
Contents lists available at ScienceDirect

Field Crops Research

journal homepage: www.elsevier.com/locate/fcr

Management options for reducing maize yield gaps in contrasting sowing
dates
Lucas N. Vitantonio-Mazzinia,*, Lucas Borrása, Lucas A. Garibaldib, Diego H. Pérezc,
Santiago Galloc, Brenda L. Gambina
a IICAR - CONICET, Concejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental
Villarino S/N, S2125ZAA, Zavalla, Prov. de Santa Fe, Argentina
b Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Sede Andina, Universidad Nacional de Río Negro (UNRN), Mitre 630,
CP8400, San Carlos de Bariloche, Río Negro, Argentina
cAACREA, Asociación Argentina de Consorcios Regionales de Experimentación Agrícola, C1041AAZ, Ciudad Autónoma de Buenos Aires, Argentina

A R T I C L E I N F O

Keywords:
Sowing date
Water table
Stand density
Fertilizer management
Multi-model inference

A B S T R A C T

Optimizing grain production implies defining the best management practices for a set of particular environ-
ments. Argentinean farmers in the central temperate region are sowing maize at two contrasting sowing dates
(September to October and December), exposing their crops to very different growing environments. We tested
the influence of management and environmental variables affecting maize yield at early (ES) or late (LS)
sowings. Our objectives were to (i) determine the most relevant management and environmental yield predictors
for ES and LS, (ii) quantify the magnitude of their effects, and (iii) explore potential yield increments after
optimizing crop management within each sowing. We conducted 91 on-farm multi-environment trials during six
years (2010–2016) around the central temperate region, and analyzed 13 management and environmental
variables.
The most relevant environmental predictors (relative importance>0.50) for both sowing dates included

presence of a water table at sowing, rainfall during the crop cycle, and their interactions. Presence of a water
table had a positive or negative effect for ES or LS, respectively. Management yield predictors varied depending
on the sowing date. Stand density, N and S availability were important yield predictors at ES, while fungicide
use, soil P, and N availability were the most relevant ones at LS. Farmers can increase yield at each sowing date
by optimizing these management practices. Optimizing stand density and N availability in ES can have a
∼3,053 kg ha−1 effect, while fungicide use in LS can increase yield by ∼1040 kg ha−1. Determining the ade-
quate sowing date based on the presence of a water table at sowing can have a ∼1000 kg ha−1 effect. Our results
described specific management options for reducing yield gaps and optimize maize production across con-
trasting sowing dates.

1. Introduction

Global food agricultural production pursuits higher crop yields with
less environmental impact (Foley et al., 2011). To obtain higher yields
farmers need to adequate management decisions to their particular
environmental context (Hatfield and Walthall, 2015). This requires a
detailed understanding of complex management x environment inter-
actions. A recent study reported that today the maize water limited
yield gap for Argentina is around 41 % (or 4810 kg ha−1) (Aramburu
Merlos et al., 2015).

Argentinean farmers in the central temperate region are sowing
their maize crops at two contrasting dates. Early sowing dates (ES) take
place during September-October, while late sowing dates (LS) take
place around December. While ES is traditional for the region, LS be-
came important more recently following the introduction of insect re-
sistant (i.e., Bt) corn in late 1990s. These contrasting sowing dates ex-
pose the crop to different scenarios in terms of temperature, solar
radiation, and water availability (Maddonni, 2012). Late sowing dates
locate the critical flowering period for yield definition (Andrade et al.,
1999) under conditions of higher rainfall probability, lower evaporative
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demand, and lower radiation levels when compared to ES. In con-
sequence, yield potential for LS is, on average, lower. However, LS are
known to confer higher yield stability (Otegui et al., 1996; Mercau and
Otegui, 2014), especially in lower quality soils. Based on this, half of
the maize planted in the central temperate region is currently sown in
each sowing date (PAS. Panorama Agrícola Semanal, 2018).

While farmers need to decide which sowing date is the optimum one
for each particular field paddock, there is also a large level of un-
certainty when comparing the relevance of specific management op-
tions for each sowing date. Stand density and nitrogen (N) fertilization
are known to be important management decisions for ES (Cirilo and
Andrade, 1994; Calviño et al., 2003) and LS (Caviglia et al., 2014;
Gambin et al., 2016; Coyos et al., 2018; Maltese et al., 2019). In LS,
crop protection is supposed to be more relevant due to the higher dis-
ease pressure (Abdala et al., 2018). Water availability appears among
environmental important variables in ES (Podestá et al., 1999;
Maddonni, 2012; Florio et al., 2014), while its yield effect in LS is
limited (Gambin et al., 2016). Relevant predictors, however, have not
been analyzed in a comparative way for ES and LS. This can provide
information to help farmers determine the sowing date that is more
convenient to particular field paddocks, and to understand the value of
specific management options in each sowing date. For this, we con-
ducted a study comparing both sowing dates.

There are several ways to generate information for optimizing grain
production. One is field experimentation, designed to answer a parti-
cular question related to a management variable. For example, ex-
periments under different stand densities to define optimum stand
density, or experiments with different N application rates to define
optimum N doses (Williams et al., 1968; Cerrato and Blackmer, 1990).
Experiments need to be replicated during several years and/or sites to
evaluate the consistency of results or explore potential management x
environment interactions, complicating results interpretation and ex-
trapolation. Although very useful, this approach is time and cost-con-
suming, and results are usually limited to those particular environments
and explored genotypes. Another option is in silico experimentation
(Boote et al., 1996; Passioura, 1996), which allows exploring different
genotype x management x environment combinations as long as the
model structure and validation allows it (Hammer et al., 2014). Simu-
lation models are subject to error and results always have a level of
uncertainty, and field experimentation is always needed to validate
promising management options.

