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Abstract

1.

Domestication generally involves two sequential processes: initial identification
of wild species with desirable characteristics (‘progenitor filtering’) and subse-
quent artificial and natural selection that, respectively, improve features preferred
by humans and adapt species to cultivation/captivity (‘domestication selection’).
Consequently, domesticated species can differ from wild species and may share
characteristics owing to convergent evolution (‘domestication syndrome’). Baring
evolutionary constraints, domestication selection may generate extreme pheno-
types that transcend the ‘boundaries of nature’ evident for wild species. Despite
evidence of domestication syndromes in some clades, broader contributions of
progenitor filtering and domestication selection to characteristics of contempo-

rary domesticated species have received limited attention.

. Using comparative analysis of 49 grain-crop and 87 wild annual plant species from

15 families, we (1) addressed whether plants of crop and wild species differ for
mean seed number, per-seed mass and total seed-mass investment; (2) assessed
contributions of (a) progenitor filtering and (b) domestication selection to these
differences; (3) evaluated whether crop characteristics exceed the boundaries of
nature and (4) assessed whether seed-production characteristics of grain crops

constitute components of a generic domestication syndrome.

. On average, grain-crop plants produce heavier seeds and greater total seed mass

than wild species, but seed number per plant does not differ. Comparison of wild
species between genera with or without crop species found no evidence of pro-
genitor filtering. In contrast, crop species differed from congeneric wild species
for the mass traits, but not for seed number. Greater seed investment by crops
is consistent with artificial selection for enhanced seed yield (mass per harvested
area), whereas heavier individual seeds suggest selection for improved nutritional

quality and (or) adaptation to cultivation environments.

. Seed number-size characteristics of grain-crop species lie within the bivariate

variation among wild species and so do not exceed the boundaries of nature. Seed
number and size varied similarly between species types and generally aligned with

seed-investment isoclines, suggesting an upper investment limit.
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tion syndrome.
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1 | INTRODUCTION

The seeds of a small number of annual grain-crop species have in-
creasingly become key elements of human diets during the past
~12,000 years (Harlan, 1992; Khoury et al., 2014). Characteristics
of these species commonly differ from those of their wild relatives.
In particular, individuals of grain crops often produce larger and
(or) more seeds with limited dormancy that they retain longer be-
fore dispersal (Brown et al., 2009; Fuller, 2007; Meyer et al., 2012;
Preece et al., 2017; Purugganan & Fuller, 2009). These differences
could reflect two goal-directed aspects of domestication (Abbo &
Gopher, 2017; Kluyver et al., 2017; Milla et al., 2015). The first in-
volves ‘progenitor filtering’, whereby humans identify wild species
with particularly desirable traits (e.g. high productivity, ease of har-
vest, rich nutritional quality, non-toxic) as targets for domestication
(Cunniffetal., 2014; Milla et al., 2018; Preece et al., 2015). These spe-
cies should be a non-random subset of all wild plant species for the
relevant traits. Second, potential crops are subject to trait ‘improve-
ment’ (Abbo & Gopher, 2017; Kluyver et al., 2017; Milla et al., 2015,
2018). Associated natural selection in response to agricultural en-
vironments and artificial selection imposed by farmers and plant
breeders (collectively ‘domestication selection’), and more recent
genetic engineering have generated crop varieties that differ phe-
notypically and genetically from each other and their wild relatives
(Abbo & Gopher, 2017; Milla et al., 2015; Olsen & Wendel, 2013;
Purugganan & Fuller, 2009). As domestication is expected to begin
with distinctive species (progenitor filtering) and accentuate their
distinctiveness (domestication selection), phenotypic comparison of
related domesticated and wild species should expose the influences
of these processes. This evidence might also usefully inform the de-
sign of breeding programs, especially intentional progenitor filtering,
needed to meet the dietary demands of the growing, and increas-
ingly affluent, human population (Roberts, 2011).

