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Maize is one of the most important crops worldwide. The analysis of the influences of genotype, management,
and environmental variables on grain yield has important consequences for guiding farmer’s decisions.
Argentina is facing relevant changes in its production system, as farmers are planting later in the growing season.
It is unclear, however, which management decisions are critical, and how they interact with contrasting
genotypes. Using mixed-effects models we analyzed the influences of different genotypes, management, envi-
ronmental predictors and relevant two-way interactions between these predictors on grain yield in late-sown
maize. On-farm multi-environmental trials were conducted during two years (2013 and 2014), with a total of
9 genotypes tested at 23 different environments in the central region of Argentina. The influence ofmanagement
variables like planting date, stand density, N availability, and soil P were explored. Similarly, we analyzed the in-
fluence of environmental variables like soil type, rainfall during the crop cycle, and the presence of an influencing
water table.
Averaged grain yield varied from 5,555 to 12,078 kg ha−1 among environments. Our best model described the
spatial and temporal variation in grain yield (r2 = 0.91). Genotypes varied in their performance across environ-
ments and evidenced significant interaction with N availability. Management variables positively influencing
yieldwere, in order of relevance, N availability and stand density. N availability had a positive decelerating effect,
with an initial slope of 22 kg ha−1 per additional kg N ha−1. Increasing the stand density had a positive linear
effect of 1,001 kg ha−1 per additional increment of 10,000 pl ha−1 (from 54,000 to 76,000 pl ha−1 explored
range). Presence of an influencing water table at planting had a negative effect on yield (−1,361 kg ha−1),
suggesting that water availability could be in excess in later plantings. We demonstrated that, across a wide
variability in soil types and rainfall, maize grain yield can be increased by choosing superior, high responsive
genotypes, increasing stand density and applying optimal N rates. Results have important implications for
guiding maize management and highlight that effective decisions require the combination of management
options.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Maize is one of the most important crops worldwide (FAO, 2014).
Exploring the influence of different genotypes, management, and envi-
ronmental variables has important consequences in maize production
systems. The availability of information in multi-environmental data
has increased exponentially in the last years, and exploiting this infor-
mation is crucial for guiding farmer's decisions and testing hypothesis
with regional implications. This is clearly important in the current
context and challenge of substantially increasing yields while reducing
at the same time the substantial environmental impacts of agriculture
(Foley et al., 2011).

Multi-environmental trials (METs) arewidely applied in crop breed-
ing and extension. In METs, a group of genotypes are grown across a
number of trials within a specific region during several years to provide
information covering performance of genotypes in a particular target
population of environments (DeLacy et al., 1996). The term “environ-
ment” usually encompasses management variables to that particular
location following “best local practice” (in terms of fertilizer, stand den-
sity, etc.) and environmental variables that could not be easily modified
by farmers (soil type, water available at planting, rainfall, etc.). Given
the opportunity of control or not by farmers, unraveling management
from environmental variables is not trivial.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.agsy.2016.03.011&domain=pdf
mailto:bgambin@unr.edu.ar
www.elsevier.com/locate/agsy


Table 1
List of environments tested.

Year Site Code Latitude (decimal) Longitude (decimal)

2013 Cristophersen Cr_13 −34.2 −62.0
Solis So_13 −34.2 −59.2
Laborde La_13 −33.0 −59.4
9 de Julio 9J_13 −35.6 −60.9
Bustinza Bu_13 −32.5 −61.2
El Fortin EF_13 −31.6 −62.2
Rio II RII_13 −31.9 −63.8
25 de Mayo 25M_13 −35.4 −60.1
Urdinarrian Ur_13 −32.7 −58.6

2014 M.J. Moreno MJM_14 −32.5 −62.0
Noetinger No_14 −32.4 −62.3
M. Juarez MJ_14 −32.7 −62.0
Jovita Jo_14 −34.5 −64.0
9 de Julio 9J_14 −35.4 −60.8
La Picada LP_14 −31.7 −60.3
Colonia Co_14 −31.8 −60.6
Rio II Rll_14 −31.6 −63.8
Laboulaye Lab_14 −34.0 −63.9
Godoy Go_14 −33.3 −60.5
Bustinza Bu_14 −32.5 −61.2
El Fortin EF_14 −31.6 −62.1
Pergamino Pe_14 −34.0 −60.1
Salto S_14 −34.3 −60.4
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There are large possibilities to analyze data fromMETs (DeLacy et al.,
1996; Malosetti et al., 2013). Most of them are based on limited
management and environmental description. Data are traditionally an-
alyzed by ANOVA determining the variance components associated
with genotype, environment (defined as a particular trial in a particular
year, including the influence of management and “truly” environmental
variables), and genotype × environment interactions (GEI; also includ-
ing genotype × management interactions; GMI), with all these effects
considered fixed. More recently, the advantages afforded by linear
mixed-effects models have been recognized (Smith et al., 2005). These
advantages include the capacity to handle incomplete data (not all ge-
notypes in all environments) and the ability to assume some effects to
be random or fixed, based on the particular interest of the analysis
(Smith et al., 2005).

