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Abstract—A bidimensional system of delay differential equa-
tions, including four parameters, is analyzed. The changes of
stability of its equilibrium have been determined clearly through
a set of parameters conditions. Otherwise, now by means of the
frequency domain approach, the Hopf bifurcation and the stabil-
ity of the emergent limit cycles have been examined thoroughly.

Index Terms—delay-differential equations, Hopf bifurcation,
stability, resonances

[. INTRODUCTION

The estimation of the critical gain and the critical frequency
in a feedback system using a simple method is of vital
importance, not only concerning the stability issues per se but
also improving the automatic tuning of simple regulators [1],
[2]. The computation of the oscillation characteristics has
been obtained using the approach of relay systems and/or
the describing function analysis [3] in order to set later the
parameters of the PID controllers under specified rules. In
particular, autotuning principles for gencralization of PID
controllers have been applied also to SISO (single-input to
single-output) systems with delays (see, for example, [4] and
the references therein).

The determination of the critical gain and the critical
frequency, simultaneously, plays a singular role for stability
issues when dealing with a nonlinear feedback system since
autonomous oscillations are expected to arise under the now
classical phenomenon of Hopf bifurcation [5], [6]. The same
scenario can be used for special systems having a time-
delayed feedback as it was shown in [7]. In this regard,
the frontiers of stability are called Hopf bifurcation curves
in the space of system parameters. Moreover, taking into
account the complexity added by the delays, the characteristic
polynomial is now changed as a quasi-polynomial due to the
exponential terms [8]. Then and in simple control engineering
terms, the complexity of stability analysis is enlarged due to
the possibility of multiple root crossing. This is the case of
the appearance of resonances since two critical frequencies
coincide for the same values of system parameters [9].
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In the present article, the analysis of the regions of stability
and the Hopf bifurcation condition, this last using a frequency
domain approach [6], [7], is presented. The example has
been analyzed previously in [9] using a different method
and with less parameters. The results are complementary of
those recently shown in [10] where an hybrid technique (an
analytical method plus numerical computational one provided
by Dde-Biftool [11]) has been successfully applied.

II. MODEL UNDER ANALYSIS

The aim of this work is the analysis of the following delay-
differential equation

i+ = fla(t—r1)), 6]

where f(z) = dx + na? is the feedback action depending
on the velocity, with 4,7 > 0 and J,n # 0. Thus, four real
parameters are involved and there is a single equilibrium point:
x = 0. This equation comes from a similar one in [9] but it is
explored with different techniques, just to discover and clarify
some dynamic aspects. As (1) is a delay-differential equation
(see [12]), it can also be written as a delay-differential system
in X = (z1,22) as

i = —yxa + fla1(t — 7)),
To = X1,

@

with equilibrium X, = (z1,z2) = (0,0). To explore its
stability, one needs to consider the linearization of system (2)
about Xy, given by

= Au+ Ayu(t — 1), 3)

(0 = (60
A—<1 O>andAT_(OO>'
To guarantee the asymptotic stability of the equilibrium, the

characteristic equation det (A\] — A — A,e™*7) =0, i.c.

N e MAN+y=0s e ()\2+’y) —oA=0, &

where

must have all its roots lying on the left half plane. Through a
change of variables v = A7 in (4), results

H(v) = h(v,e?) = e*(v? + y7%) — 6170 = 0. )



It must be observed that H is an exponential polynomial. In
this context, one needs the definition of what it is called its
principal term.

Definition 1. Let be h(z,e*) = 3  amne’™z" an
exponential polynomial. The term a,;e*"2° is called the
principal term of A if a,s # 0 and, if for each other term
U € 2" with a,,, # 0, it is satisfied » > m,s > n, or
r=m,s>n,orr>m,s=n.

It can be proved that if an exponential polynomial has no
principal term, then it has an unbounded number of ceros
with arbitrarily large real part [8], e.g. P(z) = e* — z. Then,
it must be observed that H (see (5)) has a principal term
which results e?v?.