The domestication selection responsible for trait adaptation in
crops differs from that experienced by wild individuals in two im-
portant ways. First, agricultural environments typically impose more
intense intraspecific competition, but less intense interspecific com-
petition, fewer pests, and greater nutrient, light and water availabil-
ity (Anten & Vermeulen, 2016; Harlan et al., 1973). Second, plant
breeding and natural selection involve different performance mea-
sures: crops are selected to maximize collective annual reproductive

output per harvested area (yield), rather than age-weighted genetic

5. Despite greater average investment in seed production and individual seeds by
grain-crop species, seed-production characteristics did not vary less among crop

species than among wild species, which is inconsistent with a common domestica-

domestication, grain crops, life histories, plant breeding, seed investment, seed mass, seed

contributions to the next generation by individuals (fitness; Anten &
Vermeulen, 2016; Harlan et al., 1973). Together, the characteristic
features of natural and artificial selection during crop domestication
should favour altered resource allocation patterns and life histories
(Milla et al., 2015, 2018). Indeed, owing to the uniqueness of both
agricultural environments and the performance measures that ac-
company domestication, crop evolution may be able to transgress
the ‘boundaries of nature’ that restrict feasible trait combinations for
wild plants (Van Tassel et al., 2010).

Particularly relevant is the influence of trade-offs imposed by
limited resource availability or investment that often constrain allo-
cation options for individual plants (Lloyd, 1987, 1988). In the con-
text of seed production, the relations of a plant's mean seed size
(S; mass), its total seed number (N) and its resource investment in
seed production (I; mass) govern these options. For an individual
plant that fully expends its seed investment (i.e. | = S-N), the physical
conservation of matter imposes a strict trade-off on feasible combi-
nations of seed number and mean seed size,

N=T o151, ()

S

(Figure 1, grey lines: Lloyd, 1987; Smith & Fretwell, 1974). This rela-
tion will also hold for a collection of plants that invest similarly in seed
production but differ in the number-size combinations that they have
implemented. If instead investment differs among individuals, popu-
lations or species, seed number and mean size need not vary strictly
inversely among them (i.e. exponent # -1; e.g. Moles et al., 2004), even
though each individual is necessarily subject to its own strict trade-off
(van Noordwijk & de Jong, 1986; Venable, 1992). Consistent deviations
from an inverse relation among individuals (or species) identify particu-
lar associations of seed investment and its allocation among seeds. An
exponent > -1 indicates that individuals with large seed investments
produce proportionally larger seeds (Figure 1, gold line), whereas an
exponent < -1 indicates that they produce proportionally more seeds
(Figure 1, purple line). In such cases, the underlying inverse relation
associated with within-individual trade-offs will be evident only after
accounting for variation in total seed investment (e.g. Aarssen &
Jordan, 2001; Henery & Westoby, 2001).

The characteristics of natural and artificial selection suggest
different expectations for the evolution of seed investment and
number-size relations. Natural selection of the optimal number-size

combination (N* = $*) given seed investment per plant | balances
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FIGURE 1 Consequences of changes in seed investment for
number-size relations among individuals or species. Each dashed
grey line depicts the feasible combinations of seed number, N, and
size, S, for a specific investment, I, in seed production (i.e. N = IS,
or logN = logl - [1]logS). The different grey lines indicate the effect
of differing seed investment on these relations. The coloured

lines represent cases in which individuals/species with more seed
investment allocate disproportionately to larger seeds (gold, log-log
slope > -1) or to more seeds (purple, log-log slope < -1) compared
to those with less seed investment

the incremental (marginal) maternal fitness benefit of increased
seed size and the incremental cost of decreased seed number (and
vice versa: Lloyd, 1987). When seed investment is also subject to
selection (e.g. optimization of overall reproductive investment and
(or) of resource allocation to seed production vs. seed siring), the
course of evolution depends additionally on the marginal benefits of
increased seed investment (Venable, 1992) and the relative additive
genetic variances of seed investment, seed number and size (Worley
et al., 2003). In contrast, in the simplest agricultural context (i.e. yield
maximization), yield,

Y =1ID, (2)

varies with seed investment, | (= S:N), but not among the feasible seed
number-size combinations for a given seed investment and plant den-
sity (D; plants per harvested area). Thus, successful artificial selection
for greater yield necessarily increases seed investment, I, which should
therefore be a pervasive feature of grain crops. Whether this evolution
also entails increased seed number, size or both depends on their spe-
cific additional benefits. Minimally, increased seed mass seems likely,
given its positive influences on sowing success, seedling survival and
harvest quality (Cunniff et al., 2014; Leishman et al., 2000; Preece
et al., 2017; Purugganan & Fuller, 2009; Sadras, 2007).