Analysis of data fromMETs commonly shows that the environmen-
tal (trial × year) effect is larger than the genotype or the GEI effects
(DeLacy et al., 1996). If available, environmental and management
covariates can be incorporated to the model to explore their influ-
ence on the response variable, usually grain yield per unit of land
area. The same occurs with GEI; they are ubiquitous and often large
compared to the genotype effects (Smith et al., 2005; Malosetti
et al., 2013). The interaction is then described as a differential
sensitivity to explicit predictors such as stand density, sowing date,
or temperature. For suitable chosen covariates the associated GEI
and GMI are predictable (Smith et al., 2005), having important con-
sequences for genotype performance predictions that are specific
to individual farmer conditions.

Argentina is one of the most important producers of maize, and is
currently facing a relevant change in its production system. The planting
date at the central region has been moved later in the growing season
(September to December). A longer fallow period allows more accu-
mulation of water and N at planting. Late-sown maize locates the
critical flowering period for yield definition (Andrade et al., 1999)
under conditions of higher probability of rainfall and less evapora-
tive demand compared to earlier traditional plantings. Although
yield potential at these late planting dates is lower than earlier
ones (Mercau and Otegui, 2014), farmers are obtaining acceptable
yields with higher yield stability. There are also commercial benefits
related to lower fertilizer needs and lower stand densities. Late
sowing has become a valid alternative for maize producers to reduce
risk. At present, 40–60% of the total maize produced in Argentina is
considered late sowing (PAS, 2015).

In the present manuscript we explore the influence of different
genotypes, management, and environmental predictors on grain
yield in late-sown maize, and define the model that best describes
the observed data using mixed-effects models. We are interested
in defining which predictors are relevant, and in quantifying the
magnitude of their effects. We hypothesize that environmental var-
iables related to water availability have limited influence on grain
yield. Because some management decisions are known to depend
upon the genotype (e.g., stand density; Cox, 1996; Bavec and
Bavec, 2002; Sarlangue et al., 2007; Hernández et al., 2014), it was
also of interest to explore potential genotype × management inter-
actions (GMI) as a differential response to particular management
options.

Multi-environmental trials involved 23 different environments
(combination of trials and years), each having 9 common genotypes.
We started with a model describing yield variation among environ-
ments, genotypes, GEI and relevant GMI without fixed-effects predic-
tors, and compared it with another model incorporating fixed-effects
predictors. Management predictors were planting date, stand density,
N availability, and soil P. Environmental predictors were soil type,
rainfall during the crop cycle, and the presence of an influencing
water table at planting. Genotype × management interaction was
evaluated by exploring differential genotypic response to stand density
and N availability.
2. Materials and methods

2.1. Study system

Trials were sown under different locations around the central pro-
duction area in Argentina during two growing seasons (2012/2013
and 2013/2014, from now-on referred to 2013 and 2014, respectively).
Environments are described in Table 1, and involved 9 locations in 2013
and 14 locations in 2014. The “location” is a loose spatial reference, as, in
different seasons, the location (a summarized of the town name) may
actually be different paddocks, farms, and/or soil types subject to differ-
ent management practices. Since all the locations were not represented
at each of the two years, the terms “environment”will be used herein to
define the combination of a particular trial in a given year (Table 1). All
fields used for trials were managed under no-tillage for a minimum of
eight years. Fields belong to farmers grouped in AAPRESID (Argentinian
Association of No-Tillage Farmers).

Nine single-cross maize hybrids from different seeds companies
were evaluated in all trials (Table 2). Genotypes were selected by each
seed company for being recommended under late planting. Many of
these genotypes are widely used under early planting dates also.
Relative maturity across genotypes ranged from 120 to 123 (Table 2).
Each trial had a randomized complete block design with two replicates.
One trial had three replicates (25M_13). Plot size was 6 to 8 rows wide
and 200 to 240 m length, depending on the specific trial. Inter-row
spacing was 0.52 m.