An intermediate approach involves the use of multi-environment
trials (METs), or also called yield comparison trials. They consist in field
trials where a group of genotypes are grown across numerous en-
vironments or locations, representing a specific target region. Although
the main interest of these experiments relies on the performance of
genotypes in a target region of environments (DeLacy et al., 1996),
information about specific management and environmental variables
are usually available. Each trial is generally managed by the farmer in
terms of particular sowing date, fertilizer management, and stand
density, thus providing different combinations of genotype x manage-
ment x environment, and a big potential for exploring the influence of
different management and environmental variables (Gambin et al.,
2016).

In the present manuscript, we studied the influence of different
management and environmental variables at contrasting sowing dates
in the central temperate region of Argentina. Our objectives were to (i)
define the most relevant management and environmental yield pre-
dictors for early and late sowings, (ii) quantify the magnitude of their
effects, and (iii) explore potential yield increments after management
optimization in each sowing date. Given that LS are more recent, we
expected yield gains would be more important in LS compared to ES
after management optimization (based on yield increments).

2. Materials and methods

2.1. Study system

Genotype yield comparison trials for ES and LS were conducted in
farms grouped within CREA Sur de Santa Fe from the Argentine
Association of Regional Consortiums for Agricultural Experimentation
(AACREA). Trials included different locations across central Argentina
(Fig. 1) during six growing seasons (from 2010/2011–2015/2016, re-
ferred as 2010–2015). In total we had 58 and 33 trials for ES and LS,
respectively. There was no clear spatial distribution when sowing dates
were compared based on a heatmap, and visually evident in Fig. 1. The
term “site” will be used herein to define the combination of a particular
experiment in a given sowing date, location, and year. All farm fields
used for trials were managed under no-tillage for a minimum of 15
years, and received no irrigation.

A total of ninety-one maize hybrids from eighteen different seed
companies were tested (Table S1). Genotypes used in ES and LS were
not always the same, and only a proportion of them appeared in both
sowing dates. Genotypic average relative maturity was 120 and 123 for
all early and late sowings, respectively, and ranged from 116 to 128 and
116–129 in early and late sowings, respectively (Table S1). This showed
relative maturities were basically the same when comparing sowing
dates. Trials always had a randomized complete block design with two
or three replicates. Plot size ranged from 6 to 8 rows wide and from 200
to 240m length. Inter-row spacing was always 0.52m.

Each individual trial was managed by the farmer in terms of sowing
date, phosphorous (P) management, nitrogen (N) management, sulfur
(S) management, stand density, and cropped using his commercial
technology (planter, harvesting). This makes the analyzed trials re-
presentative of the maize production system in the region. All experi-
ments were rainfed, and weeds and insects were chemically controlled
using standard practices. Soils are predominantly deep sandy loams
(Typic Hapludoll, Entic Hapludoll, and Haplustoll) and shallow clay
soils (Aquic Argiudoll and Argialboll) (Soil Survey Staff, 2014). Major
soil types represent the most commonly used for maize production on
the region (types I, II, III; Klingebiel and Montgomery, 1961). In-
dividual experiments were entirely fitted within a field portion having
uniform soil characteristics, based on soil taxonomy maps, and similar

Fig. 1. Map of central Argentina showing the location of the environments
tested. Empty yellow circles indicate the 58 trials with an early sowing date,
empty purple circles show the 33 trials with a late sowing date. Solid lines show
province boundaries, and broken lines describe annual rainfall isohyets (700,
900, and 1100mm yr−1) based on data from 1970–2000. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article).
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management of previous crops.
In every trial, soil samples until 60 cm depth were taken before

sowing to determine initial soil proprieties. Soil test included percen-
tage of organic matter (OM) and amount of P and S (ppm) were de-
termined until 20 cm depth, and N-NO3 was determined until 60 cm
depth. Organic matter was determined by semi-micro technique
(Walkley and Black, 1934), and P, S, and N-NO3 was determined by
spectrophotometry. The amount of P, S, and N applied in each trial was
determined by each individual farmer independently, and based on soil
analysis, expected yield, and costs.

Soil available water content was determined at each site to 1m
depth by gravimetric method (Black, 1965). It was converted to mm
ha−1 based on soil apparent density. Apparent soil density was taken
from maps provided by the Argentinean federal agricultural agency
INTA (GeoInta, http://visor.geointa.inta.gob.ar/) for each site. Water
table at sowing was indicated when present at sowing, until 2 m depth.
Rainfall during the crop cycle from sowing to physiological maturity
was recorded at each site.

Grain yield data is presented with 14 % moisture. Harvest was done
with a commercial combine harvester. Yield of each replicate plot was
obtained weighting tractor trailer grain tanks with sensors. Analyzed
sites showed no major weeds, lodging, or disease problems. The first
winter killing frost was always latter than physiological maturity for all
trials.

2.2. Explored predictor variables

Our interest was to identify management and environmental vari-
ables that can latter help predict yield for the two common sowing
dates of our region. For this, we first explored the potential influence of
different predictors on yield. These predictors included quantitative and
qualitative variables. Explored predictors were (Table 1): (i) previous
crop, (ii) sowing date (as days after September 1st for early sowings,
and after November 20th for late sowings), (iii) applied phosphorus (kg
P ha−1; referred as applied P), (iv) soil phosphorus (ppm, 0−20 cm
depth; referred as soil P), (v) soil N at planting (kg N ha−1, 0−60 cm
depth) plus N from applied fertilizer (kg N ha−1; referred as N avail-
ability), (vi) soil sulfur at sowing (kg S ha−1, 0−20 cm depth) plus
fertilizer (kg S ha−1; referred as S availability), (vii) stand density at
harvest (pl ha−1), (viii) foliar fungicide use, as a nominal variable with
two levels (0 for no use and 1 for fungicide use at any timing during the
crop cycle), (ix) presence of a water table at sowing between soil sur-
face and 2m depth, as a nominal variable (0 for absence and 1 for
presence), (x) rainfall during the crop cycle (mm), (xi) soil water
availability at sowing (mm) until 1 m depth, (xii) soil type, as three

levels (soil types I and II, III, and IV-V-VI), and (xiii) soil organic matter
(%, 0−20 cm depth).

