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Abstract—In this article, a model of hearth rate variabil-
ity including baroreflex control is studied analytically us-
ing a frequency-domain approach. Baroreflex is a feedback
control mechanism with an inherent time-delay, which can
cause oscillations via Hopf bifurcation. Some local results
on the nonlinear behavior of the system, as well as approx-
imations of the periodic solutions, are obtained.

1. Introduction

It is well known that modeling and analyzing the car-
diovascular system (CS) is a challenging task, and several
approaches exist in the literature. An excellent overview on
the most relevant works in this field can be seen in [1].

Among the different viewpoints to study the CS, one ap-
proach considers the modeling via delay-differential equa-
tions (DDE). Following this idea, Cavalcanti & Belar-
dinelli [2] and Ottesen [3] studied the effect of time-delay
in relation with baroreflex control, and they found that it
can cause the appearance of oscillations and even chaos in
the CS.

Since then, several authors considered DDE-based mod-
els to study the CS. Recently, the stability margin based on
the Lyapunov theory was computed in a DDE model in [4],
where the variation of several parameters was considered.
In [5], an enhanced model with multiple delays was pro-
posed and its stability was investigated.

In this work, the original model introduced in [2] is con-
sidered. As the system is naturally a feedback one, its study
through the frequency-domain approach proposed in [6, 7]
is straightforward. Using this technique, analytical condi-
tions for the appearance of Hopf bifurcation are derived.
Moreover, approximate solutions of the emerging periodic
orbits are constructed. Finally, Hopf bifurcation curves in
two-parameter spaces are also given.

2. The model

Cavalcanti & Belardinelli’s model [2] was proposed to
study the baroreflex characteristic effect on cardiovascular
variability.

The blood circulation is described by an analogous elec-
trical circuit, called Windkessel model [8]. The blood flow
is analogous to the electrical current, and blood pressure
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Figure 1: Schematic representation of the system under

study, taken from [2].

is analogous to the voltage at the input of the circuit. It is
described by the equations

dpPy(t) - -
— - = WIRCO-PO), wi= oo (1)
P(t) = Pyt)+ro),

where P(?) is the mean aortic pressure, Q(¢) is the mean
aortic blood flow and P() is an intermediate voltage in the
circuit. R represents the peripheral resistance, which refers
to the flow resistance encountered by the blood as it flows
through the systemic arterial. The capacity C is the arterial
compliance, and it refers to the elasticity and extensibility
of the major artery. Finally, r represents the resistance to
blood flow due to the aortic valve. In this way, P — P, is the
pressure drop produced by the aortic valve.

The considered model is non-pulsatile, which means that
QO(t) is simply the ratio between the stroke volume, V (),
and the cardiac period, T'(¢). It follows that:
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where 7 is the delay of baroreflex control, which senses the
aortic pressure and adjusts both heart rate and stroke vol-
ume. Such an adjustment is modeled using the functions:
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where T'(P) reproduces the characteristic saturation effects
in heart rate when pressure reaches low and high lev-
els. The lower (T) and upper (T,,) levels establish the
shorter and longer cardiac period and match, respectively,
the maximal vasodepressor-induced sympathetic excitation
and the maximum pressor-induced vagal activation. P, cor-
responds to the steady level of mean arterial pressure; @
and y, determine range and slope of the linear region of
the mean pressure-heart period curve. On the other hand,
V(P) models the steady-state stroke volume-pressure rela-
tionship, where V,,,,, is the maximum stroke volume and P,
is the pressure for which cardiac output is null.

The values of parameters involved in (1) and (3) are
listed in Table 1, which are fixed in first instance. The only
bifurcation parameter is the delay 7.

Table 1: Parameter values.

Windkessel
R 12103 [dyn s/cm’]
r 52 [dyn s/emd ]
C 11073 [cm5 /dyn]
Heart Rate
T 0.66 [s]
T, 1.2 [s]
P, 89 [mmHg]
o’ 31
vy 6.7 1013
Stroke Volume
Vonax 86 [cm3]
P, 25 [mmHg]
B 72
k 7

Equations (1), (2) and (3) define completely the model
under study, which is shown schematically in Fig. 1.