All trials weremanaged under farmer decisions andwith their avail-
able technology (planter, harvesting), making trials representative of
maize production environments in Argentina. All trials were rainfed,
and weeds and insects were controlled chemically. Soils are predomi-
nantly deep sandy loams (Typic Hapludoll, Entic Hapludoll, Haplustoll)
and shallower clay soils (Aquic Argiudoll, Argialboll). Soil types varied
across trials (Table S1), ranging from land suited to cultivation (types
I, II and III) to more restrictive soils (type IV, V and VI) (Klingebiel and
Montgomery, 1961). Predecessor crop in most trials was soybean. At
each trial, soil samples until 60 cm depth were taken before planting
to determine soil proprieties. Percentage of organic matter and amount
of P (ppm) were determined at 0–20 cm depth, and N-NO3 was
determined until 60 cm depth. Organic matter was determined by
semi-micro Walkley and Black technique (Walkley and Black, 1934),
and P and N-NO3 was determined by spectrophotometry. The amount
of N and P applied was defined by farmers based on soil analysis,



Table 2
List of commercial genotypes tested. Relative maturity indicates relative differences in
cycle between hybrids (for every two units of differences there will be one point of
difference in moisture at harvest).

Genotype Seed Company Relative maturity

ACA_470 ACA 120
ADV_8112 Advanta 122
ARV_2155 Arvales 121
ARV_2194 Arvales 122
DK_7210 Monsanto 122
Dow_505 Dow Agr. 121
Dow_510 Dow Agr. 123
NK_840 Syngenta 121
NK_860 Syngenta 122
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expected yields, and costs. Depth of water table was indicated when
present at sowing. Rainfall during the crop cycle was recorded at each
trial.

Grain yield data are presented at 14% moisture. Plot (strip) data of
grain yield were determined with sensors located at the harvest
machine. Most trials showed no detectable incidence of stalk break or
diseases. The first winter killing frost was always latter than physiolog-
ical maturity.

2.2. Predictor variables

One of the main interests of our study was to incorporate manage-
ment and environmental variables as fixed predictors within the
model. The inclusion of predictors was based on several aspects, includ-
ing specific interest as how to manage the crop, data availability, and
enough variation across trials. The following predictors were analyzed:

a. Planting date: as days after 1 November (quantitative variable).
b. Stand density at harvest (pl m−2): as quantitative variable.
c. Nitrogen at planting soil (kg ha−1, 0–60 cm depth) + fertilizer

as quantitative variable (kg ha−1) (from now-on referred to N
availability).

d. Soil phosphorus (ppm, 0–20 cm depth): as quantitative variable
(from now-on referred to soil P).

e. Soil type: as categorical variable. Soils were grouped into three
levels: I-II, III, and IV-V-VI.

f. Rainfall during the crop cycle (mm): as quantitative variable.
g. Water table at planting: as nominal variable (two levels: 0, absence;

1, presence at less than 2 m depth).

The first step of the analysis involved data exploration. Key concepts
to consider at this stage were outliers, multicollinearity, and the type of
relationships between variables (Zuur et al., 2009). Multicollinearity
among quantitative variables was evaluated by matrix correlations
following Pearson method and by calculating the variance inflation fac-
tor (VIF) in R software (R Core Team, 2013, version 3.0.2, fmsb package;
Nakazawa, 2014). Latitude and longitudewere also included in this cor-
relation analysis as quantitative variables to explore spatial trends.

2.3. Statistical analysis and model selection

We used linear mixed-effects models to assess the influence of dif-
ferent predictor variables on grain yield (adjusted to 14% moisture) in
R software (lme4 package, lmer function) (Bates et al., 2013). We
applied the top-down strategy of model selection process (Zuur et al.,
2009), which contains the following steps:

1. We started with the “beyond optimal model”. After data exploration,
which involved graphical analysis of yield response to different pre-
dictor variables for the entire data set and for individual genotypes,
we defined explanatory variables in the fixed component that were
most likely to contribute to the optimal model. Fixed-effect predictors
in this beyond optimal model were described previously (Section 2.2),
and were classified into management (planting date, stand density, N
availability, soil P) or environmental variables (soil type, rainfall and
water table). Each overall partial regression coefficient (β+)was con-
sidered a fixed effect reflecting the influence of a predictor (e.g., stand
density) on grain yield across all environments.