Key concepts to consider during data exploration were outliers,
multicollinearity, yield response to each variable, and potential inter-
actions between variables (Zuur et al., 2009). Multicollinearity among
quantitative variables was evaluated by matrix correlations following
Pearson method, and variance inflation factor (VIF) in R (R Core Team,
2018, version 3.5.1; fmsb package; Nakazawa, 2014). Collinearity be-
tween qualitative and quantitative variables was evaluated using gen-
eral linear ANOVA (agricolae package; Mendiburu, 2017). Latitude and
longitude were also included in this correlation analysis as quantitative
variables to explore any possible spatial trends (Table 1). Spatial cor-
relation between management and environmental variables was tested
with Moran test (ape package, Moran.I function; Paradis and Schliep,
2019).

2.3. Statistical analysis and model selection

Databases for ES and LS were treated separately. We used linear
mixed-effects models to assess the influence of different predictors on
grain yield for ES and LS (nlme package, lme function; Pinheiro et al.,
2018). We applied the top-down strategy of model selection process
(Zuur et al., 2009), similarly to Gambin et al. (2016). The top-down
strategy of model selection included four steps (Zuur et al., 2009). First,
we created a “beyond optimal model” that included all potential ex-
planatory variables as fixed effects. Second, we searched for the optimal
structure of the random component. Third, we searched for the optimal
fixed components. And finally, if model showed an important difference
when compared to the other models it was considered as the “best”
model.

We started with the “beyond optimal model”. This model could
contain all explanatory variables and as many interactions as possible.
For our case this is impractical due to the large number of explanatory
variables and interactions. Then, we explored a selection of explanatory
variables that evidenced a yield effect based on data exploration (Zuur
et al., 2009). After data exploration, which involved graphical analysis
of yield response to different predictor variables for each data set, we
defined explanatory variables in the fixed component that were most
likely to contribute to the optimal model for ES and LS. Each overall
partial regression coefficient (β+) was considered a fixed effect re-
flecting the influence of a predictor (e.g., stand density) on grain yield
across all environments at each sowing date. For some variables, a
second-order polynomial function (Yi= α + β1×Xi + β2×Xi2 + εi)
was considered, so we present models with coefficients β1 + β2. Be-
cause yield predictor variables are in different scales, the analysis was

Table 1
Management and environmental variables considered in the analysis for early and late sowing dates, including type, units, and explored range. Nitrogen and sulphur
availabilities are expressed in kg of nutrient ha−1, and represent the amount in the soil (0–60 cm) at sowing plus the amount added with fertilizer.

Variable class Variable Type Units Explored range

Early sowing Late sowing

Management Previous Crop Qualitative – Maize, Soybean Maize, Peanut, Soybean
Sowing date Quantitative days September 8th - November 10th November 27th - January 7th
Applied P Quantitative kg ha−1 0–41 0–35
Soil P Quantitative ppm 6.7–43.8 5.0–46.2
N availability at sowing Quantitative kg ha−1 149–338 132–303
S availability at sowing Quantitative kg ha−1 22–73 18–56
Stand density Quantitative pl ha−1 59,974–100,000 60,000–77,000
Foliar fungicide Qualitative Yes/No – –

Environment Soil class Qualitative – I – III I - VI
Rainfall during the crop cycle Quantitative mm 248–908 218–854
Water table presence Qualitative Yes/No – –
Soil water at sowing Quantitative mm 33–190 56–205
Organic matter Quantitative % 1.23–3.94 1.49–3.44
Latitude Quantitative Degrees −34.23 to -31.36 −34.23 to -32.04
Longitude Quantitative Degrees −63.94 to -60.87 −63.97 to -60.47
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done with standardized variables by z-scores.
The random structure for ES and LS was the same. By including

block nested within genotype, and genotype nested within environment
as random effects, our models estimated different intercepts for each
block, genotype, and environment to account for the hierarchical data
structure. For LS, heterogeneity was incorporated into the model by
using the VarIdent variance structure for the variable fungicide use
(Zuur et al., 2009).

Next, we searched for the optimal fixed structure following multi-
model inference (MMI), based on information-theoretic approach
(Burnham and Anderson, 2004). This approach does not accept the
notion that there is a simple “true model” in biological sciences. Despite
a “true model” could exist, we try to advance to a model that inference
from our results in the simplest and most significant way, and tells us
what “effects” (represented by parameters) can be supported by the
data (Burnham and Anderson, 2004). Based on the context and our
objectives, AIC (Akaike´s information criterion) is the appropriate tool
for model selection when compared to others as BIC (Bayesian’s in-
formation criterion) or hypothesis testing (Aho et al., 2014; Burnham
et al., 2011). Because models have different fixed effects (but similar
random structure), ML (maximum likelihood) estimation was used and
not REML (restricted maximum likelihood).

We calculated a weight of evidence (Akaike weight; ωi) to measure
the relevance of each possible predictor (based on the relative im-
portance, RI) for both sowing dates. The Akaike weights (ωi) represents
the probability for a model i to be the actual “best model” given a set of
considered models. The ωi provide an effective way to scale, and is a
standardized value ranging from 0 to 1, with the sum of ωi of all models
in the candidate set being 1 (Burnham and Anderson, 2004). In many
contexts, the AIC selected best model will include and exclude some
variables, yet this inclusion or exclusion by itself does not distinguish
differential evidence of importance for all yield predictors. In con-
sequence, RI provides a much more representative estimate of evidence
for all predictors (Burnham and Anderson, 2004). The ωi of all models
derived from the MMI, and based on the ωi of all models we calculated
the RI (MuMIn package, importance function; Barton, 2018).

