pentadactyl hand prints and tridactyl or tetradac-
tyl footprints), causing their ichnotaxonomy to be disputed.
For instance, some authors have considered Moyenisaur-
opus as a junior synonym of Anomoepus (Olsen & Galton,
1984; Olsen & Rainforth, 2003), while others argue that
they are different ichnogenera (Gierliński, 1999; Lockley
& Gierliński, 2006; Dalman & Weems, 2013). Li et al.
(2012) suggest that Shenmuichnus has a lower heteropody
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Figure 3. (Colour online) MVC dinosaur footprints. (a) MRPV 427/P/13; (b) MRPV 428/P/13; (c) MRPV 429/P/13; (d) MRPV
430/P/13; (e) false-coloured 3D depth analysis model of MRPV 430/P/13; and (f) contour line map with 1 mm of equidistance of
MRPV 430/P/13. Scale bar: 5 cm. II: digit II impression.

from Moyenisauropus and Anomoepus and the lack of claw
impressions. Gierliński (1991) described Moyenisauropus
more robust than Anomoepus (as in Shenmuichnus; sensu
Xing et al. 2016b) and with subequally lengthened digit
impressions on the manus tracks. The MPV 430/P/13.1
footprint is gracile and preserves claw impressions, so we
propose a relationship with Anomoepus. As noted above,
the manus impression is important in the ichnotaxonomy of
Anomoepus-like ichnotaxa. Close to MPV 430/P/13.1, there
are two traces (MPV 430/P/13.2–3; Fig. 3d–f) that might
be considered as manus impressions. Nevertheless, these
impressions could also be interpreted as part of an undeter-
mined, partial and poorly preserved distinctive trackway.
Lockley & Gierliński (2006) suggested that Anomoepus
is hard to identify with confidence unless both manus
and pes impressions were found. Therefore, we classified
MPV430/P/13.1 as cf. Anomoepus due to its similarity to
this ichnotaxon but lack of a clear manus impression.

5.b. Trackmaker affinity and South American
coetaneous dinosaur diversity

The Anomoepus-like tracks have been related to ornith-
ischian trackmakers by several authors (e.g. Lull, 1904;
Haubold, 1971; Olsen & Galton, 1984; Gierliński, 1991;
Olsen & Rainforth, 2003). A criterion has been the presence
of the dinosaurian pes and the pentadactyl manus impres-
sions (Olsen & Rainforth, 2003). These authors suggest that
the manus track lacks enlarged digit I, II and III impressions,
which is related to the manual phalangeal formula of Ornith-
ischia. Within this clade, basal members of ornithischians,
ornithopods or thyreophorans have been cited as possible

trackmakers (e.g. Thulborn, 1990; Gierliński, 1999; Olsen
& Rainforth, 2003; Li et al. 2012). Therefore, Olsen and
Rainforth (2003) suggested that the producer of Anomoe-
pus was a relatively small, gracile, facultatively bipedal
ornithischian.

As stated above, dinosaur remains are very scarce in the
Rhaetian–Pliensbachian of South America (Barrett et al.
2008, 2014; Martínez, 2009; Apaldetti et al. 2011; Pol,
Garrido & Cerda, 2011; Langer et al. 2014) and the stud-
ied tracks represent the first ichnological record from this
time interval in the region. Moreover, if we are correct in
our appraisal that the trackmaker of MPV 430/P/13.1 was
an ornithischian, then the studied tracks would also repre-
sent the second evidence of the occurrence of this clade in
South America during the same time interval (the first is La-
quintasaura venezuelae Barrett et al. 2014, lowermost Het-
tangian La Quinta Formation, Venezuela). This find could
confirm the presence of ornithischians in Patagonia between
the Norian cf. Heterodontosaurus sp. from the Laguna Col-
orada Formation (Báez & Marsicano, 2001), and the Toar-
cian Manidens condoriensis Pol, Rauhut & Becerra, 2011
and Heterodontosauridae indet. (Becerra et al. 2016) from
the Cañadón Asfalto Formation.

