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A STUDY OF ORTHOGONALITY OF BOUNDED LINEAR

OPERATORS

TAMARA BOTTAZZI1, CRISTIAN CONDE2,3 AND DEBMALYA SAIN4

Abstract. We study Birkhoff-James orthogonality and isosceles orthogonality of

bounded linear operators between Hilbert spaces and Banach spaces. We explore

Birkhoff-James orthogonality of bounded linear operators in light of a new notion in-

troduced by us and also discuss some of the possible applications in this regard. We

also study isosceles orthogonality of bounded (positive) linear operators on a Hilbert

space and some of the related properties, including that of operators having disjoint

support. We further explore the relations between Birkhoff-James orthogonality and

isosceles orthogonality in a general Banach space. Birkhoff-James orthogonality and

isosceles orthogonality and norm attainment set and disjoint support [2010]Primary:

47A63, 51F20. Secondary: 47L05, 47A30.

1. Introduction and preliminaries

The primary purpose of the present paper is to explore orthogonality of bounded linear

operators between Hilbert spaces and Banach spaces. Unlike the Hilbert space case,

there is no universal notion of orthogonality in a Banach space. However, it is possible

to have several notions of orthogonality in such space, each of which generalizes some

particular aspect of Hilbert space orthogonality. Indeed, one of the root causes of the

vast differences between the geometries of Hilbert spaces and Banach spaces is the lack

of a standard orthogonality notion in the later case. On the other hand, this makes the

study of orthogonality of bounded linear operators an interesting and deeply rewarding

area of research. Motivated by this, several authors have explored orthogonality of

bounded linear operators in recent times [1], [4], [6], [7], [9], [10], [18], [19], [20], [21],

[23], [24], [25], [27], [28] and [29], and have obtained many interesting results involving

the geometry of operator spaces. In this paper, among other things, we extend, improve

and generalize some of the earlier results on orthogonality of bounded linear operators.

Without further ado, let us first establish our notations and terminologies to be used

throughout the paper.
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Letters X,Y denote Banach spaces, over the field K ∈ {R,C}. Let BX = {x ∈ X :

‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} be the unit ball and the unit sphere of X

respectively. Let B(X,Y) and K(X,Y) denote the Banach space of all bounded linear

operators and compact operators from X to Y respectively, endowed with the usual

operator norm. We write B(X,Y) = B(X) and K(X,Y) = K(X) if X = Y. The symbol

IX stands for the identity operator on X. We omit the suffix in case there is no confusion.

We reserve the symbol H for a Hilbert space over the field K. Throughout the paper, we

consider only separable Hilbert spaces. In this paper, mostly in the context of bounded

linear operators, we discuss three of the most important orthogonality types in a Banach

space, namely, Birkhoff-James orthogonality [8] and [13], isosceles orthogonality [12] and

Roberts orthogonality [22].

Let us first state the relevant definitions, in the more general setting of a normed

space X over K.

Definition 1.1. For any two elements x, y ∈ X , we say that x is Birkhoff-James or-

thogonal to y, written as x ⊥B y, if for all λ ∈ K, the following holds:

‖x‖ ≤ ‖x+ λy‖. (1.1)

Definition 1.2. For any two elements x, y ∈ X and K = R, we say that x is isosceles

orthogonal to y, written as x ⊥I y, if the following holds:

‖x+ y‖ = ‖x− y‖. (1.2)

In complex normed spaces, we consider the following orthogonality relation

x ⊥I y ⇔

{

‖x+ y‖ = ‖x− y‖

‖x+ iy‖ = ‖x− iy‖.
(1.3)

Definition 1.3. For any two elements x, y ∈ X , we say that x is Roberts orthogonal to

y, written as x ⊥R y, if for all λ ∈ K, the following holds:

‖x+ λy‖ = ‖x− λy‖. (1.4)

It is easy to see that Roberts orthogonality implies Birkhoff-James orthogonality but

the converse is not necessarily true.

In order to have a better description of Birkhoff-James orthogonality of bounded

linear operators between Banach spaces, we introduce the following notation for any

T,A ∈ B(X,Y):

OT,A = {x ∈ SX : Tx ⊥B Ax}.
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Given T ∈ B(X,Y), define the norm attainment set of T as

MT = {x ∈ SX : ‖Tx‖ = ‖T‖}.

As observed in [6], [21], [23], [24] and [26], the structure of the norm attainment set of

a bounded linear operator is of central importance in studying Birkhoff-James orthogo-

nality and smoothness of the said operator. On the other hand, it was illustrated in [18]

that the notion of the norm attainment set of a bounded linear operator is deeply related

to the geometry of the space of bounded linear operators between Banach spaces. In the

context of T ∈ B(H), the corresponding norm attainment set MT was completely char-

acterized in [24]. We would like to remark that Birkhoff-James orthogonality of bounded

linear operators on a finite-dimensional Hilbert space H was completely characterized

by Bhatia and S̆emrl in [6]:

For T,A ∈ B(H), T ⊥B A ⇐⇒ OT,A ∩MT 6= ∅.

This motivates us to explore the structure of OT,A, for two given operators T,A ∈

B(X,Y). In order to study the properties of the set OT,A, in the context of a real

Banach space, we require the following notions introduced in [23].

Definition 1.4. Let X be a real normed space. Let x, y ∈ X . We say that y ∈ x+ if

‖x+ λy‖ ≥ ‖x‖ for all λ ≥ 0. Accordingly, we say that y ∈ x− if ‖x+ λy‖ ≥ ‖x‖ for all

λ ≤ 0.