The best model for each sowing date was obtained following a
model averaging approach (Burnham and Anderson, 2004). Model
averaging produces parameters that are not based on one model, but
instead derived from weighted averages across multiple models based
on the ωi. These averaged estimates are a much more stabilized para-
meter in situations where a single best model is highly variable due to
small ΔAIC (Buckland et al., 1997; Lukacs et al., 2010). There are two
average versions, the first one called “full” and the second one called
“natural” or “subset”. The “full” considers that the yield predictor is
included in all models and the estimate is set to zero when the predictor
is not included. The “natural” or “subset” only averages models that
included the predictor. We will refer to the “subset” model average, but
estimates of the “full” model average are also described. The models
included for model averaging had ΔAIC<4 (Burnham and Anderson,
2004).

A sensitivity analysis was made to test potential changes in our
statistical model to specific environments. We used a leaving one out
validation approach (Hastie et al., 2001; Arlot and Celisse, 2010), and
eliminated ten extreme sites (five sites with extreme residuals, and five
sites with extreme variation at the predictor level). Minor changes were
observed (data not shown), and decided to describe the original ana-
lysis with all sites only.

2.4. Yield increment after management optimization at each sowing

We used final models to explore potential yield improvements after
management optimization at each sowing date. For each predictor
variable, we estimated the optimum value and the yield loss for values
other than the optimum. The optimum was defined as the predictor
value to obtain 90 % of maximum yield from simple and quadratic

linear regressions. The definition we used is related to increased yields
to maximum levels for each management decision. Based on our ob-
jectives and the scope of our study we estimated optimum values re-
gardless of the cost/benefit ratio, economic risk, and resource-use ef-
ficiency changes (Sadras and Denison, 2016). We calculated yield losses
based on the difference between the yield at the optimum value of the
predictor and the yield at explored levels other than the optimum. For
each variable we also explored the accumulated frequency of explored
values to help compare with current farmer decisions in each sowing
date. To study how each specific predictor affected yield we kept all the
other parameters constant. This allowed to observe each predictor ef-
fect without interactions with other predictors.

The effect of rainfall was analyzed using the El Niño-Southern
Oscillation (ENSO) phases (Messina et al., 1999). For this, we used
reported values of precipitation for years classified as Niño, Niña, and
Neutral from a historical database from 1931 to 1997 from Pergamino,
a reference city located in the study area. For ES, the considered period
was September to February, with average values of 454, 590, and
641mm for Niña, Neutral, and Niño years, respectively. For LS, the
period ranged from December to April, with average values of 426, 549,
and 580mm for Niña, Neutral, and Niño years, respectively (Messina
et al., 1999).

3. Results

3.1. Management and environmental variation across trials and sowing
dates

Most explored management and environmental variables showed
ample variation across sites, and explored comparable ranges between
sowing dates (Table 1). Stand density, and N and S availability showed
to be slightly higher in ES (p < 0.05; Table 1), and water content at
sowing showed to be higher in LS (p < 0.05; Table 1). Grain yield
variations across trials ranged from 107 to 17,993 kg ha−1 for ES, and
from 1125 to 14,583 kg ha−1 for LS. Fig. 2 describes the explored grain
yields across trials and sowing dates.

Multicollinearity was explored for both sowing dates. In ES, N
availability, S availability, and stand density were higher when a foliar
fungicide was applied (p < 0.05). For this reason, fungicide use at ES
was not considered further. The high correlation between N availability
at sowing and stand density at ES (ρ= 0.48; p < 0.001; Table S2) was
also evident when analyzed the variance inflation factor (VIF > 10;
Burnham and Anderson, 2004). For this reason, N availability at ES was
excluded from the analysis. Other observed correlations were not re-
levant in terms of VIF, and thus all other variables were considered
(Tables S2 and S3). No spatial correlation was found between man-
agement and environmental variables (p > 0.05).

3.2. Model selection

Based on data exploration, management variables that were in-
cluded into “beyond optimal models” for both sowing dates were
sowing date, S availability at sowing, and stand density. Environmental
variables included water table, rainfall during the crop cycle, the in-
teraction between them (i.e., water table x rainfall), and soil water at
sowing. Applied P was included only at ES, while soil P, N availability,
and fungicide use were included in LS (Table 2). The rest of the vari-
ables showed no clear association with yield.

Several predictors consistently appeared in the best models for each
sowing date. This was the case of stand density in ES, fungicide use in
LS, water table, rainfall during the crop cycle, and the interaction be-
tween rainfall and water table in both sowing dates (Table 2). For both
sowing dates, the ten top models (models A to J for ES and LS; Table 2)
based on AIC showed no robust differences on AIC nor ωi, indicating the
absence of a clear “best model”. Nevertheless, the first ten models
showed higher model accuracy (Table 2).
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We further examined the relative importance of all predictors
(Table 3). The most important variables for ES were stand density and N
availability (RI= 1). This result highlighted the relevance of these two
management variables in ES. Other management variables like S
availability and applied P followed in importance, with comparatively
lower RI values (RI∼0.50). For LS, the most relevant management
variables (RI > 0.60) were fungicide use, soil P, and N availability.
However, they all exhibited a lower RI (RI < 0.70) when compared to
the most relevant ones in ES. Environmental variables like water table

and rainfall during the crop cycle showed high and comparable RI for
both sowing dates (RI between 0.70 and 0.80), followed by the inter-
action between them (RI∼0.50; Table 3). Soil water at sowing and
sowing date showed low RI in both sowing dates (RI < 0.40; Table 3).
Stand density and S availability showed the lowest RI values (RI <
0.40; Table 3) among management practices in LS.

Fig. 2. Boxplot of adjusted grain yield (14 % moisture) for the
analyzed 91 trials. Yellow boxplots indicate sites with early
sowings, and purple one’s sites with late sowings. The yellow
dash line indicates the mean yield of all early sown sites
(10,081 kg ha−1) and the purple dash line the mean yield of
all late sown sites (9842 kg ha−1). Each trial had on average
16 genotypes (ranging from 8 to 32) sown with two or three
replicates. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of
this article).