The analysis of the roots of H is given by means of the
next theorem [8]:

Theorem 1: Letbe H(v) = h(v, e”) where h is a polynomial
with a nonzero principal term. It is written H (iy) = F(y) +
iG(y), y € R. If all the roots of the function F are real and for
each of these zeros the condition F'(y)G(y) < 0 is satisfied,
then all the zeros of H are located on the left of the imaginary
axis.

Remark 1: The condition F’'(y)G(y) < 0 means that
G(y) # 0 for each root of F, that in addition must be all
simple (lo carry out F'(y) # 0).

By (5), the expression H(iy) = F(y) + iG(y) leads to

Fy) =
Gy) =

Notice that the condition of being F(y) and G(y) simultane-
ously zero is equivalent to state that H has a pair of imaginary
roots.

In relation with the Remark 1, some necessary conditions
on the involved parameters are deduced, just to satisfy the
hypotheses of Theorem 1.

The zeros of I are

(_y2 + 772) COSs y? (6)
(—y? +y72) siny — d7y.

W p=k-D3 k€L B o= @
Then:

a) As one needs that F' and G do not share any of their
roots, it is required G (yx) # 0. This implies that the chosen
values of the parameters v, 7 and § in (5) should not satisfy
the equation

(=D)"(yp —47%) = oryr, = 0,

b) As v,7 > 0 and § # 0 from the beginning, it is always
truth that

ke Z. ®)

G(ih2) = FO"°7° #0.

Remark 2: When (8) is satisfied, the roots of (4) are on the
imaginary axis. This condition determines the Hopf surfaces
in the three dimensional parameter space v — 7 — § (for

system (2)). Or, fixing the variable v, the Hopf curves d; in
the 7 — 9 plane are determined by

Yo T
5=5kr=—1k(———>. ©9)
M=o (2T
Thus, it is possible to set certain conditions to guarantee that
the roots of F' are not of G’s.
Now, to ensure that the roots of I’ are simple, it is also
required that
. 2
N2 A (2k —1)° (g) L keZ, (10)
to fulfill F'(y) # 0, for any root y of F.

Thereby, taking into account the case 7 = 1, due to (10),
one knows that 7 satisfies one of these two conditions: 1)
0< 7 <y or?2) yp <7 <Yykt1, k € N. Henceforth, just to
simplify the next exposition of results, 7y is fixed as 1. Thus,
the following theorem can be set:

Theorem 2: 1t is considered (5) and (6) with v = 1,7 >
0,6 # 0. Let be yi, k € N and ¢ 2 given by (7). Assume that
the parameters values do not satisfy (8). Then all the roots of
H lie on the left half plane if these parameters conditions are
fulfilled:

I) For 0 < 7 < gy, it must be

5>—£+L, 5<@—1, 6<0.
T yl T y2
ID) For y;, < 7 < yp+1,k € N, it is required:
a) If k is odd, then
<P TPl T 550,
T Yk T Yk+1
b) If k is even, then
s> T o5 et T 50,
T Yk T Yk+1

Proof (Sketch): In order to apply 1, it is necessary to check
that F'(y)G(y) < 0 for each y, an arbitrary root of F' (see (7)).

I) The first two inequalities result analyzing the necessary
statements to fulfill F'(y;)G(y1) < 0 and F'(y2)G(y2) < 0.
To satisfy F'(yx)G(yx) < 0, k > 2, it can be shown that the
obtained conditions are sufficient, by considering separately
the cases k odd or k even. The sign of § follows from the
requirement of F’(i;)G(y;) < 0,4 =1, 2.

II) The first two inequalities in a) and b) are deduced
imposing F"(yx)G(yx) < 0 and F'(y41)G(yk+1) < 0, when
k is odd or even. These conditions result sufficient to guarantee
F'(y;)G(y;) < 0, where @ < k or ¢ > k. To show this last it
is necessary to consider the four different cases which result
for 4 odd or even. Finally, the sign of § is established from
F'(9;,)G(9:) < 0,i = 1,2, according to k being odd or even.

The details to prove the Case II)a) appear in the Appendix
at the end of this work. The other cases are similar.

It still remains to test that F'(yx)G(yx) < 0 for
each yi, a root of F where y, < 0. Given that
F'(—yr)G(—yx) = F'(yx)G(yr), now the proof is complete.