In this context we would like to remark that while studying orthogonality of bounded

linear operators, Bhattacharyya and Grover [4] also considered the following weaker no-

tion of orthogonality. Let X be a real or complex normed space and let x, y ∈ X . We

say that x is r-orthogonal to y, denoted by x⊥r
By, if ‖x + λy‖ ≥ ‖x‖ for all λ ∈ R. Of

course, it is trivial to observe that in case X is real, x⊥r
By if and only if y ∈ x+ and

y ∈ x−.

The notion of Birkhoff-James orthogonality is intimately connected with the notion of

smoothness in Banach spaces. A non-zero element x ∈ X is said to be a smooth point if

there exists a unique norm one functional f ∈ X∗ such that f(x) = ‖x‖. We would like

to note that the study of smoothness in the space of bounded linear operators between

Banach spaces is an active area of interest, and we refer the readers to [19], [21] and

[26].

For A ∈ B(H), we use the notations A∗, R(A), N(A), to denote the adjoint, the

range and the kernel of A respectively. If A,B are self-adjoint elements of B(H), we
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write A ≤ B whenever 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ H. An element A ∈ B(H) such that

A ≥ 0 is called positive. For every A ≥ 0, there exists a unique positive A1/2 ∈ B(H)

such that A = (A1/2)2. For any B ⊆ B(H), B+ denotes the subset of all positive

operators of B.

For any T ∈ B(H), we can write T = Re(T ) + iIm(T ), where Re(T ) = T+T ∗

2
and

Im(T ) = T−T ∗

2i
are self-adjoint operators. This is the so called Cartesian decomposition

of T .

Let us recall that if M ⊆ H is a closed subspace of H, then PM denotes the orthogonal

projection onto M of H.

For any compact operator A ∈ K(H), let s1(A), s2(A), · · · be the singular values of

A, i.e., the eigenvalues of the “absolute value-norm” |A| = (A∗A)
1

2 of A, in decreasing

order and repeated according to multiplicity.

The notion of unitarily invariant norm (UIN) can be defined for operators on Hilbert

spaces as a norm |||.||| that satisfies the invariance property |||UXV ||| = |||X|||, for any

pair of unitary operators U, V ∈ B(H). Recall that each UIN is defined on a natural

subclass J ⊆ K(H), called the norm ideal associated with the norm |||.|||.

If A ∈ K(H) and p > 0, let

‖A‖p =

(

∞
∑

i=1

si(A)
p

)
1

p

= (tr|A|p)
1

p , (1.5)

where tr is the usual trace functional, i.e. tr(A) =
∑∞

j=1
〈Aej , ej〉, and {ej}

∞
j=1 is an

orthonormal basis ofH. Equality (1.5) defines a norm (quasi-norm) on the ideal Bp(H) =

{A ∈ K(H) : ‖A‖p < ∞} for 1 ≤ p < ∞ (0 < p < 1), called the p-Schatten class.

The study of orthogonality of bounded linear operators is also related to the following

notion of operators having disjoint support.

Definition 1.5. Let H be a real or complex Hilbert space. Two operators A,B ∈ B(H)

have disjoint support if and only if AB∗ = B∗A = 0.

We would like to remark that the above definition is not the original one introduced

by Arazy in [3], but nevertheless it was proved by Lioudaki in Proposition 2.1.8 of [17]

that both notions are equivalent in Bp(H). We also refer the readers to [14] for a related

notion of algebraic orthogonality in the setting of C∗−algebras.

2. Brief outline of the paper

The main results of this paper are demarcated into three sections. In Section 3, we

exclusively study Birkhoff-James orthogonality of bounded linear operators between
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Hilbert spaces and Banach spaces. As mentioned in Remark 3.1 of [6], the finite-

dimensional Bhatia-S̆emrl theorem can be extended to the setting of infinite-dimensional

Hilbert spaces by considering norming sequences for a bounded linear operator, instead

of norm attaining vectors corresponding to the said operator. However, we show that

even in case of bounded linear operators between infinite-dimensional Banach spaces,

it is possible to extend the the finite-dimensional Bhatia-S̆emrl theorem verbatim, un-

der certain additional assumptions. Let us mention here that our observations in this

context can be regarded as an extension of Theorem 3.1 and Theorem 4.1 of [28],

where only the real case was considered. We also explore the properties of the set

OT,A = {x ∈ SX : Tx ⊥B Ax}, for any T,A ∈ B(X,Y) and obtain a characterization for

a Hilbert space to be finite-dimensional in terms of this newly introduced notion. The

study of OT,A may be regarded as complementary to the study of MT done in [21], [23],

[25] and [26]. In Section 4, we focus on orthogonality of bounded linear operators and

positive operators on a Hilbert space. We give a complete characterization for isosceles

orthogonality of two positive bounded linear operators. In Section 5, we discuss some

relations between the two orthogonality types, Birkhoff-James orthogonality and isosce-

les orthogonality. Our results in this section are valid in the context of any normed

space and not just for operators between Banach spaces. We end the present paper

by giving examples in the space of bounded linear operators to illustrate that Roberts

orthogonality is much stronger (and therefore, restrictive) than either of Birkhoff-James

orthogonality and isosceles orthogonality.

3. Birkhoff-James Orthogonality of bounded linear operators

We begin this section by obtaining a verbatim extension of the finite-dimensional

Bhatia-S̆emrl theorem to the infinite-dimensional setting, with an additional assumption

on the norm attainment set of one of the operators. We would like to remark that such

an extension was obtained by Wójcik in [28], in the context of real Banach spaces, with

additional geometric assumptions of strict convexity and smoothness on the range space.

However, we cover the cases of both real and complex Banach spaces.

Theorem 3.1. Let X and Y be Banach spaces, either both real, or, both complex. Let

X be reflexive. Let T,A ∈ K(X,Y) be such that MT = {±x0} in the real case and

MT = {eiθx0 : θ ∈ [0, 2π)} in the complex case, where x0 ∈ SX. Then T⊥BA if and only

if OT,A ∩MT 6= ∅.