Table 2
Akaike's information criterion (AIC) for mixed-effects models of the potential influence of management and environmental variables on grain yield for early and late
sowing dates. The table describes the best 10 models, plus the model without fixed effects (null model). Each column represents a different predictor variable, uncross
cells indicate variables that were not included in a particular model. AIC measures the relative goodness of fit of a given model, the lower its value the more likely it is
that this model is correct. The Δ column indicates the difference between a model's AIC and that of the best-fitting model. The ωi column express the probability of
being the best model among all possible models, the higher its value the more likely this model is the best model. Models were compared using the maximum
likelihood (ML) method and the same random effects. Data were standardized by z-scores prior to analysis. See materials and methods for further details.

Sowing date Model Management variables Environment variables Model statistics

Stand density S availability Sowing date Applied P Water table Rainfall Rainfall x water table Soil water AIC Δ ωi

Early
A + + + + + 2888.33 0.00 0.08
B + + + + + 2888.48 0.15 0.07
C + + + + 2888.61 0.28 0.06
D + + + + + + 2888.88 0.55 0.06
E + + + + + + 2889.65 1.32 0.04
F + + 2889.82 1.50 0.04
G + + + 2890.10 1.77 0.03
H + + + 2890.18 1.85 0.03
I + + + 2890.30 1.97 0.03
J + + + + + 2890.32 1.99 0.03

Null 2915.07 26.70 0.00

Sowing date Model Stand
density

S availability Sowing date Soil P N availability Fungicide Water
table

Rainfall Rainfall x water
table

Soil water AIC Δ ωi

Late
A + + + + + + 2047.11 0.00 0.03
B + + + + + + + 2047.80 0.69 0.02
C + + + + 2048.03 0.92 0.02
D + + + + + + + + 2048.08 0.98 0.02
E + + + + + + + 2048.13 1.03 0.02
F + + + + + 2048.31 1.21 0.02
G + + + + + + + 2048.32 1.21 0.02
H + + + + + 2048.41 1.30 0.02
I + + + + + 2048.44 1.33 0.02
J + + + + + + 2048.79 1.69 0.01

Null 2054.27 7.16 0.00
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3.3. Model averaging

A model averaging approach was used to estimate regression coef-
ficients (β+) for each yield predictor in each sowing date. This allowed
quantifying the particular influence of each predictor variable on grain
yield across several possible models (Table 3).

When focusing in the variables with higher RI for ES, in decreasing
order, were stand density > water table and its interaction with
rainfall > S availability > applied P (Table 3). Stand density showed
a positive decelerating effect on grain yield, with an average yield in-
crease of 0.28 kg pl−1 (Fig. 3A) until 90,000 pl ha−1. When N avail-
ability is analyzed (instead of stand density) the effect was 27.6 kg kg
N−1 (Fig. 3H. Water table had a positive effect of 1140 kg ha−1

(Fig. 3B) and, when present, a negative effect of rainfall was evident
(-7.2 kg ha−1mm−1; Fig. 3C). Instead, in trials with no water table
influencing the crop rainfall showed a positive yield effect of
1.2 kg ha−1mm−1 (Fig. 3C). Sulphur availability showed an average
yield increase of 110 kg kg S−1 until 41 kg S ha−1, and the yield re-
sponse to applied P was 43 kg kg P−1 (Fig. 3D and E).

For LS, the variables with higher RI were, in decreasing order,
fungicide use > water table and its interaction with rainfall > soil
P > N availability (Table 3). Fungicide use promoted an overall in-
crease in grain yield of 1044 kg ha−1 (Fig. 4C). Contrary to ES, water
table had a negative effect on yield of −938 kg ha−1 (Fig. 4B), and in
fields with an influencing water table rainfall reduced yields at a rate of
1.7 kg ha−1mm−1 (Fig. 4A). In the absence of a water table, rainfall
had a positive yield effect of 4 kg ha−1mm−1 (Fig. 4A). Soil P showed a
positive decelerating yield effect (Fig. 4D) with an average response of
138 kg ha−1 ppm−1 of P at 20 cm depth until 11 ppm. Nitrogen avail-
ability showed a positive yield effect (Fig. 4E) with an overall increase
of 10 kg kg N−1.

In agreement with lower RI values, less important variables at both
sowing dates were soil water at sowing (having a positive effect in both
cases of 4.1 and 7.9 kg ha−1mm−1 for ES and LS, respectively; Figs. 3F

and 4F) and sowing date. Sowing date presented a quadratic curve with
an optimum range (90 % of maximum yield) for both sowings. For ES,
the optimum range spanned from 7th September to 6th November
(Fig. 3G), and for LS the optimum ended in 30th December (Fig. 4G)
with an average decrease of 80 kg ha−1 day−1 after this date. For LS,
additional less important variables were stand density (with a positive
effect of 0.02 kg pl−1; Fig. 4H) and S availability (with an average yield
response of 144 kg kg S−1 until 24 kg S ha−1; Fig. 4I).

3.4. Potential yield increases with management optimization

Estimated regression coefficients were used to explore potential
yield improvements when compared to the average farmer manage-
ment.

In ES, yield losses can be very important if stand density decrease
from the optimum value of 90,000 pl ha−1 (Fig. 5A). At the average
stand density currently used by farmers (77,000 pl ha−1) the yield loss
is 3053 kg ha−1, taking into consideration that this would be under
non-limiting N conditions (i.e., the farmer that adds more plants also
adds more N; Table S2). Forty percent of farmers used fields with no
water table influencing their crops in early sowings, and they could be
losing up to 1742 kg ha−1 whenever rainfall levels are lower than
average, but only 274 kg ha−1 when rainfall levels are higher than
average (Fig. 5B; Table 4).