2. Using the beyond optimal model, we found the optimal structure of
the random component based on REML estimations. By including
block nested within environment as random effects, our models
estimated different intercepts for each block and environment to
account for the hierarchical data structure. The same applied for
the genotype by environment interaction term.
Genotype by management interaction (GMI) was analyzed as differ-
ential genotypic response to particular management variables. Vari-
ations among genotypes in the influence of individual variables on
grain yield was quantified by estimating different intercepts and
slope for each genotype (Gelman and Hill, 2007). Data exploration,
which involved yield response to quantitative predictor variables
for individual genotypes, suggested that potential GMI was present
for N. Including GMI for stand density did not result in a model
improvement based on AIC (Burnham and Anderson, 2002; Aho
et al., 2014) and then was excluded. Genotype and GMI effects
were considered random, as there is no interest in the particular
response of individual genotypes. This means that the interest
resides in the variation among genotypes on their response but not
in comparing particular pairs of genotypes (Smith et al., 2005).
For N availability, we tested models with both linear and curvilinear
response using non-transformed or log-transformed variables. Cur-
vilinear response was explored by fitting a second-order polynomial
function (Yi = α + β1 × Xi + β2 × Xi

2 + εi). We found model im-
provement (i.e., lower AIC) when considering a curvilinear relation,
and therefore we present models with coefficients β1 + β2 for this
variable.

3. Once the optimal random structure was found, we found the optimal
fixed structure. For this, we followed themultimodel inference based
on information-theoretic approach (Burnham and Anderson, 2002,
2004). This approach does not accept the notion that there is a simple
“truemodel” in biological sciences. Selection of a best approximating
model represents the inference from the data and tells us what
“effects” (represented by parameters) can be supported by the data
(Burnham and Anderson, 2002). We used AIC to select best-fitting
models for combinations of the seven fixed-effect predictor variables
(Aho et al., 2014). Based on the context and our objectives, AIC is the
appropriate tool for model selectionwhen compared to others as BIC
or hypothesis testing (Aho et al., 2014; Burnham and Anderson,
2002, 2014; Burnham et al., 2011). Because models have different
fixed effects (but with the same random structure), ML estimation
was used and not REML.

4. We present the final model using REML estimation. The final model
was the following (Eq. (1)):

yijk ¼ μ þ∑P
p¼1β

þP j þ Gi þ E j þ Bkð Þ jþ GiE j þ βi N þ εijk ð1Þ

where yijk is the yield of the genotype i at the environment j in block k, μ
is the grand mean, ∑P

p¼1 β
þ represents the sum of fixed effects of

predictor P in environment j, Gi is the genotypic random effect, Ej is
the environment random effect, (Bk)j is the block random effect nested
within environment j, GiEj is the genotype by environment interaction
random effect, βiN represents the random genotype by N interaction
effect, and εijk is the residual. Random terms were assumed normally
distributed with a mean of zero and constant variance.

We checked the Gaussian and homoscedasticity assumptions (Zuur
et al., 2009) for the standardized residuals of themodels with graphical
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analysis and these assumptions were valid in all cases. Variance hetero-
geneity across environments was particularly checked by fitting a
model per environment and comparing the residual variance. This
model included genotype and block as random effects. We found that
residuals were apparently different (larger) in four particular environ-
ments, but were similar for the rest of the sites. The potential impact
of this heterogeneity was determined by applying the model selection
process without considering those particular four sites with larger
residual variance. We found that results were similar to the analysis
considering all sites, so the analysis included the entire data set.

The analysis was done in two steps. First, observations of each fixed-
effect predictor variable were standardized by z-scores to allow
comparison among predictors and to explore if yield wasmore affected
by farmers decisions or by environmental variables (e.g., rainfall). Z-
scores were obtained subtracting the variable mean and dividing by
its standard deviation ( x�μ

σ ). Z-scores do not modify the functional
relationship between the response and predictor variable. Second, anal-
ysis involved no data transformation to quantify the magnitude of the
effects on crop yield (kg ha−1, adjusted to 14% moisture). Model with
predictors were compared with a model without fixed-effect predictors
to evaluate model improvement.

Proportional change in variance (PCV) at different grouping levels
(environment, genotype and residual) was calculated as described in
Merlo et al. (2005). PCV monitors changes specific to each variance
component. That is, how the inclusion of additional predictor(s) has
reduced (or increased) variance component at different levels. Propor-
tional change in variance is calculated as follows (Eq. (2)):

PCV ¼ VN�1 � VN�2

VN�1
ð2Þ

where VN-1 is the variance in the null model and VN-2 is the variance in
the final model with predictors. Positive value indicates a reduction in
the variation among groups (e.g., environments) given by the incorpo-
ration of predictors.

R2 of adjustedmodels were obtained following themethodology de-
scribed in Nakagawa and Schielzeth (2013) for generalized linearmixed
models. Both marginal and conditional R2 were calculated. Marginal R2

(R2m) represents the variance explained by fixed factors and is given by
(Eq. (3)):

R2
m ¼

σ2
f

σ2
f þ∑μ

l¼1σ
2
l þ σ2

ε
ð3Þ

where σf
2 is the variance calculated from the fixed effect components of

the linear mixedmodel, σl
2 is the variance component of the lth random

factor, andσε
2 is the residual variance. Eq. (3) can bemodified to express

conditional R2 (R2c) (Eq. (4)):

R2
c ¼

σ2
f þ∑μ

l¼1σ
2
l

σ2
f þ∑μ

l¼1σ
2
l þ σ2

ε
ð4Þ

which represents the variance explained by the entiremodel (fixed and
random factors) (Nakagawa and Schielzeth, 2013).