Prior to this study, only one Patagonian dinosaur had
ever been documented from the Rhaetian–Pliensbachian
lapse: the basal sauropodomoph Leonerasaurus Pol,
Garrido & Cerda, 2011, from the Sinemurian–Pliensbachian
Las Leoneras Formation (Cañadón Asfalto basin, Chubut
province; age sensu Cúneo et al. 2013). The scarcity of
vertebrate fossils from the Rhaetian–Pliensbachian time in-
terval strongly contrasts with the abundant known fossil-
bearing horizons from older (e.g. Casamiquela, 1964; Báez
& Marsicano, 2001; Pol & Powell, 2007) and younger (e.g.
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Table 1. Measurements of MVC dinosaur footprints

FL FW II III IV II–III III–IV II–IV
(mm) (mm) (mm) (mm) (mm) (°) (°) (°) AT

MRPV 427/P/13 131 100 55.5 81 61 31 51 68 0.51
MRPV 428/P/13 172? 135?
MRPV 429/P/13 175 127 111 52 0.53
MRPV 430/P/13.1 187 128 71 106 81 19 27 58 0.50

Abbreviations: FL, footprint length; FW, footprint width; II: digit II length; III: digit III length; IV: digit IV length; II–III: angle between
digits II and III; III–IV: angle between digits III and IV; II–IV: angle between digits II and IV; AT: anterior triangle. AT is an index and
therefore dimensionless.

Figure 4. (Colour online) Palaeogeographic reconstruction of the SW Gondwana/Pangaea in the Late Triassic / Early Jurassic (based
on Pankhurst et al. 2000; Golonka, 2007). (a) Regional view of the Gondwana landmass. (b) Detail of the reconstruction showing the
Early Jurassic large igneous provinces of South Gondwana (Chon Aike, Karoo and Ferrar) and the distribution of the fossil localities
mentioned in the text. 1. MVC tracksite; 2. Las Leoneras Formation; 3. Cañón del Colorado and Balde de Leyes formations; 4. Elliot
Formation; and 5. Hanson Formation.

Salgado & Gasparini, 2004; Rauhut & López-Arbarello,
2008; de Valais, 2011; Pol, Rauhut & Becerra, 2011)
deposits.

From out of Patagonia, there are only four records for
the Rhaetian–Pliensbachian time interval in South America:
(1) from Argentina, two basal sauropodomophs, Adeopap-
posaurus mognai Martínez, 2009, and Leyesaurus marayen-
sis Apaldetti et al. 2011, were defined from the Lower Jur-
assic Cañón del Colorado Formation (Martínez, 2009) and
Balde de Leyes Formation (Apaldetti et al. 2011; Colombi
et al. 2015), respectively; and (2) from Venezuela, the
basal ornithischian Laquintasaura venezuelae and the thero-
pod Tachiraptor admirabilis Langer et al. 2014, have been
defined from the lowermost Hettangian La Quinta Forma-
tion (Barrett et al. 2008, 2014; Langer et al. 2014).

In view of the above, the dinosaur footprints studied
herein are an important finding because they provide new

and valuable information about the scarce dinosaur record
from South America during the uppermost Late Triassic–
Early Jurassic. Furthermore, these tracks are the first verteb-
rate ichnological remains in this continent for the Rhaetian–
Pliensbachian interval.

5.c. Biochronological and palaeobiogeographical
inferences

Tetrapod footprints provide important data on the verteb-
rate record, both in space and in time distribution (Lucas,
2007). The footprints related to the Anomoepus-like ichno-
taxa present a widespread geographical distribution and a
particular temporal occurrence. Anomoepus-like footprints
have been identified in the Early Jurassic from: (1) North
America: USA (e.g. Olsen & Rainforth, 2003; Lockley &
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Gierliński, 2006; Dalman & Weems, 2013); (2) Europe: Po-
land (Gierliński, 1991) and Italy (Avanzini, Gierliński & Le-
onardi, 2001); (3) Asia: China (e.g. Lockley & Matsukawa,
2009; Li et al. 2012; Xing et al. 2016b); (4) Oceania: Aus-
tralia (e.g. Thulborn, 1994); and (5) Africa: Lesotho (Ellen-
berguer, 1970).

Other tracks related to the Anomoepus-like ichnotaxa
from the Late Triassic of Poland (Niedźwiedzki, 2011) and
the USA (Baird, 1964), and from the Middle Jurassic of
China (Xing et al. 2015, 2016a) and Morocco (Belvedere
et al. 2011) have been published. However, their ichnotaxo-
nomical affinity or the proposed ages of the tracksites were
questioned. Lockley & Gierliński (2006) suggested that the
Late Triassic tracks from the USA classified as ?Anomoepus
isp. by Baird (1964) are indeed chirotheriid tracks. The Po-
land tracks cf. Anomoepus isp. are partly eroded and slightly
deformed (Niedźwiedzki, 2011), so it is difficult to relate
them with confidence to this ichnogenus. The Middle Jur-
assic Anomoepus-like tracks of Morocco (Belvedere et al.
2011) and the Henan province of China (Xing et al. 2016a)
are similar in shape. These tracks have very slender digit im-
pressions and narrow metatarsophalangeal pad impressions,
being closer to an avian-like ichnotaxon than to Anomoepus.
The Middle Jurassic tracks of Shensipus tungchuanensis
Young, 1966, were first related to theropods (Young, 1966;
Lockley et al. 2013). Recently, Xing et al. (2015) proposed
the new combination Anomoepus tungchuanensis. Actually,
the specimens are lost (sensu Xing et al. 2015), and accord-
ing to the original photographs they are poorly preserved
(e.g. thin layer infill tracks, very shallow anterior surface;
see Young, 1966), so a confident conclusion is not possible.
The Anomoepus tracks from Shaanxi province, also in China
(Xing et al. 2015), originally determined as Middle Jurassic
in age, have recently been included in Lower Jurassic layers
based on detailed stratigraphic work (Wang et al. 2016).

