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Abstract—In many studies, different models for weather radar
clutter signal are used, each with its advantages and disadvan-
tages. In this paper we use a model selection method through
a goodness-of-fit (GoF) test over its power spectral density. The
Barlett’s Tp test’s performance is firstly studied using synthetic
radar data. This specific test has the advantage of being model
independent. Using this test we compare the GoF of different
clutter models to real measurement data obtained from an
Argentinian weather radar (Radar Meteorológico Argentino,
RMA). The Gaussian shape for the Power Spectral Density (PSD),
both with and without considering windowing effects, and a first
order autoregressive (AR) model are evaluated, since they are
the most popular in weather radar applications. We also suggest
truncating the spectrum to the clutter mode because it shows an
improvement for the model selection. As a result, the first order
AR model offers a higher rate of test acceptance than the other
models.

Index Terms—Goodness-of-fit, Power Spectral Density, Clutter,
Doppler Weather Radar

I. INTRODUCTION

One of the most challenging tasks in weather radar signal
processing is getting rid of the unwanted reflections due to
enviromental agents such as ground, trees, mountains, etc.
This signal component, referred to as clutter, is usually present
and its high power level can make the meteorological target
component imperceptible. To decide whether clutter is present
or not, it is important to know its properties and to build
a model to describe it. Many studies have already been
carried out to model weather signal spectra. Such models are
commonly related to the Power Spectral Densities (PSD) shape
and its spectral moments. Janssen [1] derived the Gaussian
PSD model from theoretical arguments and showed that it fits
correctly -in a least squared error sense- to measured data in
more than 75% of the cases.

Pinsky et. al. [2] proposed the first order autoregressive
(AR) model for the PSD and derived an iterative algorithm
to estimate the model parameters. A complete description and
analysis of ARMA models for radar signals has been presented
by Thomas & Haykin [3].

It is worth mentioning that each model implies a particular
group of parameters and also different estimation criteria. A
variety of estimators for both frequency and time domain have
been proposed [2], [4]–[7].

Hypothesis tests have been generally evaluated over the
probability distribution function (PDF). For example, Billings-
ley [8] compares Rayleigh, Weibull, Log-Normal, and K-
distribution models for ground clutter data using GoF tests.
Additionally, Zhu Ling [9] explains how Gaussian models are
not the best fitting models by making Kolmogorov-Smirnov
tests over real data. Nevertheless, none of the aforementioned
studies show how tight the PSD adjusts to the measurements.

Although there are practical solutions that mitigate the
clutter without requiring an exact model for the PSD as in [10],
[11] or assuming a Gaussian model as in [12], we hope that
the use of more precise models will lead to implementations
with better detection and mitigation performance.

In this paper we propose measuring how well the first order
AR process and the Gaussian PSD shape model the ground
clutter for weather radar applications. We based our work on
a goodness-of-fit (GoF) analysis by directly testing the PSD
shape for these models. A particular model selection test was
chosen due to its model independence behaviour in a statistical
sense. The goodness of each model will be measured in terms
of acceptance rate over measured data cells.

The paper is organized as follows. The signal models are
described in Section II. We give the expressions for the PSD
in each case and we define their parameters. In Section III
we introduce the Barlett’s Tp test used to measure the GoF
of the model to clutter data. Using real weather radar data we
evaluate the test and present the results in Section IV. Finally,
Section V summarizes the work and presents conclusions.

II. RADAR SIGNAL MODELLING

There are several models suitable for weather radar signal
PSD. Among them, the Gaussian is the most accepted. Its
properties are well known and its PSD expression depends
explicitly on the spectral moments.

On the other hand, the autoregressive models are popular
due to their versatility. With a few number of parameters the
AR process can model different spectrums. The first order
model is particularly used in many applications.

Each model is not only characterized by its PSD but also
by the available estimation criteria for its parameters. This is
an important issue, because the data sets are relatively small,
thus a windowed version of the signal should be considered.
Taking into account the effect of the window in the model its
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complexity increases both in its definition and its estimation
methods. This consideration is usually avoided for simplicity.

We are interested in modeling the clutter in the weather
radar signal using the two mentioned models for the PSD
signal and a third model including the window effect for the
Gaussian PSD.

• Gaussian model: the PSD is given by

SG(f) =
Sc√
2πσc

e
−

(f−fc)
2

2σ2
c +

N0

2
, (1)

where Sc, fc and σc are respectively the power, the
mean frequency –expected to be approximately zero– and
spectrum width of the clutter, and N0/2 is the noise power
spectral density. In short, we define the parameter vector
as

θG = [Sc fc σc N0/2]T . (2)

• First order AR model: the PSD is given by
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where a1 is the AR(1) process coefficient, σ2
ϵ is the

innovation variance and and N0/2 is the noise level. The
parameter vector is

θAR = [a1 σ
2
ϵ

N0/2]T . (4)

• Windowed Gaussian model: the PSD is a modified
version of the Gaussian model PSD, given by

SGW
(f) = {Sa ∗W2}(f) +

N0

2
, (5)

where Sa(f) is the asymptotic clutter PSD

Sa(f) =
Sc√
2πσc

e
−

(f−fc)
2

2σ2
c , (6)

and W2(f) = |W (f)|2, being W (f) the Discrete Time
Fourier Transform (DTFT) of the rectangular window.
It should be remarked that the length of the window is
always N . The parameter vector is the same as in (2).

