
RESEARCH ARTICLE

Integration of animal health and public health

surveillance sources to exhaustively inform

the risk of zoonosis: An application to

echinococcosis in Rio Negro, Argentina

Andrew LawsonID
1*, R Boaz, III1, A. Corberán-Vallet2, Marcos Arezo3, Edmundo Larrieu4,

Marco A. VigilatoID
5, Victor J. Del Rio Vilas6

1 Medical University of South Carolina, Charleston, South Carolina, United States of America, 2 University of

Valencia, Valencia, Spain, 3 Ministerio de Salud, Viedma, Rio Negro, Argentina, 4 Universidad Nacional de

Rio Negro, Chole Choel, Argentina, 5 Organización Panamericana de la Salud, San Salvador, El Salvador,

6 Centre for Universal Health, Chatham House, London, United Kingdom

* lawsonab@musc.edu

Abstract

The analysis of zoonotic disease risk requires tshe consideration of both human and animal

geo-referenced disease incidence data. Here we show an application of joint Bayesian anal-

yses to the study of echinococcosis granulosus (EG) in the province of Rio Negro, Argen-

tina. We focus on merging passive and active surveillance data sources of animal and

human EG cases using joint Bayesian spatial and spatio-temporal models. While similar

spatial clustering and temporal trending was apparent, there appears to be limited lagged

dependence between animal and human outcomes.

Beyond the data quality issues relating to missingness at different times, we were able to

identify relations between dog and human data and the highest ‘at risk’ areas for echinococ-

cosis within the province.

Author summary

This work focuses on utilizing animal disease data to try and inform our understanding of

the spread of diseases in humans. We implement predictive models to estimate the rela-

tionship between the distribution of disease in animal populations and the distribution of

disease in human populations. Development of a better understanding of this relationship

could inform animal and public health interventions aiming to mitigate against human

disease before it spreads. Missing data and limited data resources made discovery of these

relationships difficult, but we fit multiple model types to try and identify any connection

between these two populations. We found specific areas with elevated risk of human dis-

ease and changes in disease risk over time. Finally, there was some indication of an associ-

ation between previous years’ levels of animal disease and human disease when using

animals as covariables.
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Introduction

Cystic echinococcosis (CE) is caused by Echinococcus granulosus (EG), a cestode of the family

Taeniidae whose hosts are herbivore and carnivore animals (sheep and dogs being the most

important involved in the transmission to man). It is a parasitic zoonosis endemic in South

America, especially in Argentina, Chile, Peru, Uruguay and southern Brazil [1].

Among the factors that contribute to the transmission of EG, the type of sheep production

in subsistence economies and the practice of feeding sheep offal to dogs appear most relevant.

Other factors, such as temperature and humidity, impact the survival and dispersion of the

parasite’s eggs to the environment [2].

In the province of Rio Negro, south of Argentina, CE is the most important zoonosis. In 1980,

when the province’s control program against CE was launched, passive surveillance detected 146

human cases (incidence rate: 73 cases per 100,000). The location of the province of Rio Negro is

highlighted in Fig 1A and its 18 subregions in Fig 1B. Rio Negro is one of the six provinces that

make up the Argentine Patagonia. The CE endemic area is in the south-west of the province, in

an area of 120,013 km2 with a population density of 0.88 inhabitants/ km2. The CE program con-

trol area has 13 hospitals and a network of 80 Primary Health Care Centers (PHCCs), normally

manned by a sanitary agent or nurse in rural areas, and a general practitioner in urban PHCCs.

The geographic areas of greatest risk are located to the west and center of the province [3–

5] including the towns of Bolsón and Bariloche in the Cordillera region and those of Comallo,

Pilcaniyeu, Ñorquinco and Ingeniero Jacobacci and their rural areas in the Patagonian plateau

region, where the ecological conditions favor the survival of Echinococcus granulosus eggs

and the social, cultural and economic conditions, with subsistence sheep farming and the per-

sistent practice of feeding sheep offal to the dogs, generate an epidemiological environment

that favors the sustenance of the transmission cycle [6].