Corollary I: The equilibrium of equation (1) or system (2)
results asymptotically stable under the parameter conditions
established in Theorem 2.

Remark 3: Theorem 2 can be stated for an arbitrary v > 0
in a similar way.

Remark 4: An equivalent result can be established by the
assignment of a fixed value for 7 in (5) and (6). In this
case, the resulting restrictions between v and ¢ are always
linear. Considering 7 = 7 in (9), the Hopf curves become
ap = (fl)k(fLQ_1 — %_Ll) where k € N. Related with this
assumption, the complete stability analysis of a general delay
differential equation which includes (3) can be found in [13].

Due to the previous results, Fig. 1 shows a few colored
stability areas, some Hopf curves J; (see (9)) and multiple
resonant points in the 7 — d plane, for the particular case with
~ = 1. The Hopf curves J, intersect the 7 axis (6 = 0) at the
points 7 = y. The crossings between the curves J;, and ¢;,
k < j (k and j having different parity) are 2k — 1 : 25 — 1
resonant points and their coordinates are

(1.6) = (yeys (=1)F (g — y;)) -

vV YrY;j

where y, < y;. The curves J and J; do not intersect each
other if £ and j have the same parity. At the resonance
points, (5) has two pair of purely imaginary solutions, namely
+iy,/T, Tiy;/T satistying yi/y; = (2k—1)/(2j —1). This
situation is related with the interaction between two limit cy-
cles, whose frequencies are (2k—1)7/(27) and (25 —1)7/(27)
approximately. Thereby, the intersection between the Hopf
curves 7 and d9 results a 1 : 3 resonant point.

20 T X T T T T T

Fig. 1. Stability regions for the equilibrium point of (1) or (2) with v = 1.
According to 2, regions in red and yellow correspond to k£ = 1,3 (Il)a) odd)
respectively, areas in green and cyan refer to k& = 2,4 (II)b) even) and finally
the blue domain represents the case set in I).

III. STABILITY ABOUT HOPF CURVES: A
FREQUENCY-DOMAIN APPROACH

Quantitative and qualitative features about a limit cycle
emerging from a Hopf bifurcation point can be analyzed
through the frequency domain methodology (see [5], [6]
and [7]). Particularly, the information about its stability can
be obtained somehow by the computation of the curvature
coefficient of the Hopf branch and the analysis of its sign.

It is proposed a feedback representation of the system (2)

like
{ X = A(X)+ By(e(t — 1)),
gle) = f(=c)=—dc+nc®, c=-CX,
where
A((l) _0“/),3<(1]> and C — B7.
Thus the transfer function for the linear part becomes
G*(s) = C(s] — A) " 'Be " = 326_57 .an
s4+

The equilibrium in the frequency domain, ¢ = 0, comes from
solving the equation —c = G*(0)g(c). The expression of the
characteristic eigenvalue, which equals the (linearized) loop
gain, is

dse T
A=Grg=-20
s+
where J = ¢’(0) = —4. The well known critical condition at

the Hopf bifurcation point, i.e. A(iw) = —1, gives this system
of equations

w? — v+ dwsinwr =0, dwcoswr = 0.

Then as w # 0 and ¢ # 0 it should be

(2k—1)
2

(due to wT > 0) as well as

w? =y —dw(-1)* =0,

wT = T=1vyr, kEeEN,

(12)
which resumes the Hopf bifurcation point condition and results
equivalent to (9) for k € N after replacing w = %. Moreover,
in this context the formulae to compute the curvature coeffi-
cient is G (i)pliw)
w)p(iw
o) = ke (ST

It is necessary to obtain p. In that sense and according to the
methodology (see [5])

(13)

1
pliw) = Dy <§’5V22 + 'UVOQ) + D30?0,

but v = 1,Dy = ¢’(0) = 2y and D3 = ¢""(0) = 0, so it
remains to get only Vjo and V5s. In engineering terms, Voo is
related with the amplitude of the bias for the correction of the
equilibrium point due to the nonlinearities; Va5 is connected
to the amplitude of the second harmonic of the oscillatory
solution and p(iw) is associated to the amplitude of the first



harmonic of the periodic solution. Then, as the closed-loop
transfer function is

H=(1+G*J)" G,

one has
12w
H(0)=0, H(2w)=-—
0)=0, (2) (v — 4w?) + §i2w’
and finally
Voo = —1H(0)Dsy =0, .
Vip = —L1H(i2w)D; = i