3. Results

3.1. Management and environmental variations across trials

Management and environmental variables showed ample variation
across trials (Table S1). Sowing dates ranged from late November
(November 20) to early January (January 6). Average stand density
ranged from 5.4 to 7.6 plants m−2. The amount of N availability varied
from 65 to 463 kg ha−1, and soil P ranged from 5 to 68 ppm
(Table S1). Water table was detected in most environments at less
than 2m depth. Rainfall during the crop cycle varied importantly across
trials, from 296mm to 1156mm (Table S1). Accordingly, raw data indi-
cated that grain yield variations across trials were also important, from
5,555 to 12,078 kg ha−1. Adjusted grain yield is depicted in Fig. 1.

A positive correlation was found between N availability at planting
and soil P (0.57; p b 0.05; Table S2). Soil P levels were higher at lower
latitudes (northern trials) (0.47; p b 0.05; Table S2). Planting date was
slightly later in lower latitudes (0.53; p b 0.05; Table S2). There was
no evidence of multicollinearity among quantitative predictors of inter-
est (planting date, stand density, N availability, soil P and rainfall;
Table S2), and thus all were included in the analysis. Because predictor
variables are in different scales, the analysis was done with standardized
variables by z-scores (see Statistical analysis and model selection). The
final model is also presented without standardized variables to facilitate
interpretation.
3.2. Model without and with fixed-effects predictors

We startedwith amodel without fixed-effects predictors. Thismodel
explores the randomvariation, which in this case describes howmuch of
the total variation observed in crop yield is associated with differences
across environments, genotypes, GEI and genotype × N interaction. For
our data set thismodel indicated that environment-to-environment var-
iation had the greatest contribution to the total variance (68%), followed
by GEI (8%), genotype-to-genotype variation (5%), and the genotypic
variation in their response to N availability (1%) (Table 3). The same
trend was observed for non-standardized variables (Table 3). These
results are in accordance to the wide yield variation observed across
environments (Fig. 1). The residual variation of this model was 10% of
the total variance (Table 3).

To understand how much of the variation in crop yield among
environments could be explained by management and environmental
predictors (Table S1), we explored different linear mixed-effects
models, and selected the best-fitting model based on AIC (Tables 3
and 4). The fixed-effects predictors of the best-fitting model explained
42.3% of the environment-to-environment variation in crop yield
(PCVE), meaning that part of the variation in the previous model was
due to the management or environmental variables we considered
(Table 3). The same trendwas observed in themodel without standard-
ization. While the variation (i.e.,

ffiffiffiffiffiffi

VC2
p

= standard deviation) among
environments was 2072 kg ha−1 in the model without predictors, this
variation was reduced to 1,496 kg ha−1 in the best-fitting model.

The effect of each environment on crop yield is depicted in Fig. S1. It
can be observed that the ranking of environments is not the same as in
Fig. 1. For example, 9J_13 was one of the lowest yielding environments
(Fig. 1) but showed a positive effect in the best-fitting model (Fig. S1).
The analysis helps to separate yield variation associated with particular
variables and, for the particular case of 9J_13, indicates that fixed-effect
predictorswere responsible for the lower yield. The remaining variation
might be explained by variables not considered here (e.g., water avail-
able at planting, other soil proprieties, etc.).

As done for management and environmental variables at the envi-
ronment level, different genotypic attributes could be added as predic-
tors at the genotypic level. In our case there was no predictor at this
level and for this reason proportional change in variance for genotypes
(PCVG) was low (Table 3). The same applies for GEI, where part of this
interaction is due to a differential genotypic response to N availability.
The best-fitting model with non-standardized variables indicated that
the variation among genotypes was 606 kg ha−1.

Genotypic random effects (i.e., usually called best linear unbiased
predictor for genotypes or BLUPs; Robinson, 1991) are depicted in
Fig. 2. Among genotypes with positive effects or performance across en-
vironments appear DK_7210 and ADV_8112, and among genotypeswith
relative poor performance across environments appear ARV_2194 and
ARV_2155. This indicates the importance of genotype selection for



Fig. 1. Boxplot of adjusted grain yield (14%moisture) for the 23 trials tested (see Table 1 for further details). The black line reflects the data mean. Across trials, a total of 9 genotypeswere
evaluated under on-farm conditions.
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maximizing yield. The same applied for the response toN; yield response
to N availability was higher or lower depending on the particular
genotype (discussed below).