Proof. The sufficient part of the theorem is trivially true. Let us prove only the necessary

part. We will give the proof only for the complex case. The real case can be treated
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similarly, by applying Theorem 2.1 of [26]. Since X is reflexive, T,A ∈ K(X,Y), and

T⊥BA, it follows from Theorem 2.3 of [20] that given any α ∈ U = {β ∈ C : |β| =

1, arg β ∈ [0, π)}, there exist x = x(α), y = y(α) ∈ MT such that Ax ∈ (Tx)+α = {z ∈

X : ‖Tx + λz‖ ≥ ‖Tx‖ ∀λ = tα, t ≥ 0} and Ay ∈ (Ty)−α = {z ∈ X : ‖Ty + λz‖ ≥

‖Ty‖ ∀λ = tα, t ≤ 0}. Since MT = {eiθx0 : θ ∈ [0, 2π)}, we have that x = eiθ1x0 and

y = eiθ2x0, for some θ1, θ2 ∈ [0, 2π). From this, using the linearity of T, it is easy to

deduce that Tx0⊥BAx0. In particular, it follows that OT,A ∩MT 6= ∅. This completes

the proof of the necessary part of the theorem and establishes it completely. �

Let us now study the set OT,A, when T,A ∈ B(X,Y) are given. As an immediate

application of the set OT,A, in the following proposition, we obtain an easy sufficient

condition for Birkhoff-James orthogonality of two bounded linear operators T,A in terms

of the set OT,A. The proof of the proposition is omitted as it is rather trivial. We would

like to note that the following proposition implies that unless T⊥BA, OT,A cannot be

the whole of SX.

Proposition 3.2. Let X,Y be any two Banach spaces, either both real, or, both complex.

Let T,A ∈ B(X,Y). If OT,A = SX then T⊥BA.

On the other hand, in somewhat opposite direction to the above result, we next obtain

a necessary condition for Birkhoff-James orthogonality of two compact linear operators

T,A ∈ K(X,Y), in terms of the set OT,A, when X is a reflexive real Banach space and

Y is any real Banach space. We would like to remark that the following theorem is

motivated by Theorem 2.1 of [25], with suitable modifications. Therefore, for the sake

of brevity, we make use of some of the arguments used in the proof of Theorem 2.1 of

[25].

Theorem 3.3. Let X be a reflexive real Banach space and Y be any real Banach space.

Let T,A ∈ K(X,Y). If T⊥BA then OT,A 6= ∅.

Proof. If possible, suppose that OT,A = ∅. Therefore, it follows that given any x ∈ SX,

there exists λx 6= 0 such that ‖Tx+ λxAx‖ < ‖Tx‖. Let us consider the following two

sets:

V1 = {z ∈ SX : ‖Tz + λAz‖ < ‖Tz‖ for some λ > 0},

V2 = {z ∈ SX : ‖Tz + λAz‖ < ‖Tz‖ for some λ < 0}.

It is easy to check that both V1 and V2 are open subsets of SX. Applying the convexity of

norm, it is also easy to check that V1∩V2 = ∅. Moreover, it follows from our assumption

of OT,A = ∅ that SX = V1 ∪ V2. Since SX is connected, it follows that either V1 = ∅ or
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V2 = ∅. Now, we will arrive at a contradiction in each of these two cases to complete

the proof of the theorem. Since T,A ∈ K(X,Y) and T⊥BA, it follows from Theorem

2.1 of [26] that there exists x, y ∈ MT such that Ax ∈ (Tx)+ and Ay ∈ (Ty)−. We note

that for any z ∈ SX, z ∈ OT,A if and only if Az ∈ (Tz)+ and Az ∈ (Tz)−. Since we have

assumed that OT,A = ∅, we must have, x ∈ V2 and y ∈ V1. This proves that V1 6= ∅ and

V2 6= ∅. This contradiction completes the proof of the theorem. �

As another application of the set OT,A, we show that it is possible to characterize

whether a given Hilbert space is finite-dimensional, using this concept.

Theorem 3.4. A real or complex Hilbert space H is finite-dimensional if and only if

for any T,A ∈ B(H), we have, T⊥BA =⇒ OT,A 6= ∅.

Proof. We would like to note that the necessary part of the theorem follows directly

from the Bhatia-S̆emrl theorem. Let us prove the sufficient part. If possible, suppose

that H is infinite-dimensional. It follows that there exists a countable orthonormal basis

{en : n ∈ N} of H. Define linear operators T and A in B(H) in the following way:

Te1 =
1

2
e1, T en = (1− 1

n
)en for all n ≥ 2 and Aen = 1

n
en. An easy computation reveals

that the following are true:

(i) ‖T‖ = ‖A‖ = 1, (ii) T⊥BA, and (iii) OT,A = ∅.

However, this contradicts our assumption that T⊥BA ⇒ OT,A 6= ∅. This completes

the proof of the theorem. �

Remark 3.5. Characterization of inner product spaces among normed spaces is a clas-

sical problem in functional analysis. We refer the readers to the excellent book [2]

for more information in this regard. In recent times, in connection with the Bhatia-

S̆emrl theorem, Beńıtez, Fernández and Soriano [7] have obtained a characterization of

finite-dimensional real Hilbert spaces among real Banach spaces. The above theorem is

motivated in the same spirit, and it is valid for both real and complex Banach spaces.

From Theorem 2.2 of Sain and Paul [25], it follows that in case of T ∈ B(H), where H

is a real or complex Hilbert space, the corresponding norm attainment set MT is either

empty or it is the unit sphere of some subspace of H. Motivated by this result, it is

natural to pose the following problem:

For which operators T,A ∈ B(H), it is true that OT,A is the unit sphere of some

subspace of H?
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In the next proposition, we give a sufficient condition for T,A ∈ B(H) to be such that

OT,A is the unit sphere of some subspace of H.