Fig 1. A) Location of the Rio Negro region study region within ARgentina and within the context of South America. B) Map of Rio Negro regions: Bariloche (1), Comallo

(2), El bolson (3), El Cuy (4), Gral. Conesa (5), Jacobacci (6), Los Menucos (7), Maquinchao (8), Niorquinco (9), Pilcaniyeu (10), Ramos Mexia (11), San Antonio (12),

Sierra Colorada (13), Sierra Grande (14), Valcheta (15), Valle Alto (16), Valle Inferior (17), Valle Medio (18).

https://doi.org/10.1371/journal.pntd.0008545.g001
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The control program, which mainly consisted of regular administration of praziquantel to

dogs, contributed to the reduction of CE incidence to 29 cases per 100,000 in 1997, and to 7

cases per 100,000 by 2016. Surveillance is essential to evaluate the effectiveness of the control

efforts. In addition to the clinical cases detected via passive surveillance, active surveillance in

the form of ultrasound screening (US) of all 7 to 14 years old children attending school was

implemented [7]. In 1984, the first US campaign showed a prevalence of 5.6% [7]. Subsequent

screening in 1997 showed a prevalence of 1.1%, and of 0.2% in 2016 [7,8].

Surveys of sheep farms monitoring environmental exposure were also conducted, specifi-

cally targeting lambs and resident dogs to monitor recent infection. CoproELISA was used as a

screening method in dogs with confirmation by Western Blot (WB) in fecal samples obtained

from the environment [9,10]. ELISA was used as a screening test on sera from sheep with con-

firmation by WB [11].

Disease risk mapping is important for the understanding of the spatial epidemiology of infec-

tious diseases. Integration of data and analyses, whether of population or health related variables,

has been shown to improve risk classification accuracy and the efficacy of detection [12]. How-

ever, in most cases, even for multi-host diseases such as zoonoses, risk estimation has been con-

ducted in an univariate fashion based on human case data alone. Specifically, for zoonotic

diseases, knowledge of spatial and temporal patterns of the animal host could inform incidence in

humans [13]. Linked models have been widely used in several diseases such as tularemia [13], and

respiratory diseases [14]. Bayesian approaches have been used extensively to model disease counts

at the small area level [15,16], and to facilitate the joint modeling of animal and human data [17].

For CE, Bayesian and spatio-temporal analysis models have been developed widely (e.g. in

China [18, 19], Iran [20] and Kyrgyzstan [21]). However, none of these studies merged multi-

ple surveillance sources and simultaneously combined animal and human case data. The aim

of this study is to exhaustively analyze CE surveillance data for the identification of joint pat-

terns of disease in human and animals, and the achievement of more precise CE risk estimates

in the province of Rio Negro, Argentina.

Materials and methods

Materials

Animal data. Sheep farms, selected following a simple random sampling scheme across

the entire province, constituted our epidemiological unit (EU) of interest. Samples of canine

faecal matter were collected from the soil of sheep farms in close proximity to the houses. Sam-

ples were processed by coproELISA and, if positive, confirmed with WB. In parallel, blood

samples from lambs at the same EU were processed by ELISA with confirmation by WB. A

positive sample classified the EU as having recent transmission [10, 22].

Two data sets were considered:

a. Lamb and dog annual case data for the period 2003–06: It includes data on the total number

of farms sampled and the total number of farms with recent transmission (at least one dog

or one lamb positive).

b. Dog case data for the year 2010: It includes data on the number of farms sampled and the

number of farms with recent transmission (at least one dog positive).

Human data. Annual clinical cases detected by passive surveillance, classified in children

up to 14 years of age and adults, in the period 1997–2016. We chose this classification of clini-

cal cases to allow comparisons of recent infections in children vs. old exposure in adults. Infor-

mation was also collected from the cases diagnosed in US surveys of asymptomatic school
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children from 6 to 14 years old (active surveillance). All cases were all cases were georeferenced

to their health program area [7].

Both animal and human data were aggregated at the health program area level (m = 18) in

Rio Negro (Fig 1).

Methods

Spatial analysis of animal data. In this first analysis, we consider the previously described

animal data and fit a spatial model with the aim of estimating the risk of recent transmission in

each health program area for the two periods 2003–06 and 2010.