If we denote the complex set of samples at the quadrature
demodulator’s output as y = [y1 · · · yN ]T , the hypotheses
test can be formulated as

⎧

⎨

⎩

H0 : Syy(f) = S0(f)

H1 : Syy(f) ̸= S0(f),
(7)

where the decision between H0 and H1 is taken after y has
been received.

Under the null hypothesis H0, it is assumed that the PSD
of the clutter data matches with the PSD model, S0(f). Under
the hypothesis H1 it is assumed that the measurement has a
PSD different to S0(f).

Fig. 1. Signal IPSD, White Noise PSD and thresholds for the Barlett’s Tp

test.

III. BARLETT’S Tp TEST

To test the PSD goodness-of-fit we use the Barlett’s Tp

test [13]. It is derived as an adaptation of the Kolmogorov-
Smirnov test, using the whitened integrated power spectral
density (IPSD) instead of the cumulative probability function.
This test has the advantage of possessing a PSD independent
statistic. The chosen PSD function will not affect the statistic’s
distribution, but its number of samples will. The test’s statistic
is defined as

Tp =

p∑

n=1
Ŝyy[n]/S0(fn)

N∑

n=1
Ŝyy[n]/S0(fn)

, (8)

where Ŝyy[n] is the PSD estimator known as Welch’s peri-

odogram [14] and fn = fs
N
(n− 1)− fs

2 , with n = 1, . . . , N ,
are the ordinate’s frequencies. The test procedure consists in
deciding whether Tp corresponds to a white noise process or
not, by comparing their IPSD. Thus, the null hypothesis is
rejected if

DN = max
p

{|Tp − p/N |} ≥ a/
√
N, (9)

where a/
√
N is a threshold fixed by the significance level α

of the test. Thereof, from the DN ’s probability distribution it
can be shown that

lim
N→∞

P {DN ≤ a|H0} = 1− α, (10)

with

α = 1−
∞
∑

j=−∞

(−1)je−2a
2j2 . (11)

Fig. 1 shows an example of a IPSD from a clutter echo signal
where the thresholds are crossed and the test fails. When
analyzing a set of cells corresponding to different coherence
intervals, it is important to recall that the theoretical PSD will
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Fig. 2. Significance level estimation versus number of samples used in
periodogram. Theoretical value of α = 0.05.

be different for each cell. Therefore each null hypothesis will
be different, i.e,

S0(fn)r,φ → S0(fn|θ̂r,φ), (12)

where θ̂r,φ is the parameter estimation vector of each cell.
If the amount of cells is large enough, the model selection
can be considered accurate if the percentage of accepted tests
matches the value 1− α.

A. Test’s performance

Before applying the tests over the samples it is important
to know its performance and limitations. In order to do that,
two simulations were performed over synthetic data with
controlled statistics. The first test consisted in studying the
Type I Error Probability dependence with the number of
samples used for the PSD estimation. A significance level
of α = 0.05 was fixed. Fig. 2 shows the results of the
test using Gaussian PSD synthetic data. As the number of
samples increases the estimated error probability converges to
the expected theoretical value, according to (10).

On the second test, the number of samples was fixed,
changing the number of realizations I used for the peri-
odogram. It is worth mentioning that this change involves
modifying the Tp’s definition, since the Welch periodogram

strictly uses one realization. However, it was noted that DN ’s
distribution did not change significantly. Fig. 3 shows the
estimated significance level versus I . Results indicate that
there is no benefit in using more than one realization.

B. Spectrum truncation

Since our study focuses on spectrums were clutter predom-
inates a typical PSD shape is assumed, as shown in Fig. 4,
where the PSD was estimated using the Welch periodogram
over the measurments described in Section IV. Observing Fig.
4 the spectrum can be divided into two regions: the central
region where the clutter mode is present with a high power
level and border regions where noise is predominant and power

Fig. 3. Significance level estimation versus number of realizations used in
periodogram. Theoretical value of α = 0.05.