(v — 4w?) + §i2w”
Provided that p(iw) = nVaa, now (see (13)) it is defined

n2w26—iwr

auz = G*(iw)p(iw) = — (7 — w?) (v — 4w? + 0i2w)

. (14)

Notation: In what follows, the expression aux(k) will mean
auz(iwg) where wpT = (2k2_1)77, e.g. aux(l) denotes
aur(iw;) where w7 = 7. The same notation is extended
for G* (k) and o. Besides, the subscript o or e means & odd
or even respectively.

In agreement with the previous section, only system (2)
with v = 1 is taken into account. To get the expression of o,
the condition (12) is required and two possibilities must be
considered: wiT = @

%7‘(, where k is odd or even. Then,
the whole analysis gives place to three different situations that
will be developed below and thus the stability analysis will be
finished.

Now, the sign of the curvature coefficient will be determined
for the two cases mentioned in Theorem 2.

Case I) First, from (14), (12) and v = 1, for an arbitrary
odd value of k results
%
§(—3wg + (1 + 24))°

auz,(k) =

then if £ = 1 one has
212

auz,(1) = §(=3m +275(1 + 2i))

Due to (11), it results
e (1 — s7)(s2 + 1) — 25?)
(s2+1)°

G*/(s) _

and

(=1 —iim)ém2r 4 872
- 522 :
In agreement with (13), for wr = 7,
Hopf curve d; follows

dh:—%(%%g%»

and after some tedious calculations leads to sgn(c(1l)) =
—sgn(Py), where

G(1) =

i.e. k=1, and over the

Py =277 (7 — 1) 6% + (87% + 37%) 6 — 1277, (15)

Moreover, to find where 0 = o(1) = 0, the system of
equations formed by Py = 0 and 6 = 6,(7) = —%% + %7’
must be solved. So the unique point of §; where o = 0 results
Q = (7,0) = (2.3979,0.8715). If T < 2.3979 (or § < 0.8715)
due to o > 0, the emergent cycles are unstable. Close to @,
branches of periodic solutions exhibit the cycle folds, where
the cycles pass from unstable to stable. On the contrary, for
23979 < T < JYyiy2 = @, as o0 < 0 the cycles result

stable (classic Hopf branch). Otherwise, for 7 > &, the
emergent orbit are unstable. Fig. 2 shows two branches of
periodic solutions that are born close to (), according with
both situations described above. These continuations have been
obtained using the software package Dde-Biftool [11].

61 - Hopf point: (7,6) = (2.35,0.8276)

< 0.6
N
0.4
0.2
o . . . .
0.818 0.82 0.822 0.824 0.826 0.828 0.83
)
61 - Hopf point: (7,6) = (2.45,0.9186)
1
0.8
0.6
)
N
0.4
0.2
0
0.915 0.92 0.925 0.93 0.935 0.94
5

Fig. 2. Branches of periodic solutions of system (2), with v = n = 1,
born at §1- Hopf points, close to Q = (7,d) = (2.3979,0.8715). (Above:
Unstable branch with fold of limit cycles, Below: Stable branch). 6 represents
an aproximation of the amplitude of the cycle.

Besides, if one replaces 017 = -5+ %7'2 into 7P; (see (15))
and then multiplies by 2, it is obtained another expression I”;
in the variable 7 that can be written as

Pi(r)=2* (1+7 1) =227 (27 +3) 72 + (7 — 2).