More than 50 % of farmers explored S availability levels close to
optimum levels in ES (41 kg S ha−1; Fig. 5C), but practically no farmer
applied P at optimum rates (only 12 % of farmers applied more than
32 kg P ha−1; Fig. 5D). Thus, yield gain after optimizing each nutrient
would be more significant for P than for S (Figs. 4C and D, respectively).
The yield loss under the range of explored sowing dates in ES is low
because most farmers are sowing within the optimum period for ES, and
is significant when sowing date is delayed to the middle of November
(up to 880 kg ha−1).

For LS, most farmers (70 %) are losing 1044 kg ha−1 for not

Table 3
Relative importance (RI) and estimated fixed effects (β+) of yield predictors for early and late sowing dates. Subset average is the average effect from models that
contains the particular effect, while full average takes the value of zero for the particular effects that are not appearing in a particular model based on MMI (see
Table 2 and materials and methods for further details). Averaged estimate β+ are standardized by z-scores and non-standardized with their specific units.

Sowing date Fixed effect RI Subset average Full average Unit

z-scores non-standardized z-scores non-standardized

Early
Stand density β1 1.00 0.572 1.1 0.572 1.1 kg pl−1

β2 −0.053 0.0 −0.053 0.0
Water table 0.75 0.352 1140 0.276 895 kg ha−1

Rainfall 0.70 0.055 1.2 0.040 0.9 kg ha−1mm−1

S availability β1 0.56 0.216 206 0.124 118 kg kg S−1

β2 −0.054 −1.5 −0.031 −0.9
Rainfall x Water table 0.48 −0.389 −7.2 −0.214 −4.6 kg ha−1mm−1

Applied P 0.46 0.129 43 0.058 19 kg kg P−1

Soil water 0.29 0.038 4.1 0.009 0.9 kg ha−1mm−1

Planting date β1 0.14 0.042 74 0.002 3.7 kg ha−1 day of delay−1

β2 −0.044 −1.0 −0.002 −0.1

Late
Rainfall 0.82 0.355 4.1 0.338 3.9 kg ha−1mm−1

Water table 0.77 −0.478 −938 −0.440 −865 kg ha−1

Fungicide use 0.66 0.532 1044 0.395 776 kg ha−1

Soil P β1 0.61 0.137 197 0.095 136 kg ha−1 ppm−1

β2 −0.326 −3.7 −0.225 −2.6
N availability 0.61 0.214 10 0.147 7.1 kg kg N−1

Rainfall x Water table 0.55 −0.505 −1.7 −0.427 −4.9 kg ha−1mm−1

Soil water 0.37 0.138 7.9 0.033 1.9 kg ha−1mm−1

Planting date β1 0.36 −0.204 21 −0.062 6.2 kg ha−1 day of delay−1

β2 −0.077 −1.1 −0.024 −0.3
Stand density 0.32 0.046 0.02 0.008 0.003 kg pl−1

S availability β1 0.22 0.057 289 0.009 44 kg kg S−1

β2 −0.136 −3.5 −0.021 −0.5
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applying any foliar fungicide (Fig. 5E; Table 4). Around 30 % of farmers
used fields with the influence of a water table, and they could be losing
up to 1367 kg ha−1 if rainfall levels are higher than average, or
530 kg ha−1 if rainfall levels are below average (Fig. 5F). A similar
proportion of farmers are losing yield (up to 827 kg ha−1) due to low
soil P levels< 11 ppm. The yield loss due to N availability is more
important (up to 1200 kg ha−1), where practically no farmer is crop-
ping with optimum N availability levels for maximum yield (only 10 %
of farmers have more than 250 kg N ha−1; Fig. 5H; Table 4). Stand
density can also increase grain yield in LS, but the response magnitude
is low (up to 187 kg ha−1 when raising stand density from
64,000–75,000 pl ha−1; Table 4). Finally, most farmers (> 70 %) are
sowing at optimum dates for LS, and explored S availability levels are
close to the optimum ones (Fig. 4G; Table 4).

4. Discussion

4.1. Most relevant yield environmental predictors are similar at both sowing
dates but have contrasting effects depending on the particular sowing date

Presence of water table, rainfall during the crop cycle, and their
interaction were very relevant variables affecting yield in both sowing
dates. This is not surprising considering that water availability is the
most relevant yield constraint in rainfed cropping systems (Hall et al.,
1992). The presence of an available water table interacting with the
crop had a positive effect on yield at ES, but a negative effect in LS. This
contrasting response might be a consequence of the differential eva-
porative demand between sowing dates (Maddonni, 2012), together
with the concept of an optimum water table depth. Optimum water
table depth for positive maize yield effects was estimated from 1.40 to
2.45m depth (Nosetto et al., 2009). Higher evaporative demand in ES