Proportional change in variance for residuals (PCVResidual) was
close to zero, meaning that the residual of the final model with predic-
tors was similar than the original model without predictors (Table 3).
This is expected as residuals indicate the variationwithin environments,
and our fitted models only considered predictors at the environment
level.

3.3. Influence of predictor variables

In general, models taking into account management and environ-
mental variables as fixed predictors improved overall model accuracy
Table 3
Mixed-effects models of the influences of environmental, management, and genotypic predicto

Model name Model without fixed effects (z-scores) F

Random effects VCb V
Environment (E) 0.7315 0
Genotype (G) 0.0574 0
GEIa 0.0812 0
N β1

c 0.0088 0
β2 0.0045 0

Residual 0.1088 0
PCVd

E – 4
PCVG – 0
PCVResidual – 0
Fixed effects Estimate ± SE E
Intercept −0.02 ± 0.19 0
N β1 – 0

β2 – −
Plant density – 0
Water table – −
VIFse b

a GEI, genotype by environment interaction.
b VC, variance components.
c β1 and β2, parameters of a second-order polynomial function fitted to yield–nitrogen relat
d PCV, proportional change in variance.
e VIFs, variance inflation factor.
(Table 4). This is evidenced when comparing the AIC value of the null
model, with no predictor (model K), with the first ten models with at
least one fixed effect (models A–J). Among the included management
variables, stand density and N availability appeared increasing the accu-
racy in most models. Among environmental variables, the presence of
an influencing water table during the crop cycle was the variable that
appeared in best models. Variance explained by fixed factors (R2

m)
across models ranged from 0.29 to 0.38. Variance explained by entire
models (R2c)was N0.90, indicating that they appropriately and accurate-
ly described the observed yield data.

Among models with predictors (models A–J), there were no impor-
tant differences in AIC, indicating that there was no clearly best model.
We found that the best model describing the data was model A.
Model A included two management variables (stand density and N
rs on grain yield.

inal model (z-scores) Model without fixed effects Final model

C VC VC
.4224 4,293,000 2,237,000
.0571 333,400 367,800
.0811 142,600 405,400
.0088 831,300 83,840
.0043 2 0.3295
.1088 586,800 438,800
2.3% – –
.5% – –
.02% – –
stimate ± SE Estimate ± SE Estimate ± SE
.51 ± 0.25 4,024 ± 2,213 397 ± 4,732
.67 ± 0.24 – 22 ± 98
0.16 ± 0.17 – −0.02 ± 0.19
.22 ± 0.15 – 1,001 ± 746
0.63 ± 0.34 – −1,361 ± 785
1.2 b1.2

ionship.



Table 4
Akaike's Information Criterion (AIC) formixed effectsmodels of the potential effect ofmanagement and environmental variables on grain yield in late-sownmaize. The best 10models are
shown (from a total of 128 possiblemodels) plus themodelwithoutfixed effects (model K). Each column represents a different predictor variable (management or environment). Uncross
cells indicate variables thatwere not included in a particularmodel. R2

m represents the variance explainedbyfixed factors, while R2
c represents the variance explainedby the entiremodel.

AIC measures the relative goodness of fit of a given model; the lower its value, themore likely it is that thismodel is correct. TheΔ column indicates the difference between amodel's AIC
and that of the best-fittingmodel. Models were compared using themaximum likelihood (ML)method, with the exception of R2

m and R2
c which were calculated from REML estimations.

Models have the same random effects, to account for the hierarchical data structure (blocks nested within environment), differences among environments, genotypes, genotype ×
environment and genotype × N interaction. Environment refers to a particular location in a given year. Data were standardized by z-scores prior to analysis. See Materials and methods
for further details.

Model Management variables Environment variables

Stand density Planting date Soil P N availability at planting Soil class Rainfall Water table R2
m R2

c AIC ΔAIC

A X X X 0.38 0.91 622 0
B X X 0.34 0.91 623 1
C X X X X 0.37 0.91 624 2
D X X X 0.34 0.91 625 3
E X X X 0.34 0.91 625 3
F X X X 0.34 0.91 625 3
G X X X 0.36 0.91 625 3
H X X X X 0.36 0.91 625 3
I X X 0.29 0.91 626 3
J X X X X X 0.37 0.91 626 3
K – – 632 10
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availability) and one environmental variable (the presence of water
table at planting) (Table 4). Despite this, it is interesting to note that N
availability at planting, a management variable that can be easily
managed by farmers, appeared in best models (Table 4).