Proposition 3.6. Let H be a real or complex Hilbert space. Let us consider the following

set:

Γ = {(T,A) ∈ B(H)× B(H) : 〈Tx1, Ax2〉+ 〈Tx2, Ax1〉 = 0

if 〈Tx1, Ax1〉 = 〈Tx2, Ax2〉 = 0}

Then for any (T,A) ∈ Γ, either OT,A = ∅ or OT,A = SM , where M is a subspace of

H.

Proof. It is enough to prove that if x1, x2 satisfy 〈Tx1, Ax1〉 = 〈Tx2, Ax2〉 = 0 then

〈T (x1 + x2), A(x1 + x2)〉 = 0 and 〈Tλx1, Aλx1〉 = 0 for all λ ∈ C. We observe that the

second condition is trivially true. On the other hand, the first condition holds true since

by the hypothesis, we have,

〈T (x1 + x2), A(x1 + x2)〉 = (〈Tx1, Ax1〉+ 〈Tx2, Ax2〉) + (〈Tx1, Ax2〉+ 〈Tx2, Ax1〉) = 0.

This completes the proof of the proposition. �

Remark 3.7. It is trivial that if T,A ∈ B(H) have disjoint support then (T,A) ∈ Γ.

However, it is interesting to note that Γ contains pairs of operators that do not have

disjoint support. Let M,N be finite-dimensional subspaces of H such that M ( N . We

consider PM and PN to be the orthogonal projections on M and N respectively. By the

hypothesis, we have that PMPN = PNPM = PM . Let us choose 0 6= x ∈ M⊥ ∩ N with

‖x‖ = 1. It is easy to see that PN⊥BPM , since x ∈ MPN
and 〈PNx, PMx〉 = 〈PMx, x〉 = 0.

On the other hand, 0 = 〈PNy, PMy〉 = 〈PMy, y〉 = ‖PMy‖2 if and only if y ∈ M⊥.

Let x1, x2 ∈ M⊥, then 〈PNx1, PMx2〉 + 〈PNx2, PMx1〉 = 〈PMx1, x2〉 + 〈PMx2, x1〉 = 0.

Therefore, we have proved that the following three statements hold true:

(i) (PN , PM) ∈ Γ (ii) PN⊥BPM and (iii) PN , PM do not have disjoint support.

4. Orthogonality in B(H)

We begin this section by proving that in the context of bounded linear operators on a

Hilbert space, disjoint support implies both Birkhoff-James orthogonality and isosceles

orthogonality.

Proposition 4.1. Let A,B ∈ B(H), where H is a real or complex Hilbert space, such

that B∗A = 0 , then the following holds:

(1) A⊥BB and B⊥BA.
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(2) A ⊥R B and in particular, A⊥IB.

Proof. (1) Consider h ∈ SH. Then for any λ ∈ K

‖(A+ λB)h‖2 = ‖Ah‖2 + ‖λBh‖2 + 2|λ|2Re 〈B∗Ah, h〉 = ‖Ah‖2 + ‖λBh‖2,

where Re(z) denotes the usual real part of z ∈ K. Therefore, ‖A + λB‖2 ≥

‖(A+ λB)h‖2 ≥ ‖Ah‖2 for all h ∈ SH, which implies that ‖A+ λB‖ ≥ ‖A‖ for

any λ ∈ K. Interchanging the roles of A and B, we can obtain in a similar way

that B⊥BA.

(2) If A,B ∈ B(H) satisfy B∗A = 0, then for any λ ∈ K, we have,

‖A+ λB‖2 = sup{‖(A+ λB)h‖2 : h ∈ SH}

= sup{‖Ah‖2 + ‖λBh‖2 : h ∈ SH} = ‖A− λB‖2.
(4.1)

This completes the proof of the second part of the proposition and establishes it

completely. �

Remark 4.2. (1) In particular, it follows from our previous result that for operators

having disjoint support, Birkhoff-James orthogonality relation is symmetric.

(2) From inequality (4.1), we can conclude that if R(A) and R(B) are orthogonal

sets then they are Roberts orthogonal operators. We will prove that a similar

result holds when we consider any ||| · ||| UIN.

Let A,B ∈ J , where J denotes the norm ideal associated with the norm, such

that B∗A = 0. It follows that |B + λA| = |B − λA| for all λ ∈ K and therefore

it turns out that sj(B + λA) = sj(B − λA) for any j ∈ N and |||B + λA||| =

|||B − λA|||.

However, not every pair of operators A,B ∈ B(H), such that A⊥BB or A⊥IB, have

disjoint support. This idea can be illustrated in the next example.

Example 4.3. (1) Finite dimensional case: Let H be the two-dimensional real

Hilbert space. We consider Let A =

(

4 0

0 3

)

and B =

(

0 0

0 1

)

. Then,

(a) ‖A+B‖ = ‖A−B‖ = 4 and

(b) A∗B =

(

0 0

0 3

)

,

which implies that A,B do not have disjoint support.

(2) Infinite dimensional case: Let {en}n∈N be an orthonormal basis for H a complex

Hilbert space. Define operators A,B : H → H such that

Aen = λnen and Be1 = 0, Ben = λnen+1 ∀ n ≥ 2,
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with λn ∈ C and |λn| = 1. Observe that ‖Ax‖ = ‖x‖ for all x ∈ H.

Since ‖Ae1‖ = ‖e1‖ = 1 = ‖A‖ and Be1 = 0, it follows that A⊥BB. On the

other hand, A and B do not have disjoint support, since

A∗Ben = A∗(λnen+1) = λn(A
∗en+1) = λnλn+1en+1 6= 0.

