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Abstract—In this article, the stability of the equilibrium
points of a time-delay system with quadratic nonlinearity
is investigated by means of the Nyquist stability criterion.
The variation of several parameters is considered, and it
is found that the system exhibits infinitely many resonant
Hopf-Hopf bifurcations, as well as zero-Hopf bifurcations.

1. Introduction

This work deals with the stability analysis of a nonlin-
ear time-delay system with four parameters, including the
delay. The proposed model is a generalization of a system
originally presented in [1], where the authors focused on
a Hopf-Hopf bifurcation with 1:2 resonance. Recent ad-
vances in the dynamics of that system were reported in [2].

The model studied in the present article includes two
additional parameters, which causes the appearance of in-
finitely many resonant Hopf-Hopf bifurcation points.

The critical stability conditions and the appearance of
Hopf bifurcations are found by a frequency-domain ap-
proach [3, 4] based on the Nyquist stability criterion [5].

2. Modified Campbell & LeBlanc’s system

Consider the following system:{
ẋ1 = x2,
ẋ2 = −γx1 + f (x1τ),

(1)

where γ, τ > 0, α, β , 0, x1τ = x1(t−τ) and f (x) = αx+βx2.
The previous model was studied in [1] for γ = 2.5 and
β = 0.9 related with a Hopf-Hopf bifurcation with 1 : 2
resonance.

To apply the graphical Hopf bifurcation theorem
(GHBT) (see Theorem 6.1 in [4]) model (1) is recast as
a feedback system, by defining a linear transfer function
G(s) and a nonlinear feedback g(y) as follows:

G(s) =
e−sτ

s2 + γ
, g(y) = f (−y) = −αy + βy2, (2)

where the output of the linear subsystem is y = −x1. This
technique was originally proposed to solve oscillations in
circuits and systems [3].

The equilibrium points are found by solving G(0)g(y∗) =

−y∗, which gives a trivial equilibrium point y∗1 = 0 and a

nontrivial one y∗2 = (α − γ)/β. For each equilibrium point,
one can consider a linearization given by:

J1 :=
dg
dy

∣∣∣∣∣∣
y∗1

= −α, J2 :=
dg
dy

∣∣∣∣∣∣
y∗2

= α − 2γ. (3)

In what follows, the stability of each equilibrium point
will be studied by means of the Nyquist stability criterion
(see [5]).

3. Stability of equilibrium points

3.1. Trivial equilibrium point

The characteristic function (see [3, 4]) for the equilib-
rium point y∗1 = 0 is defined as

λ1(s) = G(s)J1 = −
αe−sτ

s2 + γ
. (4)

The critical stability condition in the frequency-domain is
given by λ1(iω) = −1, which, from (4), can be written as
G(iω) = 1/α. Thus, it is convenient to study the Nyquist di-
agram of G(s) and to determine the number of turns around
the critical point 1/α.

The poles of G(s) lie on the imaginary axis, at points
±i
√
γ. The Nyquist contour should be modified in order

to avoid them, including a semi-circumference of radius
ε � 1, as shown in Fig. 1. Consider a parametrization of
the Nyquist contour. It is enough to compute its image only
for positive frequencies.

For the sake of simplicity, in a first instance assume τ =

π. Later, the stability results for general values of τ will be
deduced. Then each portion of the Nyquist curve will be
analyzed.

(a) s = iω, 0 < ω <
√
γ. From (2), with τ = π, it follows

that
|G| =

1
γ − ω2 , arg(G) = −ωπ.

With ω = 0, one has arg(G) = 0, and the image starts on
the positive real axis, at the point 1/γ. As ω increases, the
modulus grows, and when ω →

√
γ, the phase approaches

−
√
γπ and |G| → ∞. Thus, conforming ω →

√
γ, there is

an asymptote on the ray arg(·) = −
√
γ π.