3. Frequency-domain analysis

Model (1)-(2)-(3) is a feedback system. For the linear
Windkessel subsystem, by considering the Laplace trans-
forms of P(¢) and Q(¢) and from (1), it follows that

LipP}

Zig oW=e
Note that G(s) is simply the complex impedance of the
electrical circuit shown in Fig. 1. The input of the lin-
ear block is Q(¢) and the output is P(f). The constant a
is included only for units conversion, since Py is given in
[dyn/cmz] and P is given in [mmHg], thus P = a(P, + rQ)
and it follows that a = 7.5006 107*.
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Figure 2: Block representation for the frequency-domain
analysis.

The two nonlinear functions describing the hearth period
and stroke volume in (3) can be combined into a single non-
linearity by defining
;(PT) , 5)

(Pr)
where P, = P(¢t — 7). The delay dynamics can be consid-
ered to affect the output of the linear block, thus completing
the frequency-domain model shown in Fig. 2. The transfer
function for the linear part is

g(PT):

rs+w/(R+r)
a—e¢
S+ w;

G(s) = - (6)
The possible equilibrium points are given by g(P*)G*(0) =
P*, that is

V(P¥)

T(P*)
The above equation can be solved graphically, intersecting
the curve of g(P) with the straight line ﬁP, as shown
in Fig. 3. There are two equilibrium points, P} = 73.9642
and P; = 89.0408. Consider the following expressions for

the linear variational analysis:

a(r +R) = P*. 7

. ds

~ ap'r=r;
then proceed to the stability analysis. The closed-loop
transfer function for the linearized system is

G*
H(S) = &5
1 - G*(s)Jx
then it follows that the critical stability condition is
G*(iwo)Jr = 1, or equivalently, G*(iwg) = 1/J;. Figure 4

Ji =4.389, J,= = -3.6487, (8)
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Figure 3: Graphical computation of the equilibrium points.
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Figure 4: Nyquist diagram of G*(s) with 7 = 1.

shows the Nyquist diagram of G*(iw) with 7 = 1. From (6),
the curve starts with w = 0 at point a(r+R) = 0.9392. Then,
it is only necessary to analyze the equilibrium point Pj.
The equilibrium point P is unstable as 1/J; = 0.2278 <
a(r + R) = 0.9392, thus the critical point is surrounded by
the curve independently of the value of 7.

For P;, the critical stability condition is

alw,(r+R) + lrw()]e—iwo‘f - l (10

G*(iwp) =
(o) w; + iwg J

and it follows that

Jraw,(r+R) = w;cos(wyT) — wy sin(wyT),
. D
Jarwy = wgycos(wyT) + w; sin(wyT).
From the above equations, one has
(Jra)? [wtz(r +R)? + rzwg] = w,2 + wﬁ,
and the critical Hopf frequency can be computed as
2[(Ja)*(r+R? -1
wy = | VAP RE ] pes 1
1 = (Ja)*r?

On the other hand, from (10) and considering the phase
of each factor, one obtains

rwo wo
arctan( ) — arctan (—) —woT =1+ 2mn, m € Z,

wi(r+R) Wy
(13)

and the critical delay values which provokes the Hopf bi-
furcation is

1 rwo ()
79 = — |arctan —arctan| — | -7+ 21
wo w(r+R) wy
= 0.7248,
14
which was obtained assigning m = —1 in (13), to make

the term in brackets positive. Notice that the above critical
delay value differs from the one reported in [2], where the
authors found it to be between 0.6 and 0.7 s.

To construct approximations of the emerging periodic
solutions, the graphical Hopf bifurcation theorem (GHBT)
isused [7, 9]. The goal is to solve graphically the following
equation for 8 and w:
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Figure 5: Amplitudes (maxima and minima) of oscillations
obtained via numerical simulations (in red) and the corre-
sponding approximations via GHBT (in black).