Fig. 3. Relationship between grain yield at
early sowing date and stand density (Fig. 3A),
water table (Fig. 3B), rainfall during the crop
cycle (Fig. 3C), S availability at sowing
(Fig. 3D), applied P (Fig. 3E), soil water
availability at sowing (Fig. 3F), and sowing
date (Fig. 3G). Fig. 3H describes the relation-
ship between grain yield and N availability for
early sowing. Variables are presented in order
following their relative yield relevance for
early sowing date (see Table 3). The red solid
and dashed line reflects the “full averaged” and
“subset averaged” β+, respectively, for stand
density (Fig. 3A), water table (Fig. 3B), S
availability at planting (Fig. 3D), applied P
(Fig. 3E), soil water at sowing (Fig. 3F), and
sowing date (Fig. 3G). In Fig. 3C the blue solid
and dashed lines reference the “full averaged”
and “subset averaged” β+, respectively, for
sites with a water table influencing the crop,
while the green solid and dashed lines re-
ference the “full averaged” and “subset aver-
aged” β+, respectively, for sites with no water
table influencing the crop. In Fig. 3C empty
triangles indicate sites with a water table in-
fluencing the crop, and empty squares re-
ference sites with no water table influencing
the crop. In Fig. 3G sowing date is described as
days after September 1 st. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article).
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Fig. 4. Relationship between grain yield at late sowing date and rainfall during the crop cycle (Fig. 4A), water table (Fig. 4B), fungicide use (Fig. 4C), soil P
availability (Fig. 4D), N availability (Fig. 4E), soil water at sowing (Fig. 4F), sowing date (Fig. 4G), stand density (Fig. 4H), and S availability (Fig. 4I). Variables are
presented in order following their relative yield relevance for late sowing (see Table 3). In Fig. 4A the solid and dashed lines reference the “full averaged” and “subset
averaged” β+, respectively, at sites with a water table influencing the crop, while the green solid and dashed lines reference the “full averaged” and “subset
averaged” β+, respectively, for sites with no water table influence. In Fig. 4A empty triangles indicate sites with the presence of a water table, while empty squares
sites with no water table. In Figs. 4B, 4C, 4D, 4E, 4 F, 4 G, 4H, and 4I the red solid and dashed lines reference the “full averaged” and “subset averaged” β+,
respectively. In Fig. 4G sowing date is described as days after November 20th. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Fig. 5. Relationship between yield loss (left axis) and percent of total sites (right axis) with stand density (Fig. 5A), presence of an influencing water table (Fig. 5B), S
availability (Fig. 5C), and applied P (Fig. 5D) for early sowing dates, and fungicide use (Fig. 5E), presence of an influencing water table (Fig. 5F), soil P (Fig. 5G), and
N availability (Fig. 5H) for late sowing dates. The red area represents the mean yield loss for each variable, and the black line represents the accumulated percentage
of total sites for each variable. The green, yellow, and brown areas symbolize the yield loss in years with Niño (above average rainfall), neutral, and Niña (below
average rainfall) events, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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could maintain water tables fluctuating around the optimum range,
while lower evaporative demands in LS might result in water table le-
vels rising above optimum levels. A negative effect of similar magnitude
in LS was recently described for the same region but using an in-
dependent dataset (Gambin et al., 2016).

Also, results showed the yield effect of a higher rainfall during the
growing season will depend on the presence of a water table in both
sowing dates. Higher rainfall in fields with the presence of an influen-
cing water table have yield penalties, higher yields are always evident
with large amounts of rainfall in fields with no water table (Figs. 3C and
4A). High rainfall levels can increase water table levels to depths af-
fecting maize yield (< 1.40m depth, Nosetto et al., 2009), producing
temporal waterlogging, floods, and anoxic conditions (Kuppel et al.,
2015; Lone and Warsi, 2009). Based on our previous study with late
sown maize crops in the region (Gambin et al., 2016) the negative in-
teraction effect of large rainfall events and the presence of a water table
could be expected for LS, but the observed negative effect in ES was not.
This result is suggesting that water table levels might be more fre-
quently closer to soil surface and above the optimum depth than ex-
pected (i.e., 1.40m; Nosetto et al., 2009).

Regardless of sowing date, an available water table can have a po-
sitive or negative yield effect depending on its chemistry, something
that was not considered in our study. It can increase yields based on
nutrient provision (Portela et al., 2009) but can also decrease yields if
salinization occurs (Noory et al., 2009). We did not measure any water
quality parameter in our study.

Results related to the presence of water table and their interaction
with rainfall have important consequences for field assignment. In
fields with the presence of an influencing water table close to surface
farmers should sow early, expecting higher yields at ES. In this case,
only at very high rainfall levels yield penalties will exist.

4.2. Important management yield predictors differ for early and late
sowings

Management decisions differed in relevance and effect on grain
yield at ES and LS. This means that farmers need to optimize different
management variables depending on the particular sowing date. Stand
density and N availability were the most important predictors at ES,
followed by S availability and applied P. Fungicide use, soil P, and N
availability were highly relevant in LS.

Stand density is known to be an important management decision for
optimizing maize grain yield (Westgate et al., 1997; Hashemi et al.,
2005; Hernández et al., 2014). In our study, caution must be taken
when interpreting the described response (Fig. 3A), because farmers
that use higher stand densities are also prone to fertilize with more N.
The yield response to stand density need to be considered as a response

to stand density plus N availability. In agreement to this, the magnitude
of the effect was higher to other studies in the region (Sarlangue et al.,
2007; Antonietta et al., 2014; Amelong et al., 2017). In spite of being a
known important management practice, it is still one of the main
management options farmers need to optimize for increasing yields at
ES. Almost half of the analyzed sites were losing yield because they
were cropped with a lower than optimum stand density.

Nitrogen management is another relevant decision when optimizing
maize grain yield in central Argentina (Alvarez, 2008; Salvagiotti et al.,
2011), being more important at ES than LS. The effect on yield at ES
was 27.6 kg of grain per kg of N, and, again, needs to be interpreted as
the response to N availability under increasing levels of stand density
(Fig. 3H). In agreement to this, the response observed here is higher
than the one reported in other studies (Barbieri et al., 2008; Albarenque
et al., 2016). Sulphur availability also appears as a relevant manage-
ment option at ES, suggesting the importance of a balanced nutrition at
more yielding environments (Pagani et al., 2012; Salvagiotti et al.,
2017). The yield response to N availability at LS is lower (10.3 kg kg
N−1) and comparable to levels reported earlier (Gambin et al., 2016;
Coyos et al., 2018). Yield response values for LS are in agreement to the
expected reductions in N fertilization rates in more limited environ-
ments (Salvagiotti et al., 2011). Similar to stand density, almost half of
the farmers can achieve higher yields if applying more N.