Then, applying Descartes’s Rule it can be shown that P; has

exactly one positive root 7, as has been commented before.
Case I)a) Now, it is analyzed the case with k odd but £ > 3,

remaking the steps done before for wyT = (%2_ Drp = S,

where a = 2k — 1 > 5 if k > 3. Furthermore, due to (12),

one has w? — 1+ dw = 0 and then

B 2112

- 0(=3am + 275(1 + 26))’

aux,(k)

as well as

(-1- i@ﬂ')(;(Qk’ — 1)727 + 872
0%(2k — 1)272 '
Then for an arbitrary £ odd with k& > 3 from

ﬂ@:—m(%%%%)

Gl (k) = —i



follows sgn(o(k)) = —sgn(Py), where
P, = [2n7a(ma — 1)] 6% + (87’2 + 37T2a2) 6 — 12n7a. (16)

Once again, to find the point along the Hopf curve where
o =0, it must be solved P, = 0 and 6 = §j(7) = =41 +
%7. To locate the intersections one can proceed as in the
case with k = 1. Nevertheless, if k is odd with k > 3 there
exist two solutions. This result also comes out substituting
T = —4% + %7‘2 into 7Py (see (16)) and then multiplying
by 2. Thus, it is attained P(,); which has the general form:

Py = Rom* + S, + T,

=
Q
Il

91 (1 n (m)‘l) . S, = —2%ma(2ma + 3),

m3a®(ra — 22).

&
[

Given that P(,);, = 0 is a biquadratic equation, it can be solved
analytically and results

o ma*(2ma + 3 + /25 + 247a)

23 (ma+1)

T

Then 72 takes two different positive values only if 7a > 4 but
this is satisfied due to @ > 5. So, when k£ = 3, the roots are
71 = 5.1497, 75 = 10.0271 and the corresponding 9 values are
—0.869453 and 0.4934145. Thus, considering the curve d3 and
the regions of stability of the equilibrium point (see Fig. 1),
the emergent orbits result stable only for ,/ysys = @ <
T < @ = /y3ys- This outcome can be generalized for
any Hopf curve Jy, with k odd, & > 3, for the interval I =
(V/Ir—1Uk> \/URURT1) -

In summary, it has been shown that if & = 1,47 has a
unique point where the curvature coefficient vanishes whereas
if £ is odd and k > 3 then J; has exactly two points where
o = 0. This result is original in system (2) and appears after
considering the variation of several parameters.

Case II)b) Finally if k£ is even, taking into account that
wpr = U — 4 where a > 3, due to (14) and (12)
results

aum. (k) = 2712
N 5(=3ar +215(—1 + 24))’
. (1 +i%m)dan2T + 872
GY(k) =1 57272 .
In general, for even £, as
auze(k)
k)=-Re| ——F7~ ).
o9 = e (£55505).

then sgn(o(k)) = —sgn (Py) , where
Py, = [2r7a(ra+1)] 6% + (87° + 37%a®) § + 1277a = 0.

7
Making the substitution 76 = 4F — %72 into 7Py, (17) follows
Pyi(T) = Ret* + S + T (18)

where
R, = 2! (1 - (m)‘l) . S. = —227a (27a — 3),
T. = n°d®(ra+2?).

Thus, the equation to solve is
Rer* + St +T. =0,

but now

o ma*(2ma — 3+ /25 — 24rwa)

T = ,

23 (ra — 1)

and the values of 72 result complex if ma > %, and this
condition is satisfied due to 7a > 9 if a > 3.

Then, the roots of (18) are not real and definitely (17) has
no positive solutions.

Thereby and in brief, if k£ is even then the Hopf curve dy
has no points where o0 = 0. Moreover, as o is always negative
along &, when k is even, taking into account the regions of
stability of the equilibrium point (see Fig. 1), the emergent
orbits are stable specifically only if 7 € I.

In agreement with these computations, Fig. 3 shows some
representative results about stability over a few Hopf curves.

Fig. 3. Some Hopf curves (9) of system (1) with v = n = 1, are drawn
in colors according to the obtained results for sgn(o(k)), where red and
green denote negative and positive values respectively. Colored thick lines
show stability of emergent limit cycles (red - stable, green - unstable), due
to a change of stability of the equilibrium point (see Fig. 1) . The asterisks
correspond to the located points over the curves 1, d3 and 5 (one in d5 is
not shown) where o vanishes.

Remark 5: The outcomes achieved in this Section for
system (2) with v = 1, can also be generalized for an arbitrary
positive value of ~.