Model formulation. Let yi represent the number of farms with recent transmission out of

those that have been sampled (fi) in the ith health program area. At the first level of the model

hierarchy, we assume that the number of diseased farms yi are described by a binomial distri-

bution with pi the probability of a farm having recent transmission in area i.
At the second level of the model hierarchy, the logit of the probability, pi, is decomposed in

additive components representing spatial effects. In particular, we assume that the logit (pi) =

α0+ui+vi, where α0 represents the overall risk of disease in the study region (here Rio Negro),

and ui,vi are, respectively, spatially correlated and uncorrelated random effects. The prior dis-

tributions for these parameters are defined as zero mean Gaussian for the intercept and uncor-

related random effect, and a ICAR correlation model for νi [15]. Conventional prior

distributions are assumed for the standard deviations of these effects. In particular, we assume

a uniform distribution on a fixed range. This type of model is frequently used to provide an

optimal description of the spatial variation of disease risk in spatial epidemiology studies [16].

Information was missing on both the number of cases and the number of farms sampled for cer-

tain years. We modelled this missingness by means of a Poisson distribution with parameter λi
which has a Gamma prior distribution defined to mirror the sampled population. The average num-

ber of farms sampled per area, 20.14, was used to set the mean of the Gamma prior distribution.

Spatio-temporal analysis of animal data

In this section, we consider the annual data and fit a spatio-temporal model with the aim of

estimating the risk of recent transmission in each area and its evolution over time.

Model formulation. As in the spatial analysis, we assume that the number of farms with

recent transmission out of those that have been sampled in the ith small area at time j (fij) fol-

low a binomial distribution with pij the probability of a farm having recent transmission.

At the second level of the model hierarchy, the logit of the probability (pij) is decomposed

in additive components representing spatial and temporal effects:

logitðpijÞ ¼ a0 þ ui þ vi þ gj þ dij

where α0, ui and vi are defined as those above, γj is the temporal random walk component rep-

resenting a common trend in the study region, and δij is uncorrelated space-time interaction

random effect. As done in the spatial models for missing data, we assume that fij has a Poisson

distribution with a parameter which has a suitably scaled gamma prior distribution. This prior

sets the mean number of sampled farms as 15, which is similar to the number of farms sampled

in the areas with complete information.

Human case analysis

We jointly modelled active and passive surveillance data. In one scenario (see below), we split

the active surveillance data into adult and child cases.
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Model formulation. For Model 1 (and variants 1.1, 1.1.a, 1.1.b, and 1.2) we let cases(all)ij
represent the number of passive surveillance cases observed for both children and adults

together, e(all)ij represents the expected case count, n.screenedij the total number of children

screened (active surveillance), and pos.screensij the number of screened children with a positive

test. The passive surveillance model is set up as a Poisson data model for all cases with mean e
(all)ij�θij where, θij represents the relative risk of surveillance cases in area i at time j.

The screening model on the other hand assumes that positive screening findings have a

binomial distribution with probability pij. Due to missingness in the screening data, we assume

that we could use the screening observed in non-missing areas as a basis for imputation for

missing areas. Missing n.screened data is imputed using a Pois(λij) distribution with λij having

a gamma prior distribution that reflects the mean number of screened individuals for those

health program areas with data (approximately 200). θij and pij were modeled with log and

logit link functions respectively with varying degrees of linkage between the models. The full

list of models is given in S1 Table.

Model variants include v and v1 terms which are both uncorrelated error terms indepen-

dent from one another. Each have Gaussian prior distributions. Spatio-temporal error terms,

ψ and ψ1, are also included in some models with Gaussian prior distributions. The common

spatial error and temporal error terms will allow us to determine if the screening and passive

surveillance case data are behaving similarly across regions and time. Each of the modification

factors has a unique Gaussian prior distribution.

Model 1.0 uses effects unique for each of the outcomes. That is, none of the terms modeling θ
are used in modeling p. Model 1.1 allows the spatial correlation random effect (u) to be common

to both models with a factor (φ) modifying the proportion of positive cases’ spatial effect. This

common spatial effect allow us to link the outcomes we see in the surveillance and screening data

with a common spatial trend. Model 1.1a uses the same common spatial trend, and incorporates a

common temporal term (γ) trend with a factor (χ) modifying the effect. Model 1.1b uses common

spatial, temporal, and spatio-temporal error terms with a modification factor ρ introduced for the

spatio-temporal term. Model 1.2 uses all common random effect terms but a different intercept,

trying to completely connect the two sets of data, just scaling by a different intercept.