(b) s =
√
γ i + εeiθ, −π/2 ≤ θ ≤ π/2, with ε � 1. Then
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G(s) =
exp[−π(

√
γ i + εeiθ)]

(
√
γ i + εeiθ)2 + γ

'
exp[−π(

√
γ i + εeiθ)]

2εi
√
γeiθ

=
exp[−π(

√
γ i + εeiθ) − i(θ + π/2)]

2
√
γε

,

(5)
and it follows that |G| = e−επ cos θ/(2

√
γε) and

arg(G) = −π
√
γ − επ sin θ − θ − π/2 ' −π

√
γ − θ − π/2.

Thus, as θ varies between −π/2 and π/2, arg(G) varies
from −

√
γπ to −(

√
γ + 1)π, respectively.

(c) s = iω,
√
γ < ω < ∞. In this case |G| = 1/(ω2 − γ),

arg(G) = (1 − ω)π, and the phase decreases linearly as
ω increases, so that the image describes infinitely many
turns around the origin of the G−plane in the clockwise
sense, while |G| decreases. As ω →

√
γ+, |G| → ∞ and

arg(G) = (1 −
√
γ)π, thus the image starts at infinity, in the

direction determined by the ray arg(·) = (1 −
√
γ)π.

(d) s = Re−iθ, −π/2 ≤ θ ≤ 0, with R � 1. This por-
tion maps into the origin of the G−plane, because one takes
R → ∞ to make the curve surround the whole right-half
plane (see [5]).

Figure 1: Left: Nyquist contour. Right: Qualitative image
of the contour under the function G(s) for τ = π, with 0 <
√
γ < 1 (I) and with 1 <

√
γ < 2 (II). Only the image for

Im(s) ≥ 0 is shown in both cases.

From the above analysis, it can be seen that the equi-
librium point y∗1 is stable if the locus of G(iω) does not
enclose the point 1/α. Moreover, the situation is qualita-
tively different if 2n <

√
γ < 2n + 1, n ∈ N ∪ {0} or if

2n − 1 <
√
γ < 2n, n ∈ N.

The stability condition/s (SC) can be found by looking
at the intersection of G(iω) with the real axis. Since

G(iω) =
e−iωπ

γ − ω2 =
cosωπ
γ − ω2 − i

sinωπ
γ − ω2 , (6)

it follows that Im(G) = 0 implies ωk = k, k ∈ Z, and

Re(G(iωk)) =
(−1)k

γ − k2 . (7)

Then:
• If 2n <

√
γ < 2n+1, (as in Fig. 1(I) with 0 <

√
γ < 1),

the curve encloses completely the negative real axis,
and y∗1 can be stable only if the point 1/α lies on the
positive real axis, i.e., α > 0. For the part (a) of the
curve, the intersection with the real axis with greater
modulus occurs when k = 2n. The SC then reads
Re(G(iω2n)) < 1/α, which using (7) gives

1
γ − (2n)2 <

1
α
⇒ α < γ − (2n)2.

On the other hand, for the part (c) of the Nyquist di-
agram, the intersection with the real axis with greater
modulus is observed when k = 2n + 1. This produces
the following SC:

−1
γ − (2n + 1)2 <

1
α
⇒ α < (2n + 1)2 − γ.

The above SC can be understood easily by taking into
account Fig. 2(a), where a detail of the Nyquist dia-
gram with γ = 20.5 (4 <

√
γ < 5) is shown. For this

particular value of γ, the intersections corresponding
to k = 4 and k = 5 coincide, but it does not happen in
general.

• If 2n−1 <
√
γ < 2n, (as in Fig. 1(II) for 1 <

√
γ < 2),

the curve encloses completely the positive real axis,
and y∗1 can be stable only if the point 1/α lies on
the negative real axis, i.e., α < 0. For the part (a)
of the curve, the intersection with the (negative) real
axis with greater modulus occurs when k = 2n − 1.
The corresponding SC is Re(G(iω2n−1)) > 1/α, which
from (7) yields

−1
γ − (2n − 1)2 >

1
α
⇒ α > (2n − 1)2 − γ.

For the part (c) of the curve, the intersection with the
real axis with greater modulus occurs when k = 2n.
The SC results

1
γ − (2n)2 >

1
α
⇒ α > γ − (2n)2.