We further examined the estimates of regression coefficients (β+)
for the best model (model A, Table 4). This allows quantifying the
particular influence of each predictor variable on grain yield. The
analysis with standardized variables allows comparing the influence
of different predictors (Table 3). N availability was the most important
management variable. Presence of water table followed in importance.
Less important was stand density (Table 3).

Nitrogen availability showed a positive decelerating effect on grain
yield (Fig. 3A). The initial slope was 22 kg ha−1 per additional
kg N ha−1 available at planting. Importantly, this initial yield response
Fig. 2. Intercepts (Gi) represent the effect of genotype, and reflect grain yield variations am
standardized by z-scores prior to analysis.
to N varied depending on the genotype (Fig. 3B). For example, this re-
sponse was 6 kg ha−1 higher for DK_7210, meaning that the response
of this particular genotype raised to 28 kg ha−1 per additional
kg N ha−1. Contrarily, this response was 6 kg ha−1 lower for
ARV_2194 (Fig. 3B), which means that the response of this particular
genotype was 16 kg ha−1 per additional kg N ha−1. Response to N for
particular genotypes is depicted in Fig. S2.

Stand density showed a positive effect on grain yield (Fig. 4A).
Increasing the stand density by 10,000 plants ha−1 promoted an overall
increase in grain yield of 1,001 kg ha−1. While this was the overall ef-
fect, there was no clear indication of a differential yield response to
stand density among genotypes (data not shown). There was no
model improvement (lower AIC) when considering stand
density × genotype interaction.
ong genotypes not explained by predictors considered in the final model. Data were



Fig. 3. (A) Residuals of grain yield versus N availability at planting for the entire data set.
Residuals were obtained after subtracting to each observed yield the estimated yield
from the final model without considering the effect of N availability. The black line
reflects the β + for N availability. (B) Slopes (βi) represent the effect of N for individual
genotypes. Data were standardized by z-scores prior to analysis.

Fig. 4. Residuals of grain yield versus stand density (A) and water table (B) for the entire
data set. Residuals were obtained after subtracting to each observed yield the estimated
yield from the final model without considering the effect of stand density (A) or water
table (B). The black line in (A) reflects the β + for stand density. In (B), absence of
water table is indicated with 0, and presence with 1. Data were standardized by z-scores
prior to analysis.
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Presence of a water table at planting showed a negative effect
on grain yield (Fig. 4B). The effect was −1,361 kg ha−1. Water table
presence was not related to poor soils, as shown in Fig. S3. This spine
plot showed that presence of water table was mostly found in best
soils, roughly 70% of the observations of soil type I-II.

4. Discussion

Mixed-effectsmodels are powerful statistical tools to analyze hierar-
chical data sets (Zuur et al., 2009). They are currently applied in many
disciplines where simple and classical analyses (like ANOVA) fail
(Smith et al., 2001; Bolker et al., 2009; Merlo et al., 2005). In agronomy
sciences, mixed-effects models are widely applied for breeding
decisions (DeLacy et al., 1996; Smith et al., 2001, 2005). The advantages
of these models include the capacity to handle incomplete data, nested
(hierarchical) data structure, the capacity to use more realistic within-
trial models for error variation (e.g., spatial correlation), and the ability
to assume specific effects to be random or fixed (Smith et al., 2005;
Zuur et al., 2009). Their potential application for explaining genotype ×
environmental interactions and assist selection in a breeding program
has been explored (Malosetti et al., 2013). Here, we extended their use
for dissecting the effect of crop management decisions and relevant
GMI. Ourmodel satisfactorily described the spatial and temporal variation
in maize grain yield (r2 = 0.91), which ranged from 5,555 to
12,078 kg ha−1.

Wedemonstrate that genotype selection andmanagement decisions
are relevant for optimizingmaize yield under late sowing. These results
have important implications; they indicate that the success of late-sown
maize is highly dependent on farmer decisions. Importantmanagement
variableswere N availability and stand density. The lack of soil P effect is
in accordance to recent results in this region, showing lower P response
and lower saturation thresholds due to higher temperatures compared
to early plantings (Ferraris and Couretot, 2014). We confirmed that
weather variables like rainfall during the crop cycle have negligible in-
fluence on grain yield. This is in accordance with the lower evaporative
demand under these environments compared to traditional early
sowing (Maddonni, 2012). We even found a considerable negative
effect of the presence of water table at sowing on grain yield, suggesting
that water availability could be on excess under late plantings. Our
results are not contemplating a maize crop sown after a winter crop
(wheat, barley, pea), but a maize where the fallow is extended for
severalmonths. In the case ofmaize after awinter crop,water availability
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at sowing should have an important influence on yield (Mercau and
Otegui, 2014). The implications of extended fallows in terms of soil
conservation and sustainability are still to be studied, especially when
considering late sown maize is commonly planted after soybean.