G (iw)J, = 1 + E@)6°, (15)
which is equivalent to find the intersection between the lo-
cus of G*(iw)J, and the vector 1 + 5(&))6’2. In the above
equation, £ is a complex number depending on the higher-
order derivatives of g(P), 6 represents the amplitude of the
periodic solution, w is its frequency, and @ is an approx-
imate frequency used to compute &, which here is simply
taken as wy. The approximate periodic solution is recov-

ered as 2
P(t) ~ P, + Re {Z Y"e"w’“} :
k=0

where Y° = 02V, Y! = 6, Y? = §*V,, and

(16)

dzg

d’g
d?'P;

1
Vo = ZH(O) ﬁ'PQ’

r .
V, = ZH(!Zw
with H(s) given by (9) with k = 2. Using the above expres-
sions, the complex ¢ in (15) is computed as

1d°
(Vo + Vi) + = =5

£= 6" sapl |

d’*g
aplr
By solving (15) graphically and computing (16) for sev-
eral values of the bifurcation parameter 7, one can obtain
the plot of Fig 5. It shows the amplitudes (maxima and
minima) of the periodic solutions existing for 7 > 7. The
results obtained using the GHBT are shown in black and
the results of numerical simulations are shown in red, for
comparison purposes.

3.1. Variation of the peripheral resistance

Consider now a variation of the peripheral resistance R.
As can be seen from (7) and Fig. 3, when R decreases, the
equilibrium point P, moves to lower values, and when R
increases, P, moves to higher values. Moreover, there is
a critical value, R..;; ~ 1006.239, for which the two equi-
librium points collide, and they disappear for R < R,;.
That is, there is a saddle-node of equilibrium points for
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Figure 6: Stability region on the R — 7 plane.

R = R,,;;. This phenomenon can be interpreted graphically
from Fig. 3. As R diminishes, the slope of the straight line
increases, and the two equilibrium points become closer,
until for R < R, there are no equilibrium points. This
condition can also be deduced from (11) setting wy = 0,
which gives J, aw(r + R) = wy, i.e.,

g(P2)=m,

that is, the slope of g(P) at P, equals the slope of the
straight line. However, this bifurcation occurs for a value of
R which is far from the nominal value reported for healthy
individuals.

Figure 6 shows the stability region on the R — 7 pa-
rameter plane, bounded by a Hopf bifurcation curve. It
was obtained by varying R, and finding the critical T value
from (11). Moreover, the curvature coefficient, given by

o = Re{ (17)

£
dG*(5)/ds|s=iw, J2 |

has been computed all along the Hopf curve. It indicates
that, the whole curve represents supercritical Hopf bifur-
cations, i.e., they provoke the appearance of stable limit-
cycles. Equation (17) shows a simplified form of o for
SISO (single input - single output) systems. The general
expression can be found in [6, 7].

3.2. Variation of the arterial compliance

Consider a variation of the capacity C, the arterial com-
pliance, which models the elasticity and extensibility of the
major artery. The value of the equilibrium point P, does
not depend on C. Figure 7 shows the stability region on
the C — 7 parameter plane, delimited by a Hopf bifurca-
tion curve. It was obtained by varying C and determining
the critical 7 value from (11), which increases linearly with
C. Again, as confirmed using (17), all the Hopf bifurcation
points on the curve represent supercritical bifurcations, giv-
ing birth to stable periodic solutions.

According to the above results, individuals with less
elasticity on the major artery are more prone to instability
than those with more elasticity.

4. Conclusions

In this work, some novel results about Cavalcanti & Be-
lardinelli’s model [2] have been established. The exis-
tence of a saddle-node of equilibrium points and the deter-
mination of stability regions in two-parameter spaces, to-
gether with approximations of the periodic solutions, have
been found analytically by exploiting the advantages of a
frequency-domain approach.
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