Figure 2(b) shows a detail of the Nyquist diagram with
γ = 30.5 (5 <

√
γ < 6), which illustrates the above

outcomes.
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3.1.1. Generic τ values

The previous results obtained with τ = π can be general-
ized, now considering τ as a free parameter.

G(iω) =
e−iωτ

s2 + γ
=

cosωτ
γ − ω2 − i

sinωτ
γ − ω2 . (8)

Setting Im(G) = 0, one has ω = ωk = kπ/τ, k ∈ Z, but only
nonnegative values of k are of effective interest. Thus,

Re(G(iωk)) =
(−1)k

γ − (kπ/τ)2 , (9)

and the asymptotes of the Nyquist diagram are the rays{
−
√
γτ, when ω→

√
γ−

−
√
γτ + π, when ω→

√
γ+,

(10)

for any γ > 0. For example, if −π < −
√
γτ < 0, (0 < γ <

(π/τ)2) the corresponding Nyquist diagram will be similar
as the one on Fig. 1(I), i.e., it will enclose the whole neg-
ative real axis. On the other hand, if −2π < −

√
γτ < −π,

((π/τ)2 < γ < (2π/τ)2) the diagram will surround the
whole positive real axis, as in Fig. 1(II).

The general SC for y∗1 = 0 will now be deduced follow-
ing the same reasoning as for τ = π.

Figure 2: Detail of the Nyquist diagram of G(s) with
τ = π and: (a) γ = 20.5 (4 <

√
γ < 5); (b) γ = 30.5

(5 <
√
γ < 6). Red (blue) line corresponds to frequencies

satisfying ω <
√
γ (ω >

√
γ). The intersections corre-

sponding to k = 4 and k = 5 in (a) (k = 5 and k = 6 in
(b)) coincide for these particular γ values, giving possible
Hopf-Hopf bifurcations (see Section 4).

• If (2nπ/τ)2 < γ < ((2n + 1)π/τ)2: The situation is as
in Fig. 1(I). A trivial SC is given by α > 0. The inter-
section with greater frequency corresponding to part
(a) of the diagram (where the modulus is increasing),
occurs with k = 2n, and the one with lower frequency
corresponding to part (c) (where the modulus is de-
creasing), occurs with k = 2n + 1. One only needs to
analyze these two values of k. With k = 2n, the SC is
given by Re(G(iω2n)) < 1/α, which using (9) results

α < γ − (2n)2(π/τ)2.

For k = 2n + 1, the SC is Re(G(iω2n+1)) < 1/α, thus
from (9) it follows that

α < (2n + 1)2(π/τ)2 − γ.

• If ((2n − 1)π/τ)2 < γ < (2nπ/τ)2: The situation is
as in Fig. 1(II). A trivial SC is given by α < 0. The
intersection with greater frequency corresponding to
part (a) of the diagram, occurs with k = 2n − 1, and
the one with lower frequency corresponding to part
(c) is observed with k = 2n. With k = 2n − 1, the SC
becomes Re(G(iω2n−1)) > 1/α, which gives

α > (2n − 1)2(π/τ)2 − γ.

And the last SC is Re(G(iω2n)) > 1/α, which gives

α > γ − (2n)2(π/τ)2.

Table 1 summarizes the SC for the equilibrium point y∗1.

Table 1: Stability conditions for y∗1 with r = π/τ.
Values of γ SC for y∗1

(2n)2r2 < γ < (2n + 1)2r2 α > 0; α < γ − (2n)2r2

α < −γ + (2n + 1)2r2

(2n − 1)2r2 < γ < (2n)2r2 α < 0; α > γ − (2n)2r2

α > −γ + (2n − 1)2r2

3.2. Nontrivial equilibrium point

In the case of y∗2, from (3), the characteristic function
becomes

λ2(s) = G(s)J2 =
(α − 2γ)e−sτ

s2 + γ
, (11)

and the critical stability condition λ2(iω) = −1 can be ex-
pressed as G(iω) = 1/(2γ − α). Then, the number of turns
of the Nyquist diagram of G(iω) around the critical point
1/(2γ − α) will be determined, for a generic τ value. Us-
ing (8) and (9), one can deduce the following:

• If (2nπ/τ)2 < γ < ((2n + 1)π/τ)2: The situation is like
in Fig. 1(I). A trivial SC is given by 2γ − α > 0, or
equivalently, α < 2γ. It is only is necessary to analyze
the values of k = 2n and k = 2n + 1. With k = 2n,
the SC is given by Re(G(iω2n)) < 1/(2γ − α), which
results in α > γ + (2n)2(π/τ)2.