By including predictor variables explicitly within the model we
removed part of the random source of variation at the environment
grouping level. In our particular case, 42.3% of yield variation across
environments was explained by management and environmental
variables. This result is very useful considering that predictors varied
independently across environments. The analysis helps to reduce the
uncertainty and define factors affecting yield. As mentioned above,
these factors are mostly related to management decisions. The remain-
ing variation, on the other hand, means that there is variation across
environments not explained by the considered predictors. This variation
is relevant, and denotes that there are other important variables
influencing yield.

Genotypes represent a random sample of commercial germplasm
currently available. The same applied for the combinations for studying
possible GMI. Thismeans that there is no particular interest in estimating
neither an effect for a particular genotype, nor the effect of a particular
genotype when a particular management variable is changed. Our inter-
est is to explore the variation among genotypes and in their response to
management decisions (for example, stand density). This might sound
trivial but has important implications when extrapolating results to a
wider population of genotypes or environments (Zuur et al., 2009;
Smith et al., 2005). We found that there was GMI for N availability. This
was not the case for stand density. Management recommendations
depending on genotype is an increasing practice offered by seed compa-
nies, especially for stand density, and this information could help to
reduce the costs associated with required experiments or increased
recommendation efficiencies.

Although recommended N rates vary depending on the environ-
mental quality (Alvarez, 2008; Salvagiotti et al., 2011), we found an
overall positive response across an important range of yield variation.
The overall regression describes a common saturation response curve
(Fig. 3A; de Wit, 1953). Interestingly, we showed that part of the varia-
tion depicted in Fig. 3A is due to genotype differences in the response to
this nutrient (Figs. 3B; S2). Our results describe that farmer N fertilizer
investment need to be coupled with genotype selection. While a differ-
ential yield response to N in older versus newer maize genotypes has
been documented (Ma and Dwyer, 1998), variations across current
commercial genotypes is more scarce.

The response of maize yield to stand density for an individual geno-
type growing at a particular environment and under particularmanage-
ment conditions is typically parabolic (Williams et al., 1968; Giebrech,
1969; Westgate et al., 1997; Hashemi et al., 2005). We found an overall
positive response to stand density across environments, suggesting that
wewere exploring the linear part of the yield response to stand density.
This positive response, however, is not in accordance to the recom-
mended reduction in stand density for more limited environments
(Bavec and Bavec, 2002; Al-Kaisi and Yin, 2003), and indicates that
farmers are underestimating the optimumstand density.More informa-
tion in this sense will allow exploring if recommended stand density
vary depending on the genotype or the quality of the environment.
This is important as optimum stand density depends on both genotype
and environmental quality (Duncan, 1954; Rutger and Crowder, 1967;
Brown et al., 1970; Carlone and Russell, 1987; Bavec and Bavec, 2002;
Hernández et al., 2014).

A global-scale assessment of future agricultural prospects has shown
that yield gaps (differences between observed yields and those attain-
able in a given region) can be importantly reduced by management
practices, particularly nutrient and water management (Licker et al.,
2010; Mueller et al., 2012). For this particular region, attainable yields
were close to 12 t ha−1 considering the highest-yielding location in
this study, which is similar to simulated potential yield under no
water and nutrient limitations (Mercau and Otegui, 2014). Considering
the limitations of the sample we analyzed we demonstrated that yield
increments through N rates and stand density management represented
40% of attainable yields based on our analysis.We provide information of
high-yielding cropping practices that could be extrapolated to other
regions of similar climate towards reducing yield gap. Importantly,
this intensification will need to be sustainable to increase yield while
simultaneously reducing the agricultural global environmental footprint
(Foley et al., 2011).

5. Conclusion

Using mixed-effects models we explored the influence of different
genotypes, managements, environments and relevant genotype ×
management interactions on grain yield in late-sown maize. Our
model satisfactorily described the spatial and temporal variation in
grain yield (r2 = 0.91), which ranged from 5,555 to 12,078 kg ha−1.

However the limitations of our sample (environments, genotypes,
management combinations) we demonstrated that farmers' decisions
related to genotype selection, and management variables like N avail-
ability and stand density are relevant in terms of the crop yield. Rainfall
and soil type showed limited influence. Presence ofwater table at sowing
showed an overall negative effect, suggesting that water availability
could be in excess in these environments. N availability and genotype
selection need to be managed in combination, as results showed that
commercial genotypes differed in their response to N availability.

We provide information of high-yielding cropping practices that
could be extrapolated to other regions of similar climate towards reduc-
ing maize yield gap and increasing cropping efficiency.
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