Hereafter, unless otherwise mentioned, we consider H to be a real Hilbert space.

Theorem 4.4. Let A,B ∈ B(H) and suppose that there exists h0, k0 ∈ H such that

h0 ∈ MA+B and k0 ∈ MA−B. Then the following assertions are true.

(1) If 〈Ah0, Bh0〉 ≤ 0 and 〈Ak0, Bk0〉 ≥ 0, then A⊥IB.

(2) If A⊥IB then 〈Ah0, Bh0〉 ≥ 0 and 〈Ak0, Bk0〉 ≤ 0.

Proof. (1) Assume that all the conditions of the statement are satisfied. Let f, g :

H → R be given by

f(h) = ‖(A+B)h‖2 = ‖Ah‖2 + ‖Bh‖2 + 2 〈Ah,Bh〉 and

g(h) = ‖(A− B)h‖2 = ‖Ah‖2 + ‖Bh‖2 − 2 〈Ah,Bh〉 . (4.2)

Then, f(h)− g(h) = 4 〈Ah,Bh〉 . Suppose that

g(k0) = ‖A− B‖2 < ‖A+B‖2 = f(h0) ⇒ g(h0) ≤ g(k0) < f(h0).

Thus, 0 < f(h0) − g(h0) = 4 〈Ah0, Bh0〉, which is a contradiction. Hence,

g(k0) ≥ f(h0). Analogously, it can be proved that f(h0) ≥ g(k0). Finally,

‖A+ B‖2 = f(h0) = g(k0) = ‖A− B‖2,

which implies A⊥IB.

(2) We only prove the first inequality, the other can be obtained with a similar

argument. By the real polarization formula we get

〈Ah0, Bh0〉 =
1

4
[‖(A+B)h0‖

2 − ‖(A− B)h0‖
2] ≥

1

4
[‖A+B‖2 − ‖A−B‖2] = 0.

�

Remark 4.5. Suppose that in Theorem 4.4, h0 and k0 also satisfy

〈Ah0, Bh0〉 = 〈Ak0, Bk0〉 = 0.

Then, there exists h1 ∈ SH such that ‖(A+B)h1‖ = ‖(A−B)h1‖.

It can be easily proved using polarization formula and hypothesis,

0 = 〈Ah0, Bh0〉 =
1

4

[

‖(A+B)h0‖
2 − ‖(A− B)h0‖

2
]
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and this implies ‖(A−B)h0‖ = ‖(A+B)h0‖ = ‖(A−B)k0‖, where last equality is due

to isosceles orthogonality between A and B previously proved. By a similar argument,

it can be proved that ‖(A + B)k0‖ = ‖(A + B)h0‖. The proof is completed by taking

h1 ∈ {h0; k0}.

The following result combines Theorem 4.4 and last remark.

Corollary 4.6. Let A,B ∈ B(H) and suppose that there exists h1 ∈ MA+B ∩ MA−B

such that 〈Ah1, Bh1〉 = 0. Then A⊥IB,

‖A‖2 + ‖B‖2 ≤ ‖A+B‖2 + ‖A− B‖2 ≤ 2
(

‖A‖2 + ‖B‖2
)

,

and if h1 /∈ N(A) ∪N(B) then ‖A+B‖2 = ‖A− B‖2 = 2.

Proof. It was proved in Theorem 4.4 that, under these hypothesis, A⊥IB. Moreover,

‖A+B‖2 = ‖(A+B)h1‖
2 = ‖Ah1‖

2 + ‖Bh1‖
2 ≤ ‖A‖2 + ‖B‖2 and

‖A−B‖2 = ‖(A− B)h1‖
2 = ‖Ah1‖

2 + ‖Bh1‖
2 ≤ ‖A‖2 + ‖B‖2.

Then,

‖A+B‖2 + ‖A−B‖2 ≤ 2
(

‖A‖2 + ‖B‖2
)

.

On the other hand,

‖A‖2 + ‖B‖2 ≤ 2max(‖A‖2; ‖B‖2) ≤ ‖A+B‖2 + ‖A−B‖2,

Finally, it is easy to see that

‖(A+B)h1‖
2‖Bh1‖

2 − ‖Ah1‖
2‖Bh1‖

2 = |〈(A+B)h1, Bh1〉|
2 − |〈Ah1, Bh1〉|

2.

If we assume that h1 /∈ N(A) ∪N(B), then ‖A+ B‖2 = 1 + ‖Ah1‖
2. By symmetry we

obtain that ‖A+B‖2 = 1 + ‖Bh1‖
2.

Now, by the Parallelogram law we get

‖A+B‖2 + ‖A− B‖2 = ‖(A+B)h1‖
2 + ‖(A− B)h1‖

2 = 2(‖Ah1‖
2 + ‖Bh1‖

2).

It follows that ‖Bh1‖ = 1 and ‖A+B‖2 = 2. �

The following result is other characterization of isosceles orthogonality of bounded

linear operators in finite-dimensional real Hilbert spaces, with an additional condition.

Theorem 4.7. Let H be a finite-dimensional real Hilbert space with dim(H) = n and

A,B ∈ B(H). Suppose that MA+B = SH1
, MA−B = SH2

, and dim(H1) + dim(H2) > n.

Then, the following statements are equivalent:

(1) A⊥IB.
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(2) There exists x0 ∈ MA+B ∩MA−B such that 〈Ax0, Bx0〉 = 0

Proof. Suppose that statement (1) holds. Since dim(H1) + dim(H2) > n, there exists

0 6= x1 ∈ H1 ∩ H2. Consider x0 =
x1

‖x1‖
, then x0 ∈ MA+B ∩MA−B. Also, by hypothesis

and real polarization formula

〈Ax0, Bx0〉 =
1

4

(

‖(A+B)x0‖
2 − ‖(A−B)x0‖

2
)

=
1

4

(

‖A+B‖2 − ‖A−B‖2
)

= 0.