Model 2 scenario (with variants 2.0, 2.1, 2.1.a) splits the passive surveillance data into chil-

dren and adults, where child cases have a Poisson distribution with mean e(child)ij
�θ.cij and

adult cases with mean e(adult)ij�θ.aij. All terms are defined similarly to when data was aggre-

gated across age groups. In this case, age-based population data was used to develop the

expected rates for children and adults, respectively. Also, the models for child and adult sur-

veillance are linked by a common spatio-temporal term, δ, that has a zero mean Gaussian

prior distribution. S2 Table shows the models tested using the split passive surveillance data.

Models 2.0, 2.1, and 2.1a mirror the relationships shown in Models 1.0, 1.1, and 1.1a; how-

ever, instead of modeling θ as the relative risk of disease aggregated for both adults and chil-

dren, we split children and adults into two separate models with two separate θs. Model 2.0

uses separate random effect terms for each of the 3 models (θ.c, θ.a, and p). Model 2.1 uses a

common spatially correlated random effect (u) across all 3 models with modification factors φ
and φ1 scaling the effect from θ.c to θ.a and p respectively. Model 2.1a uses the common u
term with its modification factors and also uses a common temporal random effect term (γ)

with modification factors χ1 and χ2.

Human and animal analysis

In this section, we used the animal data as a covariate in our analysis of the human data. We

evaluated the animal data in two separate ways. For Model 1.3a, we looked at aggregated data
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for farms with dogs for 2003–2004, data for farms with lambs for 2004, 2005, and 2006, and

data for farms with dogs for 2010; we used the aggregated lamb and dog data as a single covari-

ate measure for each region. In Model 1.3b we used the dog (2003–2004) and lamb (2004–

2006) surveillance data, where we had both the number of animals screened and the number

of positive tests. The covariate was calculated by adding up all of the positive cases of dogs or

lambs over 2003–2006 and dividing by the total number of dogs and lambs screened over the

same time period. Not all periods and areas had available animal data and so model 1.3b has

no 2010 data, so that covariate was dropped. Both models are the same as Model 1.1a but with

the addition of the mentioned covariates. For Model 1.3a, ld2006i is the percentage of farms

detected after dog and lamb tested positive in each region from 2003–2006, and ld2010i is per-

centage of farms detected after dogs tested positive in each region for 2010:

logðyijÞ ¼ a0 þ ui þ vi þ gj þ cij þ b2006i � ld2006i þ b2010i � ld2010i

logitðpijÞ ¼ a1 þ φ � ui þ v1i þ w � gj þ c1ij þ o1 � b2006i � ld2006i þ o2 � b2010i � ld2010i

In Model 1.3a we added β2006i and β2010i as coefficients for the effect of the covariates in the

surveillance model. The regression coefficients were allowed to have spatially structured prior

distributions so that different areas could respond differently to the effect of predictors. We

assumed that the regression parameters (β�i) have spatially correlated ICAR prior distributions

while the precisions have uniform prior distributions.

We also used the same βs for the screening model but with modification factors ω1 and ω2

to link the two models. In Model 1.3b we excluded β2010i for both surveillance and screening

models (not shown).

Model fitting procedure

All models were fit using WinBUGS, with a burn-in of 100,000 iterations and a posterior sam-

ple of between 5,000 and 25,000 iterations. We checked convergence based on the Brooks Gel-

man Rubin (BGR) diagnostic statistic for deviance first, and then for each of the model

parameters being estimated. Models were compared using the Deviance Information Criterion

(DIC) and effective parameters (pD) to compare the models’ fits.

Ethics statement

The data used in this study consists of counts of diseased animals and humans from small

areas. The human data arises from passive and active surveillance. All cases are de-identified

and only the aggregated counts of cases are used in the analysis. Confidentiality of the human

cases is assured by this de-identification and the aggregation ensures that the addresses are

anonymized and hence not reported. Ethical approval was received for use of the data from

the Departo Zoonosis, Ministerio Salud, Provincia de Rio Negro.

Results

Spatial analysis of animal data

Tables 1 and 2 show the proportion of farms with present transmission, the posterior mean

estimate of the probability of a farm having recent transmission in each program area, and its

standard deviation for lamb and dog data for 2003–2006 and dog data for 2010, respectively.