Fig. 4. Typical estimated PSD shape of clutter and noise radar echoes.

levels are low. It can also be seen that clutter extends over a
narrow band. Since clutter to noise ratios (CNR) are usually
between 10 to 50 dB, the noise region entails a problem when
normalizing the spectrum due to its low sample values, but
large total power value. This implies that the IPSD will not
grow as fast as it should, crossing the threshold as seen in the
example of Fig. 1. Hence, truncating the spectrum to the clutter
region is advantageous. Reducing the number of samples in
this case does not imply increasing the significance level, as
shown in Fig. 2, since the truncation is done in the frequency
domain and the amount of samples per frequency interval
remains constant.

IV. RESULTS

Below, results of the goodness-of-fit of mentioned models
to real clutter data are presented. Measurements of the RMA-
1 Argentinian weather radar, located in Córdoba city were
used. The RMA-1 is C-band polarimetric radar, designed and
developed by the company INVAP. Specifically, the used data
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Fig. 5. Reflectivity factor estimated in Córdoba city’s surroundings.

Fig. 6. Cell selected as clutter only (Z > 45 dBz).

was recorded on September 7, 2018, at 2:28 pm (UTC-03:00).
The shown results correspond to a complete sweep of the
horizontal polarization (HH) at the elevation angle 0.5 degrees
under clear sky conditions, ensuring that there were no weather
components present.

Fig. 5 shows the reflectivity factor, Z , of the measured
data. A region of high reflectivity due to ground clutter can
be seen, which can be explained by the presence of hills in
the surrounding environment. Moderate reflectivity lines can
also be seen at a few azimuth angles, corresponding to electro-
magnetic interference probably due to WLAN networks. Since
we are interested in modeling clutter signals, only cells with
reflectivity greater than 45 dBz were taken into account. These
cells are shown in Fig. 6.

In Figs. 7-9, the untested cells are represented in grey,
the cells where the test was accepted (i.e. H0 has not been
rejected) are represented in black, and the cells where the test
failed (i.e. H0 has been rejected) are represented in white. To
show the effect of truncating the spectrum, the test was done
on three sets of samples: N = 54 (complete spectra), and

(a) (b)

Fig. 7. Hypothesis test results for (a) complete spectra and (b) 8-sample-
truncated spectra assuming the first order autoregressive model.

(a) (b)

Fig. 8. Hypothesis test results for (a) complete spectra and (b) 8-sample-
truncated spectra assuming Gaussian model

N = 8 and 16 centered samples (central mode). In all of the
cases the test’s significance level was set to α = 0.05.

For all models used, it is necesary to determine the noise
level N0/2. This was performed in the spectrum domain
following the approach presented in [15].

A. First order autoregressive model

In Fig. 7 the results for the AR(1) model are shown. The
criterion used for estimating the AR(1) process parameters is
maximum asymptotic likelihood [16]. In the case where N =
54 (Fig. 7.a), only 17% of the tested cells had H0 accepted.
Note that at angles where the interference was present, the
rejection rate is higher. On the other hand, in the case where
N = 8 (Fig. 7.b) the 100% of the tested cells were accepted,
having a lesser Type I error probability than expected.

B. Gaussian model

Figs. 8.a-8.b show the test results assuming the Gaussian
PSD model. Its parameters where estimated using the Rie-
mann approximation of the integrals that define the spectral
moments. Complete PSD tests, N = 54, only had 1% success
rate, while truncated PSD tests, N = 8, where accepted 93%
of the times. It is wise to remark that Riemann estimation
algorithm was done with the complete spectra in both cases.

C. Windowed Gaussian model

The last study was made applying the windowed-Gaussian
model. Results are shown in Figs. 9.a-9.b for complete and
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(a) (b)

Fig. 9. Hypothesis test results for (a) complete spectra and (b) 8-sample-
truncated spectra assuming Gaussian model with window correction.

truncated, N = 8 samples, spectra relatively. In the first case,
1% of tests where accepted whereas 95% in the second case.
The slight improvement regarding the previous model makes
sense with the truncation since the window effect is stronger
in the central mode.

The 16-sample-truncated spectra results are shown in table
I. As seen, truncated spectra improved the test results for every
model. But the window correction did not make any significant
change.

Model
Samples

54 (all) 16 8

AR(1) 17% 96% 100%
Gaussian 1% 57% 93%

Windowed G 1% 57% 95%

TABLE I
PERCENTAGE OF CLUTTER CELLS WITH ACCEPTED H0 FOR DIFFERENT

MODELS AND SPECTRUM TRUNCATIONS.

V. CONCLUSION AND DISCUSSION

In this study, a PSD goodness-of-fit test has been presented
as a model selection criterion for ground clutter data in weather
radar applications.

The three most popular models used in weather radar appli-
cations were described and evaluated. These are the Gaussian
model, both with and without considering windowing effects,
and the first order autoregressive model.

The Barlett’s Tp test, an adaptation of the Kolmogorov-
Smirnov test for the PSD, was studied and used for testing the
proposed models. Firstly, its performance and limitations were
analyzed by means of synthetic weather radar data, showing
that large number of samples improves the tests performance.
Secondly, we applied this test to compare the GoF of different
clutter models to real measurement data obtained from the
Radar Meteorológico Argentino 1 (RMA-1).