Conversely, the other implication is a consequence of Corollary 4.6. �

Remark 4.8. If H is a complex Hilbert space, isosceles orthogonality must be defined

as in (1.3) and the previous statements can be generalized to this context with proofs

which are essentially the same as the real case. For example, in case of a complex Hilbert

space H, Theorem 4.7 can be stated in the following way:

Let A,B ∈ B(H) with dim(H) = n. Suppose that there exist W1,W2,H1,H2 sub-

spaces of H such that
{

MA+B = SH1
, MA−B = SH2

and dim(H1) + dim(H2) > n,

MA+iB = SW1
, MA−iB = SW2

and dim(W1) + dim(W2) > n.

Then, the following statement are equivalent:

(1) A⊥IB.

(2) There exist

{

h0 ∈ MA+B ∩MA−B such that Re 〈Ah0, Bh0〉 = 0,

k0 ∈ MA+iB ∩MA−iB such that Re 〈Ak0, Bk0〉 = 0.

In the cone of positive operators between Hilbert spaces, as in a real normed space,

we use isosceles orthogonality notion as in (1.2). Kittaneh proved in [16], that if A,B ∈

B(H)+, then

max(‖A‖, ‖B‖)− ‖A1/2B1/2‖ ≤ ‖A− B‖

≤ max(‖A‖, ‖B‖) ≤ ‖A +B‖

≤ max(‖A‖, ‖B‖) + ‖A1/2B1/2‖.

(4.3)

The above inequalities are useful in the study of isosceles orthogonality in B(H)+. As an

immediate consequence, we deduce that if A,B are positve operators and A1/2B1/2 = 0,

then A⊥IB.

Proposition 4.9. Let A,B ∈ B(H)+. Then, the following conditions are equivalent:

(1) A⊥IB.

(2) ‖A+B‖ = ‖A− B‖ = max(‖A‖, ‖B‖).
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Proof. (1) ⇒ (2) Suppose that A⊥IB. Equation (4.3) states

‖A− B‖ ≤ max(‖A‖, ‖B‖) ≤ ‖A+B‖

for any A,B ∈ B(H)+. The desired result is now immediate.

The converse implication is trivial. �

In order to simplify the exposition, we introduce the following notations. Given

A,B ∈ B(H) we define

M(A,B) =

{

A if ‖B‖ ≤ ‖A‖

B if ‖A‖ < ‖B‖

and

m(A,B) =

{

B if ‖B‖ ≤ ‖A‖

A if ‖A‖ < ‖B‖
.

In the next statement we obtain a characterization for isosceles orthogonality when

A and B are positive operators.

Theorem 4.10. Let A,B ∈ B(H)+, then A⊥IB if and only if there exists a sequence

{xn} ⊂ SH such that lim
n→∞

‖M(A,B)xn‖ = ‖A+B‖ and lim
n→∞

Re〈BAxn, xn〉 ≤ 0.

Proof. Let A⊥IB. By Proposition 4.9 we have ‖A+B‖ = ‖A− B‖ = max(‖A‖, ‖B‖).

Let {xn} a sequnce of unit vectors in H such that lim
n→∞

‖M(A,B)xn‖ = ‖A+B‖. Since

{(A + B)xn} is a bounded sequence, it has a convergent sequence and without loss of

generality we assume that

lim
n→∞

‖(A+B)xn‖
2 ≤ ‖A+B‖2 = lim

n→∞
‖M(A,B)xn‖

2.

Thus lim
n→∞

‖m(A,B)xn‖
2 + 2Re〈BAxn, xn〉 ≤ 0 and lim

n→∞
Re〈BAxn, xn〉 ≤ 0.

Conversely, by the hypothesis there exists a sequence {xn} ⊂ SH such that ‖A+B‖ =

lim
n→∞

‖M(A,B)xn‖ and lim
n→∞

Re〈BAxn, xn〉 ≤ 0. From the first condition we have that

‖A + B‖ = max(‖A‖, ‖B‖). Suppose that A and B are not isosceles orthogonal, this

means that ‖A− B‖ < ‖A+B‖. Hence, we have

lim
n→∞

‖(A− B)xn‖
2 ≤ ‖A− B‖2 < ‖A+B‖2 = lim

n→∞
‖M(A,B)xn‖

2.

This implies that 0 ≤ lim
n→∞

‖(A+B)xn‖
2 < lim

n→∞
2Re〈BAxn, xn〉, which is a contradiction.

Therefore, A⊥IB. �

As a consequence of the previous statement, we have the following characterization of

the isosceles orthogonal condition for elements of B(H)+ such that Re(BA) ≥ 0. This

extra condition is well known and it is related with acreetive operator theory. We recall
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that an operator T ∈ B(H) is called acreetive if in its Cartesian decomposition Re(T )

is positive.

Corollary 4.11. Let A,B ∈ B(H)+ and suppose that BA is acreetive, then A⊥IB if

and only if there exists a sequence {xn} ⊂ SH such that lim
n→∞

‖(A + B)xn‖ = ‖A + B‖

and lim
n→∞

〈BAxn, xn〉 = 0.

Proof. Let A⊥IB. ByTheorem 4.10, there exists a sequence of unit vectors in H, {xn},

such that lim
n→∞

‖M(A,B)xn‖ = ‖A+B‖ and lim
n→∞

Re〈BAxn, xn〉 ≤ 0. It follows from

‖M(A,B)xn‖
2 ≤ ‖M(A,B)xn‖

2 + ‖m(A,B)xn‖
2 + 2Re〈BAxn, xn〉

= ‖(A+B)xn‖
2 ≤ ‖A+B‖2,

that lim
n→∞

‖(A+B)xn‖ = ‖A +B‖, lim
n→∞

‖m(A,B)xn‖ = 0 and lim
n→∞

Re〈BAxn, xn〉 = 0.