To the extent that crop species in different clades experienced

similar initial progenitor filtering and subsequent domestication

selection, a suite of analogous traits could evolve that are more simi-
lar among crops than among their wild ancestors, or a ‘domestication
syndrome’ (Fuller, 2007; Hammer, 1984; Harlan et al., 1973; Meyer
et al., 2012; Preece et al., 2017). The details of this syndrome would
depend on the consistency of domestication regimes (cultivation
conditions, progenitor filtering, artificial selection) among species.
Similar environments and qualitative farmer preferences (e.g. for
more investment in larger seeds) should cause parallel evolution
of a general domestication syndrome. If agricultural environments
and practices specifically target a common phenotype, convergent
evolution should generate a specific domestication syndrome. A
general domestication syndrome is evident for crops in the Poaceae
and Fabaceae (e.g. delayed dispersal of weakly defended seeds with
limited dormancy: Fuller, 2007; Meyer et al., 2012), but seems less
apparent among crops from other clades (Meyer et al., 2012).
Despite extensive archaeological and genetic research con-
cerning domestication of major grain crops (Abbo & Gopher, 2017;
Purugganan & Fuller, 2009), few comparative ecological studies (e.g.
phenotypic space analyses) have assessed similarities and differ-
ences of components of seed production between grain-crop and
wild species (although see Martin, 2021; Milla et al., 2015, 2018;
Preece et al., 2015, 2017). Particularly lacking are comparisons of
wild and grain-crop species concerning the association of seed in-
vestment and seed number-size relations (e.g. Gambin & Borras,
2010; Sadras, 2007), despite its central role in domestication selec-
tion of seed production. To examine these features of domestica-
tion, we address four related objectives based on published records
for wild and grain-crop species with annual life cycles. First, we (1)
characterize the overall differences between wild and grain-crop
species with respect to total seed number per plant (N), the mean
mass of individual seeds (S) and the total mass investment in seed
production (I). We then assess the contributions of (2a) progenitor
filtering and (2b) domestication selection (improvement) to the ob-
served differences. In addition, we (3) consider the extent to which
the seed-production characteristics of contemporary grain crops
transcend the boundaries of nature, as represented by the range of
variation evident among wild species. Based on this evidence, we fi-
nally consider (4) the extent to which grain-crop characteristics con-
stitute a domestication syndrome, and if so whether the syndrome

is general or specific.

2 | MATERIALS AND METHODS
2.1 | Data collection

We surveyed published studies of annual wild and grain-crop spe-
cies that reported mean per-seed mass (mg) and seed number per
individual plant. The focus on annual species reflects three desirable
characteristics. For annuals, the time-scales of performance relevant
for artificial selection of crops (annual yield) and natural selection of
wild and crop species (lifetime genetic contributions) are equivalent.

In addition, total seed investment by annuals involves only resource
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acquisition during the current growing season, rather than possible
input from stored resources (Aarssen & Jordan, 2001). Finally, annu-
als are the progenitors of most staple grain crops, which have been
subject to most concerted domestication (Harlan, 1992).

During 2012, we searched for data sources using Google Scholar.
General search terms included ‘seed number’, ‘seed weight’, ‘seed
mass’ and ‘annual plant’. We also included terms such as ‘wild soy-
bean’, ‘cultivated soybean’, etc. to enhance the representation of
grain crops and their relatives. Publications identified during these
searches were scanned for relevant measurements of at least two
of the following variables: seed number per plant (N), per-seed mass
(S) and total seed mass per plant (l). If the value for one variable was
missing, it was calculated from the other two, based on | = N-S. Data
were gathered from tables, extracted from figures using imageJ
software (http://rsbweb.nih.gov/ij/index.html), or obtained from
authors when only summary statistics were published. In addition
to the data located by these searches, we included more recent
measurements reported by Preece et al. (2017). In total, 11 crop
species are also represented by observations of conspecific wild
varieties or subspecies, which we consider as separate ‘species’ in
the analyses. Measurements for wild representatives of these grain
crops were included only if the article stated that the specimens
were the wild ancestor of the crop, a wild variety or a wild popula-
tion. Many surveyed studies provided data for multiple years, pop-
ulations, varieties or trials (collectively referred to as ‘trials’), which
we recorded separately. The final database includes 1,461 records
from 139 studies (see Data sources section, Garibaldi et al., 2021)
for 136 species from 15 families, comprising 49 grain-crop and 87
wild species (Figure S1). In all, 64 species belong to the Fabaceae
(32) or Poaceae (32). Of the 136 species, 89 were examined by one
study and only eight of the remaining 47 species were examined
by >3 studies. Of the 139 studies, 114 examined a single species,
and 10 of the 25 studies of multiple species involved multiple trials