IV. CONCLUSIONS

A multiparameter second order delay differential equation,
which has a feedback action depending on the velocity was
analyzed by means of a combination of techniques. The



asymptotic stability of the equilibrium point was established
precisely through a system of restrictions on certain pa-
rameters. Moreover, the frequency domain methodology has
been applied to explore the phenomena of Hopf bifurcation.
Thus, the stability of the emergent solutions was completely
determined as well as certain singularities related with fold
cycle bifurcations were located. It remains to explore the
unfolding of certain resonances that were found, like 1 : 3,
and evaluate the dynamic changes of the model considering
other feedback actions of interest.
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APPENDIX

Theorem 2: Proof: Case Il)a)

It is necessary to set conditions to satisfy F’(y)G(y) < 0 for
any root y of F' given by (7). Let 0 < yp, < 7 < Yp+1, Yk =
(2k —1)%, yry1 = (2k+1)F and v = 1, where k is odd.

1) Analysis with the roots . Through (6), one can find F”,
then evaluating for y; one has

Fllye) = (=D(—yp+72),
Glyw) = (DN=yi+7°) = 67y

As k is odd and F'(yr) =
F'(yx)G(yk) < 0 it must be

(19)

yi — 1 < 0, to fulfill

Gy) =~ +7>—brgp >0 6< -5 4 T
T Yk
Now, as F'(yr+1) = —ypyq + 7> < 0 and one needs
F'(yp+1)G(yr+1) < 0 follows
Y41 T

G(Ykt1) = Z/i+1 — 7 = 0Tyk1 > 066 < T .
T Yk+1

Next, it is considered the same situation with the other roots
Yis Yj such that 0 < y; < yp <7 < Y41 < Yj-
i) Analysis for y;: It is necessary to take into account the
cases where ¢ is odd or even.
o i 0dd: By means of (19), as F'(y;) = y? — 72 < 0, it
should be G(y;) = —y2+72—671y; >0 6 < —%—f—i
The last inequality is valid due to

<L T BT
T Yk T Y
« 4 even: Through (19) results F'(y;) = —y? + 72 > 0 so
it must be
Gly)=vy} —71> =1y <06 > % —yl. (20)
1

In this case, the strategy for the proof is different.
Suppose that the parameters in system (2) belong to
the 7 — § area  defined by 6 < —% 4 = § <
Betr _ T, 0> 0, as has been settled in Theorem 2
for the Case II)a). This area is like the region in yellow in
Fig. 1, considering £ = 3. Then it remains to Srove (20).

Consider the function S(7,4) = — (9— -z

+ — 3. )- Observe
that S has no relative extreme values in the interior of €2,
so its extreme values are on its boundary 0f2. Hence, one
evaluates S on 0f), where y, < 7 < Y41 and besides

yi < Y. Thus
T 1 T
s(rn2 D) — o (21T >0
T Yk T YrYi
also
& T 1 T
S<T7y+1 __):(yk+1_yi) (—+ )>07
T Yk+1 T Ye+1Yi
and at last
Yi T 1 2 2
S(r,0)=—(=——)=—(-y; +7°) >0,
( ) (7' yb) TYi ( vi )

as y; < yr < 7 < Yr+1. Then, it can be asserted that S
is always positive in the interior of €, i.e. § > £ — yl
for any point (7,9) € Q. QED.
ii) Analysis for y;: where y, < 7 < Y41 < y;. Again, two
situations must be considered for j: even or otherwise odd.
« j even: Taking into account (19) results F”'(y;) = —y3 +
72 < 0, and this implies G(y;) = yj — 72 —d7y; > 0 &
4 < yT—J — ;’—J This last condition is satisfied due to
)< !/k:_—i—l — L < U_] — l
T Yk+1 T Yj
e j odd: The proof is similar to the case for y; with ¢ even,
detailed above.
2) Analysis for the roots 91 2 = +7 (see (7), with v = 1).
This time, F'(§12) = —2(£7)cos(£7) and G(g1,2) =
—07(£7), then the stability condition F'(y)G(y) < 0 for the
zeros of F', becomes

F'(31.2)G(1.2) = 2673 cos T < 0.

For yp, <7 < Yry1, Yu = (2k — 1) 5, with k odd, as cos 7 <
0 then it must be 6 > 0.1



