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Abstract 

In this work we address dynamic optimization of natural gas processing plants through the use first 
principle models and full discretization of both control and state variables. The optimization problem 
includes rigorous models for cryogenic countercurrent heat exchangers with partial phase change, 
separation tanks, distillation columns and turboexpanders. Thermodynamic predictions are made with a 
cubic equation of state. The partial differential algebraic equation system is transformed into ordinary 
differential-algebraic equations (DAEs) by applying the method of Lines for the spatial coordinate in 
cryogenic heat exchangers. The resulting optimization problem is formulated and solved by applying 
orthogonal collocation on finite elements, and the large-scale Nonlinear Programming (NLP) problem is 
solved with a Newton-based Interior Point method. The objective is to switch between operating modes 
to minimize the offset between current ethane recovery and a set point value. Numerical results provide 
temporal and spatial profiles of controlled and manipulated variables, while fulfilling specific path 
constraints associated to ethane extraction processes. In particular, the tight integration between process 
units as well as path constraints has been efficiently handled with low computational time. 
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Introduction 

Advances in the development of large-scale 
optimization algorithms as well as in hardware, have 
allowed addressing dynamic optimization of entire plants 
with rigorous models. In particular, natural gas processing 
plants are examples of highly energy integrated cryogenic 
processes, with numerous path constraints in transient 
states. These plants provide ethane as raw material for 
olefin plants, as well as methane for gas sales, LPG and 
gasoline. Ethane yield must be high, while minimizing 
energy consumption and complying with environmental 
regulations; these are related to carbon dioxide emissions 
and maximum carbon dioxide content in the residual gas 
injected to the pipeline. Additional path constraints 
involve keeping carbon dioxide solubility conditions in the 

upper stages of the demethanizer column. Mandler (2000) 
presented Air Products’ dynamic modeling efforts since 
1990 for analysis and control of cryogenic liquefied gas 
plants (LNG). Dynamic optimization models have been 
proposed for cryogenic columns (Cervantes et al., 2000; 
Diaz et al., 2003; Raghunathan et al., 2004) and cryogenic 
heat exchangers (Rodriguez and Diaz, 2007). Vinson 
(2006) presented recent advances in air cryogenic 
separation. Finally, Rodriguez et al. (2010) proposed a 
dynamic model for an entire natural gas plant with a 
simultaneous optimization approach. 

Simultaneous dynamic optimization approaches have 
seen considerable development over the last two decades. 
Here, both the discretized differential-algebraic equation 
(DAE) model and the optimal control problem are 
formulated as a single nonlinear programming (NLP) 
problem. In particular, the DAEs are discretized to a set of 
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HE1 and HE2 as an optimization variable (XG in Fig. 2), 
as it is used to achieve a desired outlet natural gas 
temperature to the high pressure separator. The top heat 
exchanger where partial natural gas condensation takes 
place (HE2) has been modeled with 6 cells, while the heat 
exchanger where only sensible heat is exchanged (HE1) is 
modeled with 10 cells. A detailed description for the 
cryogenic system model is given in Rodriguez and Diaz 
(2007) and Rodriguez (2009). To avoid temperature 
crosses the following constraints have been included for 
each cell: 

 
 
 
where Tsk denotes the shell temperature in cell k and Ttk+1 
is the corresponding tube side temperature. Additional 
constraints ensure monotonic temperature profiles along 
countercurrent heat exchangers: 
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High pressure separator 

The model includes an overall dynamic mass balance 
and geometric equations relating liquid content in the tank 
to liquid height and liquid flowrate as a function of 
pressure drop over the liquid stream valve. Detailed 
equations are presented in Rodriguez and Diaz (2007) and 
Rodriguez (2009). 
 
Turboexpander 

The turboexpander is represented with a static model 
due to its fast dynamics. It is the core unit in cryogenic 
natural gas processing plants, as it allows achieving low 
temperatures required for methane/ethane separation. It is 
modeled as an isoentropic expansion, corrected by the 
expander efficiency. Residual entropy has been calculated 
with the SRK equation of state. The procedure proposed in 
GPSA Engineering Data Book (2004) for turboexpander 
calculation has been implemented and the equation 
oriented approach efficiently avoids the iterative routine.  
 
Demethanizing column 

The demethanizer model includes dynamic energy and 
component mass balances at each stage and equilibrium 
calculations with SRK equation of state and hydraulic 
calculations, leading to an index one model. To avoid 
operating conditions that produce carbon dioxide 
precipitation in the upper section of the column, additional 
path constraints on carbon dioxide fugacities have been 
formulated. They are derived from the isofugacity criterion 
for phase equilibrium and impose current CO2 fugacity in 
the vapor phase be at most 80% of the solid fugacity, at 
each stage i: 

S
CO,i

V
CO,i f.f 22 800≤ , 

 

which can be calculated with low computational effort in a 
simultaneous approach as: 

V
CO,iiCO,i

V
CO,i Pyf 222 = φ  

where fugacity coefficients for pure carbon dioxide and in 
the vapor mixture are calculated with the SRK equation of 
state at each stage. Further details can be found in Diaz et 
al (2003). 

Optimization algorithm 

After discretization, the resulting NLP problems are 
represented in the general form, 

 
0 x ,  )x(c .t.s ),x(F Min ≥= 0  

 
where F(x) and c(x) represent the objective and constraint 
functions, and x are all of the discretized state and control  
variables. The IPOPT solver handles the bound constraints 
through logarithmic barrier terms added to the objective 
function and solves the following barrier problem:  

0  )( .. ,)ln( )( = (x) 
1

)( =− ∑
=

xctsxxFMin
n

i

iμφ  

where x(i) denotes the i-th component of vector x and μ is 
the barrier parameter. Solving a sequence of barrier 
problems as μ  0 results in an efficient strategy to solve 
the original NLP. The solution of the barrier problems, for 
fixed m, is obtained by solving the following Karush-
Kuhn-Tucker (KKT) conditions: 
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Here X = diag(x), λ and ν are KKT multipliers for the 
equations and bounds, respectively, and e is a vector of 
ones. To solve this nonlinear KKT system, IPOPT uses an 
exact Newton method with a novel filter line search 
method and efficient sparse linear solvers.  

Optimization problem for Natural Gas Plant 

To demonstrate the above optimization for switching 
between steady states, we minimize the offset between 
ethane recovery and a set point value. Here, the 
optimization variables are demethanizer top pressure 
(Ptop) and flowrate fraction derived through the bypass 
valve in cryogenic heat exchangers (XG). The dynamic 
optimization problem has been formulated in AMPL 
within a simultaneous approach (Waechter and Biegler, 
2006). For accurate approximations with guaranteed 
convergence properties, even for DAE high index 
problems, Radau collocation was implemented (Biegler 
2010) to discretize the DAE model. We apply this 
approach to the following dynamic optimization problem: 
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