In the particular case of ground clutter, it was noted that
only central mode spectrum samples are useful. It was shown
how noise spectra samples deteriorate the test’s performance
remarkably. A dynamic truncation of spectra as a function of
clutter’s width is believed to improve the test performance.

Moreover, since the high power level clutter echoes is not the
only parameter to detect clutter, using another way to select
clutter cells is recommended.

Regarding the windowed Gaussian model, it is concluded
that windowing considerations are not necessary. The reason
why windowing did not make any improvement to the Gaus-
sian model is due to the low frequency resolution commonly
available in weather radar signals. Even though, changes in
windowing parameters such as type and length should be
studied.

Despite the Gaussian model being theoretically grounded,
Tp tests showed that the AR(1) model fits better for clutter
PSDs. Anyhow, the Gaussian model is not to be blamed
independently since other estimation criteria for the parameters
have not been evaluated.

A possible next step consists in evaluating the Barlett’s Tp

test for the Gaussian model using the pulse-pair-processing
[17] algorithm to compute its parameters.
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and sharing radar data.

REFERENCES

[1] L. H. Janssen and G. A. Van Der Spek, “The shape of Doppler spectra
from precipitation,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 21, no. 2, pp. 208–219, 1985.

[2] M. Pinsky, J. F. i Ventura, T. Otto, A. Sterkin, A. Khain, and H. W.
Russchenberg, “Application of a simple adaptive estimator for an atmo-
spheric Doppler radar,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 49, no. 1, pp. 115–127, 2011.

[3] P. Thamas and S. Haykin, “Stochastic modelling of radar returns,” in
IEE Proceedings F - Communications, Radar and Signal Processing,
vol. 133, 1986, pp. 476–481.

[4] D. S. Zrnic, “Estimation of spectral moments for weather echoes,” IEEE
Transactions on Geoscience Electronics, vol. 17, no. 4, pp. 113–128,
1979.

[5] ——, “Spectrum width estimates for weather echoes,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. AES-15, no. 5, pp.
613–619, Sep. 1979.

[6] J. M. Dias and J. M. Leitão, “Nonparametric estimation of mean Doppler
and spectral width,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 38, no. 1, pp. 271–282, 2000.

[7] A. Le Breton, “A note on maximum likelihood estimation for the
complex-valued first-order autoregressive process,” Statistics & Prob-
ability Letters, vol. 7, no. 2, pp. 171–173, 1988.

[8] J. B. Billingsley, A. Farina, F. Gini, M. V. Greco, and L. Verrazzani,
“Statistical analyses of measured radar ground clutter data,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 35, no. 2, pp.
579–593, 1999.

[9] L. Zhu, Z. M. Chen, and C. S. Jiang, “Amplitude statistical analysis of
Ku-band SAR ground clutter data,” in 2008 International Conference
on Communications, Circuits and Systems, May 2008, pp. 866–870.

[10] H. Torp, “Clutter rejection filters in color flow imaging: a theoretical
approach,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, vol. 44, no. 2, pp. 417–424, 1997.

[11] S. M. Torres and D. S. Zrnic, “Ground clutter canceling with a regression
filter,” Journal of Atmospheric and Oceanic Technology, vol. 16, no. 10,
pp. 1364–1372, 1999.

XVIII Reunión de Trabajo en Procesamiento de la Información y Control - RPIC 2019 
18 al 20 de septiembre de 2019 - Bahía Blanca, Buenos Aires, Argentina

185ISBN: 978-987-1648-44-3



[12] C. M. Nguyen and V. Chandrasekar, “Gaussian model adaptive pro-
cessing in time domain (GMAP-TD) for weather radars,” Journal of
Atmospheric and Oceanic Technology, vol. 30, no. 11, pp. 2571–2584,
2013.

[13] M. Priestley, Spectral analysis and time series. Department of Math-
ematics, University of Manchester Institute of Science and Technology,
1981.

[14] P. Welch, “The use of fast fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified peri-
odograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15,
no. 2, pp. 70–73, 1967.

[15] P. H. Hildebrand and R. Sekhon, “Objective determination of the noise
level in Doppler spectra,” Journal of Applied Meteorology, vol. 13, no. 7,
pp. 808–811, 1974.

[16] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 1:
Estimation Theory. Prentice Hall PTR, 1993.

[17] R. J. Doviak and D. S. Zrnic, Doppler Radar and Weather Observations.
Academic Press, 1993.

XVIII Reunión de Trabajo en Procesamiento de la Información y Control - RPIC 2019 
18 al 20 de septiembre de 2019 - Bahía Blanca, Buenos Aires, Argentina

186ISBN: 978-987-1648-44-3