The corresponding maps are shown in S1 and S2 Figs, respectively. The DIC (and pD) of the

model for dog and lamb data for the period 2003–06 is 81.442 (14.418), whereas that for the

dog data for 2010 was 44.274 (5.118).

PLOS NEGLECTED TROPICAL DISEASES Echinococcosis in public health informed by animal health surveillance

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008545 August 25, 2020 6 / 18

https://doi.org/10.1371/journal.pntd.0008545


For 2003–06 data, no strong spatial patterns emerge, but we see that El cuy, Sierra Grande,

and Valcheta have over 15% of sampled farms with transmission (Bariloche has 100%; how-

ever, only 1 farm was sampled).

For 2010 dog data, again, no spatial patterns seem to emerge, but El bolson, Jacobacci,

Maquinchao, and Niorquinco have over 15% of sampled farms with recent transmission.

Table 1. Lamb and dog data 2003–2006. Proportion of farms with recent transmission, estimated probability of a farm having recent transmission, and standard

deviation.

Prog.Area N.f sampled N.f recent transmission Proportion Estimated p SD(p)

Bariloche 1 1 1.000 0.300 0.260

Comallo 33 3 0.091 0.099 0.045

El bolson 44 1 0.023 0.047 0.030

El cuy 66 14 0.212 0.197 0.048

Gral. Conesa 41 1 0.024 0.048 0.030

Jacobacci 64 6 0.094 0.099 0.035

Los Menucos 69 7 0.101 0.106 0.034

Maquinchao 37 8 0.216 0.201 0.062

Niorquinco 84 11 0.131 0.128 0.035

Pilcaniyeu 50 4 0.080 0.089 0.037

Ramos Mexia 22 0 0.000 0.053 0.040

San Antonio 49 3 0.061 0.074 0.034

Sierra Colorada 11 1 0.091 0.109 0.071

Sierra Grande 30 8 0.267 0.233 0.075

Valcheta 83 15 0.181 0.172 0.041

Valle Alto 13 0 0.000 0.061 0.048

Valle Inferior 10 3 0.300 0.223 0.115

Valle Medio 7 0 0.000 0.073 0.060

https://doi.org/10.1371/journal.pntd.0008545.t001

Table 2. Dogs only data 2010. Proportion of farms with recent transmission, estimated probability of a farm having recent transmission, and its standard deviation.

Prog.Area N.f sampled N.f trans Proportion Estimated p SD(p)

Bariloche 5 0 0.000 0.130 0.061

Comallo 9 1 0.111 0.132 0.052

El bolson 40 8 0.200 0.168 0.052

El cuy 41 5 0.122 0.124 0.037

Gral. Conesa NA NA NA 0.126 0.080

Jacobacci 44 8 0.182 0.153 0.044

Los Menucos 17 2 0.118 0.125 0.045

Maquinchao 9 2 0.222 0.156 0.071

Niorquinco 20 3 0.150 0.143 0.050

Pilcaniyeu 9 1 0.111 0.134 0.057

Ramos Mexia 4 0 0 0.113 0.049

San Antonio 2 0 0 0.118 0.062

Sierra Colorada 22 1 0.045 0.101 0.041

Sierra Grande 7 1 0.143 0.125 0.057

Valcheta 53 5 0.094 0.108 0.035

Valle Alto NA NA NA 0.125 0.069

Valle Inferior NA NA NA 0.131 0.092

Valle Medio NA NA NA 0.122 0.069

https://doi.org/10.1371/journal.pntd.0008545.t002
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Because the affected areas have clearly changed over the years, a spatio-temporal analysis may

be more revealing.

Spatio-temporal analysis of animal data

S3 Table shows the annual proportion of farms with recent transmission and the posterior

mean estimate of the probability of a farm having recent transmission in each program area.

The corresponding maps are shown in Fig 2.

Here we see that in 2005 almost all regions showed>15% of sampled farms with

transmission.

Human case analysis

Our next goal was to analyze human case data to identify when and where disease rates spike.

Fig 3 shows the proportion of screened people who were positive for each region over all time

periods: only aggregated data available for 1984–1986, and 1997–2000, whereas 2003–2016 has

separate years. The southwest regions seem to be most affected, but rates are reducing over

time as a whole.