Since |〈BAxn, xn〉| ≤ ‖M(A,B)xn‖‖m(A,B)xn‖ we infer that lim
n→∞

〈BAxn, xn〉 = 0.

Conversely, by the hypothesis there exists a sequence {xn} ⊂ SH such that lim
n→∞

‖(A+

B)xn‖ = ‖A + B‖ and lim
n→∞

〈BAxn, xn〉 = 0. Suppose that A and B are not isosceles

orthogonal, then ‖A− B‖ < ‖A+B‖. Hence we have

lim
n→∞

‖(A− B)xn‖
2 ≤ ‖A−B‖2 < ‖A+B‖2 = lim

n→∞
‖(A+B)xn‖

2.

This implies that 0 < 4 lim
n→∞

Re〈BAxn, xn〉, which is contradiction. Therefore, A⊥IB.

�

Corollary 4.12. Let A,B ∈ B(H)+ and suppose that BA is acreetive. If A⊥IB then

A⊥BB or B⊥BA.

Remark 4.13. Let A,B ∈ B(H) such that A,B > 0 (i.e. positive and invertible). We

will prove that A can not be isosceles orthogonal to B. Indeed, suppose that A⊥IB.

Using formulas (26) and (27) in [16] we have

max(‖A‖, ‖B‖) + min(‖A−1‖−1, ‖B−1‖−1) ≤ ‖A+B‖

= ‖A−B‖ ≤ max(‖A‖, ‖B‖)−min(‖A−1‖−1, ‖B−1‖−1),

⇒ 0 < 2min(‖A−1‖−1, ‖B−1‖−1) ≤ 0,

which is a contradiction.

A natural question is whether A and B can be Birkhoff-James orthogonal. Suppose

that A⊥BB, then for any λ > 0, we have,

‖A‖ ≤ ‖A− λB‖ ≤ max(‖A‖, λ‖B‖)−min(‖A−1‖−1, λ‖B−1‖−1) < max(‖A‖, λ‖B‖),
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which is clearly a contradiction. This proves that A is not Birkhoff-James orthogonal

to B.

Next results and comments are related to isosceles orthogonality between positive

operators and projections.

Proposition 4.14. For any P ∈ B(H)+, P⊥II if and only if P = 0.

Proof. By Proposition 4.9, ‖P − I‖ = ‖P + I‖ = max{1; ‖P‖}. Suppose ‖P‖ ≥ 1. Then

‖P − I‖ = ‖P + I‖ = ‖P‖, which is a contradiction since ‖(P + I)x‖2 > ‖Px‖2 for all

x 6= 0. On the other hand, if ‖P‖ < 1 and P 6= 0, consider x 6= 0, ‖x‖ = 1 and Px 6= 0.

Then,

0 ≤ ‖Px+ x‖2 = ‖Px‖2 + 2 〈Px, x〉+ ‖x‖2 ≤ 1 ⇒ ‖Px‖2 + 2 〈Px, x〉 = 0

⇒ ‖Px‖2 = 2 〈Px, x〉 = 0.

This completes the proof. �

From the above, in finite-dimensional context, we deduce if A = UP 6= 0, with U

unitary and P ≥ 0, then A and U can not be isosceles orthogonal. Moreover, using

Theorem IX.7.2 in [5], we obtain that ‖A− U‖ < ‖A+ U‖.

In case of orthogonal projections isosceles orthogonality implies disjoint support, as

we show in the next result.

Proposition 4.15. Let PS, PT be orthogonal projections with S 6= T . Then, PS⊥IPT if

and only if PSPT = 0. In particular, if PS⊥IPT then PS⊥BPT and PT⊥BPS.

Proof. Suppose PS⊥IPT . By equation (4.3),

‖PT − PS‖ ≤ max(‖PS‖, ‖PT‖) ≤ ‖PS + PT‖.

Then by hypothesis, ‖PS − PT‖ = ‖PS + PT‖ = 1. On the other hand, by [15], ‖PS −

PT‖ = 1 if and only if PT and PS commute and, by [11], we have PTPS = PSPT = PT∩S.

If there exists h ∈ T ∩ S with h 6= 0, then ‖(PT + PS)h‖ = 2‖h‖ and this implies

‖PT +PS‖ ≥ 2, which is a contradiction. Therefore, T ∩S = {0} and PSPT = P{0} = 0.

�

However, it is not true that there exists a equivalence between disjoint support and

Birkhoff-James orthogonality, even in the case of orthogonal projections. For instance,

consider in R3 the projections onto the planes z = 0 and x = 0, Pz=0 and Px=0, respec-

tively. Clearly, Pz=0⊥BPx=0 but Pz=0 ∩ Px=0 = Px=0,z=0 6= 0, which means they have

not disjoint support.
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5. Relations between different types of orthogonality

In this short section we study the relations between Birkhoff-James orthogonality and

isosceles orthogonality. Before proceeding any further, let us mention the following fact

that serves as a motivation behind our exploration in this section.

Bottazzi et. al. studied the equivalence of Birkhoff-James orthogonality and isosceles

orthogonality of positive operators A,B in a p−Schatten ideal in [9]. Indeed, for every

A,B ∈ B(H)+ and 1 < p ≤ 2, they proved that A⊥p
BB and A⊥p

IB are equivalent

notions.