Most Argentinean agricultural systems have a long history of P ex-
ports without replenishment, causing evident decreases in soil P levels
(Rubio et al., 2008; Ciampitti et al., 2011; Sainz Rozas et al., 2012).
Several grain crops (soybean, wheat, and maize) follow a typical yield
saturation response curve at different soil P levels (Sucunza et al.,
2018). For LS, we found the same response with comparable critical
Bray-P thresholds reported by other authors (11.0 vs. 12.5 ppm;
Sucunza et al., 2018). The yield response to soil P was not observed in
ES, but grain yield responded to applied P in ES with a similar response
pattern than the one observed in other studies in the region (Salvagiotti
et al., 2017). This might be related to the relevance of P supply during
early growth stages (Grant et al., 2001). At ES maize is planted with
lower soil temperatures, generating lower P availability (Richardson
and Simpson, 2011). This could explain the significant yield response to
applied P at ES irrespective of soil P values.

The use of foliar fungicides has proved to increase yields at several
environments (Paul et al., 2011; Ruffo et al., 2015; Abdala et al., 2018).
The yield response depends on growing conditions and genotype
(Munkvold et al., 2001; Ruffo et al., 2015). Maize sown at LS is more
susceptible to foliar diseases. In our study we found an important yield
response to the use of fungicides, more than two times higher than the
effect recently reported by other authors (Abdala et al., 2018), but
coincident with other local specific studies testing fungicide yield re-
sponses across commercial genotypes (Accame et al., 2019). Fungicide

Table 4
Potential yield improvement expected after optimizing specific crop management options (optimum management is the value of each variable that helps obtain the
highest yield) based on final coefficient estimates (subset average; Table 3). Expected values for each variable are based on cumulative frequency data, estimating the
value at ∼50 %. For the variables sowing date in both sowing dates, and S availability in late sowings, values are within the critical threshold, so potential yield
improvement should not be expected.

Sowing date Management variable Values Yield improvement

Expected Optimum kg ha−1

Early Stand density 77,000 pl ha−1 90,000 pl ha−1 3053
S availability at sowing 45 kg S ha−1 41 kg S ha−1 0
Applied P 24 kg P ha−1 32 kg P ha−1 344
Sowing date 25th Sep 7th Sep to 6th Nov 0

Late Fungicide use No Yes 1044
Soil P 14 ppm 11 ppm 0
N availability at sowing 210 kg N ha−1 250 kg N ha−1 415
Sowing date 6th Dec Until 30th Dec 0
Stand density 64,000 pl ha−1 75,000 pl ha−1 187
S availability at sowing 36 kg S ha−1 24 kg S ha−1 0

L.N. Vitantonio-Mazzini, et al. Field Crops Research 251 (2020) 107779

9



was more frequently used in fields having higher stand densities and
nutrient availability (N and S) in ES, suggesting this practice is poten-
tially relevant also in ES. Specific experiments controlling this man-
agement are necessary to confirm the effect magnitudes.

4.3. Regional implications for reducing maize yield gaps

Farmers need to optimize their management to their particular
production environments in order to reduce yield gaps (Lobell et al.,
2009). We showed there is room for specific management practices to
be optimized. Our results exhibited yield gap reductions of 3397 and
1646 kg ha−1 for ES and LS, respectively, after management optimiza-
tion. This rejects our initial hypothesis, we expected a higher yield
impact when optimizing management in LS when comparted to ES.

Thirty percent of farmers are sowing at LS in fields with the pre-
sence of an influencing water table, losing from 530 to 1367 kg ha−1

depending on rainfall levels. These fields should be sown in early
sowing dates, increasing yields up to 1742 kg ha−1 if rainfall levels are
lower than average. Management tools to decide sowing date based on
the availability of a water table within a specific depth are currently
available, like groundwater elevation maps (Nosetto et al., 2009),
closed phreatimetric nodes (Aragón et al., 2011), or software tools
(García et al., 2018). Similarly, only a small proportion of farmers ap-
plied fungicides in LS, another management option that can help in-
crease yields. These two simple management decisions can reduce 10 %
(or 1140 kg ha−1; average water table effect on ES) and 9 % (or
1047 kg ha−1; fungicide effect on LS) their specific yield gap, respec-
tively. These two practices can also increase farmers´ net income. We
estimated an increase benefit around 166 US$ ha−1 and 123 US$ ha−1

(increase of 153 US$ ha−1 minus 30 US$ ha-1 of fungicide average
cost), respectively, based on a maize price of US$ 146 tn−1 (BCR. Bolsa
de Comercio de Rosario, 2018) and their yield effect. Another direct
and evident advantage is to decide the sowing date based on soil water
table availability, helping stabilize maize production and reduce asso-
ciated risks (Rizzo et al., 2018).

5. Conclusions

We described relevant specific management decisions and en-
vironmental variables using on data collected from experiments con-
ducted with farmers’ technology in farmers’ fields. The analysis pro-
vided management options to help reduce yield gaps and increase the
cropping efficiency of early and late sown maize crops. Management
decisions related to stand density (∼0.28 kg pl−1), N availability
(27.6 kg kg N−1), and S availability (∼110 kg kg S−1) can help increase
yields in early sowing dates. Fungicide use (∼1044 kg ha−1), soil P
(∼140 kg ppm P−1, until 11 ppm P), and N availability (10 kg kg N−1)
are relevant management options to reduce yield gaps in late sown
crops.

Environmental variables such us rainfall presented a dissimilar ef-
fect depending on the presence or absence of an influencing water
table, but of similar trend for both sowing dates. The combination of an
influencing water table and excessive rainfalls reduced crop yield al-
ways, suggesting that water availability is in excess when the combi-
nation of these two variables are present.

Adequate sowing date for each field paddock needs to consider the
presence or absence of an influencing water table at sowing. It shows a
contrasting effect depending on the sowing date. A positive effect was
found for early sown maize (1140 kg ha−1), and the negative effect
described in an independent earlier study for later sowings (Gambin
et al., 2016) was also detected here (−938 kg ha−1).
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