In S3 Fig, rates of counts of disease divided by expected counts of disease for people is

shown for years 2003–2016. Again, regions in the southwest show the highest rates, but some

regions in the east were higher in early years, and regions in the central area show increased

rates in later years. S4 Fig and S5 Fig represent rates when adult and child cases are taken sepa-

rately. The child data is fairly sparse, and the human data mimics the overall data, with perhaps

a greater skew to cases in the central areas.

Model comparison. Our models held different assumptions on the existence and strength

of the association between human and animal data. We want to compare our model paradigms

to investigate which is the best fit for our outcome data, providing some insight to the relation-

ship between animals and humans. Because Model 1 aggregates all cases together and Model 2

splits the outcome into discrete categories of adult and child, the models cannot be compared

using overall DIC. Within Model 1.0, 1.1, 1.1a, and 1.2 all DIC and pD values can be com-

pared. Similarly, all DIC and pD values can be compared across models 2.0 and 2.1. Model

2.1a has a negative pD for outcome y2 (adult surveillance cases), which suggests a poor model

fit and hence model mis-specification.

Model 1.1a is the best model, as its overall DIC is lowest and convergence was strong. It

models passive surveillance data together (child and human), incorporates a common corre-

lated spatial random effect and a common temporal random effect across both passive surveil-

lance and screening data, modifying the effects by universal scaling factors φ and χ,

respectively.

The modification factors φ and χ are estimated at close to 1 (0.668 and 1.286, respectively);

however, their standard deviations are quite large (5.4 and 9.9, respectively). This suggests that

the two surveillance streams (active and passive) are behaving similarly over space and time.

In Fig 4, the correlated spatial error term (u) is shown in one map and suggest clustering of

risk, and it is constant over all years. The southwest region again shows higher relative risk.

Fig 5 provides probabilities for program areas exceeding a RR of 1, that is P(RR>1), based

on Model 1.1a. The figure splits regions into three categories: probability greater than 0.8,

probability less than 0.2, and somewhere in between. These maps demonstrate where extreme

risk estimates are located. These again show highest rates in the southwest, but the central

regions showing higher values in more recent years. Note that any RR greater than 5 was set to

5 for legibility; many of the relative risks were much higher than 5 for these regions. Fig 6
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Fig 2. Annual data. Proportion of farms with recent transmission (left) and estimated probability of a farm having recent transmission (right).

https://doi.org/10.1371/journal.pntd.0008545.g002

PLOS NEGLECTED TROPICAL DISEASES Echinococcosis in public health informed by animal health surveillance

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008545 August 25, 2020 9 / 18

https://doi.org/10.1371/journal.pntd.0008545.g002
https://doi.org/10.1371/journal.pntd.0008545


Fig 3. Proportion of screened people who were positive. Grey areas indicate no people were screened in those regions in that time frame.

https://doi.org/10.1371/journal.pntd.0008545.g003

PLOS NEGLECTED TROPICAL DISEASES Echinococcosis in public health informed by animal health surveillance

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008545 August 25, 2020 10 / 18

https://doi.org/10.1371/journal.pntd.0008545.g003
https://doi.org/10.1371/journal.pntd.0008545


Fig 4. Model 1.1a - Spatially Correlated Error Term–u. Note that the values are zero centered and affect the relative risk on the log scale.

https://doi.org/10.1371/journal.pntd.0008545.g004
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Fig 5. Posterior exceedences for relative risks from model 1.1a.

https://doi.org/10.1371/journal.pntd.0008545.g005
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Fig 6. Model 1.1a –Posterior mean relative risks—Surveillance Data.

https://doi.org/10.1371/journal.pntd.0008545.g006
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displays the posterior mean estimates of risk and it is also evident that the south western areas

are highest in disease risk.

Human and animal analysis

Finally, we see results of using animal data as covariates in the human model. Fig 7 and Fig 8

show the program area-specific estimates of β2006i and β2010i based on Model 1.3a, showing the

impact of the animal screening data, where positive values of β indicate that an increase in the

percentage of positively screened animals results in an increased rate/count of human cases.