However, it is not difficult to observe that there are many examples in B(H) (and

more generally, in Banach spaces) that show ⊥B and ⊥I are independent orthogonality

types and none of them imply the other. Our purpose in this section is to establish

relations between these two orthogonality types, in the sense that we determine which

additional conditions may be required to have “⊥B ⇒ ⊥I” and vice versa. Recall that

X is a real or complex normed space.

Proposition 5.1. Let x, y ∈ X and assume that (x + y)⊥By and (x − y)⊥By. Then

x⊥Iy.

Proof. By the hypothesis, we have, ‖x+ y‖ ≤ ‖x+ y+ λy‖ ∀ λ ∈ K. Taking β = 1+ λ,

we have, ‖x + y‖ ≤ ‖x + βy‖. In particular for β = −1, we get ‖x + y‖ ≤ ‖x − y‖.

Analogously, from the hypothesis (x−y)⊥By, we obtain ‖x−y‖ ≤ ‖x+y‖. This proves

that x⊥Iy and completes the proof of the proposition. �

In order to address the converse question, we introduce the concept of strongly isosce-

les orthogonality in real Banach spaces.

Definition 5.2. Let x, y ∈ X . We say that x is strongly isosceles orthogonal to y,

written as x⊥SIy if

(1) x⊥Iy.

(2) there exists a real sequence {λn}n∈N, with λn > 0, such that lim
n→∞

λn = 0 and

x⊥Iλny for all n ∈ N.

In view of the above definition, we obtain the following statement.

Theorem 5.3. Let x, y ∈ X . Then x⊥SIy implies x⊥r
By and in particular if X is a

real normed space then x⊥SIy implies x⊥By.

Proof. By Theorem 4.1 of [12], it follows that ‖x‖ ≤ ‖x + λy‖ for λ ∈ R, |λ| ≥ 1.

Therefore, we only have to prove the Birkhoff-James orthogonality condition for |λ| < 1.
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Let λ0 ∈ R such that |λ0| < 1. By the hypothesis, there exists n0 ∈ N such that

0 < λn0
< |λ0| and x⊥Iλn0

y. Then, β = λ0

λn0

satisfies |β| > 1 and, by the cited result

of James [12], we get ‖x‖ ≤ ‖x + βλn0
y‖, since |β| > 1 and x⊥Iλn0

y. However, this is

clearly equivalent to the following:

‖x‖ ≤

∥

∥

∥

∥

x+
λ0

λn0

λn0
y

∥

∥

∥

∥

= ‖x+ λ0y‖.

This completes the proof of the proposition. �

Remark 5.4. Using the convexity of the norm function, it is possible to show that

only condition (ii) in the definition of strongly isosceles orthogonality is sufficient to

ensure Birkhoff-James orthogonality of the corresponding elements. However, we include

condition (i) in the definition of strongly isosceles orthogonality because we are trying

to address the question that asks Isosceles orthogonality, along with which additional

conditions, implies Birkhoff-James orthogonality.

We have already discussed that Roberts orthogonality is stronger and more restrictive

than either of Birkhoff-James orthogonality and isosceles orthogonality. Moreover, it is

obvious that A⊥RB ⇒ A⊥SIB. In the next two examples we show that the converse of

this statement is not necessarily true. We deliberately give the examples using different

norms on B(H), to make them more illustrative.

Example 5.5. Let H be the two-dimensional real Hilbert space. Consider the Banach

space B(H), endowed with the usual uniform norm. Let A and B matrices considered

in Example 4.3 item (1). Then,

(1) ‖A+B‖ = ‖A− B‖ = 4

(2) Let {λn}n∈N be a sequence such that λn ∈ (0, 1) and λn → 0. We have,

A + λnB =

(

4 0

0 3 + λn

)

⇒ ‖A+ λnB‖ = 4.

On the other hand,

A− λnB =

(

4 0

0 3− λn

)

⇒ ‖A− λnB‖ = 4.

Conditions (1) and (2) together imply that A⊥SIB.

(3) However, if we consider λ = 5, we have

A+ 5B =

(

4 0

0 8

)

⇒ ‖A+ 5B‖ = 8 and A− 5B =

(

4 0

0 −2

)

⇒ ‖A− 5B‖ = 4.

Therefore, A is not Roberts orthogonal to B.
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Example 5.6. Let H be the two-dimensional real Hilbert space. Consider the Banach

space B(H), but now endowed with the 1−Schatten norm.

Let A =

(

1 0

0 −2

)

and I =

(

1 0

0 1

)

∈ B(H). Then,

(1) ‖A+ I‖1 = 2 + 1 = ‖A− I‖1.

(2) Let {λn}n∈N be a sequence such that λn ∈ (0, 1) and λn → 0,

A+ λnI =

(

1 + λn 0

0 −2 + λn

)

⇒ ‖A+ λnB‖1 = |1 + λn|+ | − 2 + λn| = 3

A− λnI =

(

1− λn 0

0 −2− λn

)

⇒ ‖A− λnB‖1 = |1− λn|+ | − 2− λn| = 3.

Clearly, conditions (1) and (2) together imply that A⊥SII.

(3) But if we consider λ = 2, we have,

A+ 2I =

(

3 0

0 0

)

⇒ ‖A+ 2I‖1 = 3 and A− 2I =

(

−1 0

0 −4

)

⇒ ‖A− 2I‖1 = 5.

This proves that A is not Roberts orthogonal to B.
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[28] Wójcik P., Orthogonality of compact operators, Expositiones Mathematicae, 35, 86 – 94 (2017).



20 T. BOTTAZZI, C. CONDE, D. SAIN

[29] Zamani A., Birkhoff-James orthogonality of operators in semi-Hilbertian spaces and its applica-

tions, Ann. Funct. Anal., 10 no. 3, 433–445 (2019).

1 Sede Andina, Universidad Nacional de Ŕıo Negro, (8400) S.C. de Bariloche, Ar-
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