With k = 2n + 1, one gets the SC given by
Re(G(iω2n+1)) < 1/(2γ − α), which yields α > 3γ −
(2n + 1)2(π/τ)2.
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• If ((2n − 1)π/τ)2 < γ < (2nπ/τ)2: The situation is as
shown in Fig. 1(II). A trivial SC is given by 2γ−α < 0,
i.e., α > 2γ. It is only is necessary to analyze the cases
of k = 2n − 1 and k = 2n.

With k = 2n−1, the SC is Re(G(iω2n−1)) > 1/(2γ−α),
which yields α < 3γ − (2n − 1)2(π/τ)2.

With k = 2n the SC becomes Re(G(iω2n)) > 1/(2γ −
α), namely α < γ + (2n)2(π/τ)2.

Table 2 summarizes the SC for the equilibrium point y∗2.

Table 2: General SC for y∗2 with r = π/τ.
Values of γ SC for y∗2

(2n)2r2 < γ < (2n + 1)2r2 α < 2γ, α > γ + (2n)2r2

α > 3γ − (2n + 1)2r2

(2n − 1)2r2 < γ < (2n)2r2 α > 2γ, α < γ + (2n)2r2

α < 3γ − (2n − 1)2r2

Figure 3: Hopf bifurcation curves and stability regions
(shaded) of the equilibrium point y∗1 in (a): γ − α plane
with τ = π and (b): τ − α plane with γ = 5/2. Multiple
resonant Hopf-Hopf bifurcation points can be observed.

4. Resonant Hopf-Hopf bifurcations
Consider the equilibrium point y∗1 and its correspond-

ing characteristic function λ1(s) given in (4). The critical
stability condition λ1(iω) = −1 actually represents Hopf
bifurcation points if ω , 0. From (8) and (9), letting
G(iω) = 1/α, it is simple to obtain explicitly the Hopf bi-
furcation points as

αk = (−1)k
[
γ − (kπ/τ)2

]
, (12)

where the point-wise frequency is ω = kπ/τ. The above
expression, represents straight lines on the γ − α plane and
hyperbolas on the τ − α plane, delimiting the stability re-
gions shown in Fig. 3. Moreover, the intersections between
some Hopf bifurcation curves lead to resonant Hopf-Hopf
bifurcation points, as shown in Fig. 3. It is enough to con-
sider an even value k1 (k1 , 0) and an odd value k2 in (12)
to obtain a resonant Hopf-Hopf point. At a Hopf-Hopf bi-
furcation point (noted as R1:2, R2:3, etc., in Fig. 3), one
obtains Nyquist diagrams as shown in Fig. 2, where two
stability boundaries are reached simultaneously.

In addition, if k1 = 0 and k2 is odd in (12), it generates
a zero-Hopf bifurcation point. Particularly, the 1 : 2 reso-
nance (noted as R1:2 in Fig. 3) obtained with γ = 5/2 and
τ = π was studied in detail in [1, 2].

5. Conclusions
In this work, a generalized four-parameters version of

the model originally proposed in [1] is analyzed. It is found
that the system exhibits infinitely many resonant Hopf-
Hopf bifurcation points, as well as zero-Hopf points. These
results were checked independently using classical tech-
niques for the stability analysis of quasipolynomials.

In a previous work [2], both local and global analysis
were performed, in a neighborhood of a 1 : 2 resonant
Hopf-Hopf point, for the particular case with γ = 5/2 and
τ = π. The global analysis of the four parameters model is
left for future work.
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