Again, we see that the southwest has high values of β2010i, which may indicate that the rates of

association between screening of animal data and human data are dependent upon where the

Fig 7. β2006i values based on Model 1.3a.

https://doi.org/10.1371/journal.pntd.0008545.g007

Fig 8. β2010i values based on Model 1.3a.

https://doi.org/10.1371/journal.pntd.0008545.g008
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disease is. However, we also ran Model 1.3c with a constant β2006 coefficient to see if there was

an overall association, and we had a value of 0.47 with sd of 5.332, indicating it was not statisti-

cally significant for this model. It is of note that all β values are positive, indicating a positive

relationship between the number of positively screened animals and the number of human

cases.

Discussion

The analysis of screening data and passive surveillance data showed that the most appropriate

model was that with a common spatial and temporal trend for both types of data, indicating

that both surveillance systems are capturing similar disease patterns across regions and time-

spans. This suggests there may not be a strong difference between the observed adult and child

incidence of echinococcosis. The analysis of the human data while using the animal data as a

covariate did not show any conclusive relationship for the passive and screening data models;

however, the areas of most elevated human risk (southwest), also showed the strongest associa-

tion with animal case data. S1 Fig shows that 2006 animal rates were not particularly clustered,

and yet Fig 6 shows that there may still be a strong impact of animal disease rates on human

disease rates in the southwest area. Animal disease does seem to be elevated in the southwest

in 2010 (S2 Fig), but the elevated values of the coefficients for animal impact in the southwest,

shown in Fig 7, continue to suggest that the rates of animal disease in this area are driving the

elevated human impacts in the southwest shown in Figs 4 and 5. However, the lack of evidence

for a constant β2006 suggests that the overall predictive impact of animal rates is not strong for

human outcomes. The observed association between animal and human cases is likely to

reflect ongoing long term transmission trends given the chronic nature of the clinical disease

in humans

The southwest area’s elevated human rates and higher impact of animal disease may merit a

finer scale case study of the transmission of disease between animals and humans, to account

for the likely heterogeneity within health program areas.

In general, the geographical areas identified as being most at risk are those located in the

west and center of the province, including Comallo, Pilcaniyeu, Ñorquinco and Ingeniero

Jacobacci and their rural areas, in the Patagonian plateau region, coinciding with previous

reports [10,22].

The CE control program in Rio Negro has maintained a regular activity since its inception

in 1980, however with interruptions in the deployment of some surveillance streams through-

out the years. As a result of this situation, the initial occurrence of CE in people, including chil-

dren from 6 to 14 years old, has persistently decreased, but the transmission is maintained in

some pockets. In this context, adjustments to the epidemiological surveillance system towards

detection of such defined areas are warranted. Our analyses aim to provide the evidence to

support such adjustments. Likewise, it is essential to identify the effectiveness of each of the

surveillance systems applied, including their correlation and / or enhancement, in order to

eventually reduce the operating costs of the system.

Surveillance in dogs, for its part, is the only tool to identify present transmission. With the

advent of coproELISAs in the 1990s, laboratory testing of dog faeces was possible on a large

scale and copro tests were used for surveillance in many programs, including Rio Negro [23].

Conclusion

Due to the complexity of parasitic cycles such as that of EG (passage through the definitive

host, environment, time of evolution in the human host and time of detection of infection) the

association of animal-human surveillance sources becomes more difficult to characterise.
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Added to this is the difficulty in obtaining adequate data on animal surveillance in time and

space, due to the geographical extension of control programs, the inherent associated logistical

challenges, and limited operational capacity. Conducting studies at finer spatial scales and in

smaller areas with high case rates where animal surveillance can be intensified may be an

option for future research. Still, we were able to identify some relationship between animal

and human data, specifically with the 2010 dog data. These results support a continued study

of the predictive capabilities of animal disease data in understanding human risk.

Limitations

While our study has exploited the available data across surveys and passive surveillance, and

used state of the art methods to inform the transmission behavior of CE, there are a number of

limitations. Primarily, the fragmented scope of the animal and human data has led to reduced

ability to find equivalent data frames. This has also limited the ability to detect lagged effects.

Differences in data quality also inevitably impact the inferential ability of any methods. In

addition, the sparseness in terms of low or zero counts in some areas can lead to less certainty

in estimation of rates. While CE outbreaks are affected by environmental factors such as

humidity, temperature and rainfall, we have endeavored to assess the animal–human linkage

by accounting for confounding partially generated by these factors. It may be that inclusion of

these factors could also help to elucidate the animal-human linkage. This we would examine in

future work.
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