The age of MVC footprints is consistent with the known
temporal distribution of Anomoepus-like tracks and may
represent a spatially near-global biostratigraphic occurrence
(Early Jurassic biochron) of this ichnotaxon (see Haubold,
1986; Lucas, 2007). In addition, this material represents the
unique Anomoepus-like tracks from South America, increas-
ing its record almost worldwide (except in Antarctic rocks).

The palaeobiogeographic connections between the ver-
tebrate Gondwanan palaeofaunas during the Late Triassic–
Early Jurassic have been widely recognized (e.g. Yates,
2003; Langer, 2005; Pol & Powell, 2007; Bittencourt &
Langer, 2011). Similarities have previously been noted
among the basal sauropodomophs from the Norian Los
Colorados Formation, Argentina (age sensu Kent et al.
2014), and the Norian Caturrita Formation, Brazil (age sensu
Langer & Ferigolo, 2013), and the palaeofauna from the
Norian–Rhaetian lower Elliot Formation, southern Africa
(age sensu Knoll, 2005). These similarities support the hy-
pothesis of a palaeofaunal interchange between the south-
ern African and South American tetrapods during the Late
Triassic. The Early Jurassic fauna of South America also
presents phylogenetic affinities with the upper Elliot Form-
ation, southern Africa (Rauhut & López-Arbarello, 2008;
Martínez, 2009; Apaldetti et al. 2011; Pol, Garrido &
Cerda, 2011; Sereno, 2012), although relationships with
other Gondwanan (Antarctica) and Laurasian (China) zones
have also been identified (see Smith & Pol, 2007; Rauhut
& López-Arbarello, 2008; Apaldetti et al. 2011). This hap-
pens with the Early Jurassic footprints studied herein which
are close to Moyenisauripus ichnotaxon from the southern
African upper Elliot Formation (sensu Ellenberger, 1970).
Nevertheless, MPV 430/P/13.1 is also similar to some Early
Jurassic Anomoepus-like tracks found in other places of

Gondwana (Australia; Thulborn, 1994) and Laurasia (North
America, Europe and Asia; e.g. Gierliński, 1991; Avan-
zini, Gierliński & Leonardi, 2001; Olsen & Rainforth, 2003;
Lockley & Gierliński, 2006; Lockley & Matsukawa, 2009;
Li et al. 2012). This idea is consistent with the Jurassic pa-
laeoflora from Patagonia that is comparable with the Antarc-
tica record, but present Pangaean relationships as well (Wilf
et al. 2013).

The break-up of Pangaea initiated during the Early Trias-
sic (see Golonka, 2007, and references therein). Neverthe-
less, South America has remained connected to almost all
the landmass of Pangaea through the Jurassic (Wilf et al.
2013). As well, Rapela et al. (2005) suggested Permian–
Triassic proximity between Patagonia and southern Africa
according to their palaeoflora record (Archangelsky, 1990;
Artabe, Morel & Spalletti, 2003). Additionally, the upper-
most Early Jurassic magmatism of Chon Aike (in which
is included the MVC), Ferrar and Karoo large igneous
provinces has been correlated by many authors and asso-
ciated with a mantle plume precursor of the Weddell Sea
opening and the separation of Gondwanan terranes (Elliot &
Fleming, 2000; Pankhurst et al. 2000; Rapela et al. 2005).
This supports the idea that the current Patagonia, Africa,
Antarctica and others areas of Pangaea were connected dur-
ing the Early Jurassic, at least until the Weddell Sea devel-
opment. Therefore, it is understandable that the Early Juras-
sic palaeofauna from southern South America and especially
Patagonia presents a heterogeneous composition, with ele-
ments of Pangaean distribution, and others with Gondwanan
relationships with prevalent southern African affinities.
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