per species.

2.2 | Statistical analyses
2.2.1 | Phylogenetic relatedness

Analyses of objectives 1-3 fit general linear models that quanti-
fied the effects of relevant independent variables on interspecific
variation of the three measured seed-production traits (seed num-
ber per plant, mean per-seed mass, total seed investment; all log,,
transformed). To account for possible lack of independence among
species in these analyses associated with phylogenetic relatedness,
the parameters of most models were estimated using generalized
least squares after accounting for phylogenetic covariance among
species (Paradis, 2012). These analyses were conducted with the gls
function of the nuMEe package (version 3.1-150; Pinheiro et al., 2014)
of R (version 4.0.2: R Core Team, 2020). As this program does not
allow simultaneous consideration of phylogenetic covariance and in-

traspecific variation, these analyses involved the 136 species means.

Phylogenetic relatedness of the sampled species was repre-
sented by a tree with 136 tips (species) and 123 internal nodes based
on Zanne et al.'s (2014) dated megatree for angiosperms (Figure S1).
The accepted names for all species were identified using The Plant
List (http://www.theplantlist.org/), which were then compared with
the species included in Zanne et al.'s (2014) megatree. We repre-
sented the phylogenetic position of species missing from the meg-
atree by that of their phylogenetically closest included relative. The
megatree was then pruned to extract a dated phylogeny for just
the species represented in the dataset (see Scholl et al., 2020 for
a similar procedure). Finally, we included two refinements concern-
ing Amaranthus and Sesamum species, which were not represented
fully by Zanne et al. (2014). The topology and branch lengths for
the 18 Amaranthus species were incorporated based on Waselkov
et al. (2018). For Sesamum, we included S. alatum and S. radiatum
in a polytomy with S. indicum, with branch lengths equal to half the
20.1 mya divergence age of Uncarina and Sesamum (Stevens, 2001).

Using this tree or subtrees appropriate for a particular objective,
we analysed three evolutionary models of interspecific covariance,
phylogenetic independence, Brownian motion and Grafen's model.
The independence model specified no phylogenetic covariance
among species. The Brownian motion model depicted the covari-
ance between speciesiandj, Vij =% 3 as increasing proportionally
with the variance of a Brownian process, &%, and the phylogenetic
distance between the root and the species’ most recent common
ancestor, 5'.1. (Paradis, 2012). In contrast, Grafen's model repre-
sented branch length as the scaled number of descendant species
subtended by a node minus one. This count was scaled so that the
root has height one and the heights of other nodes were raised to
power p > 0, which was estimated from the data (Paradis, 2012).
Phylogenetic covariance based on the Brownian and Grafen models
was estimated using the corBrownian and corGrafen functions of
the r APE package (version 5.4-1: Paradis et al., 2004). As AIC compar-
isons indicated that Brownian motion did not adequately represent
phylogenetic covariance for any analysis, we do not mention those
analyses further. Two variants of the analyses for phylogenetic inde-
pendence and Grafen's model were considered that allowed either
homogeneous or heterogeneous variances for different levels of cat-
egorical independent variables. We present the results for only the

variance-covariance model with lowest AIC.

2.2.2 | Objective-specific methods

Objective 1: Characterize the overall seed-production differences
between wild and grain-crop species—The complete sample of spe-
cies means was used to compare wild and crop species with respect
to both trait means and the covariation of seed number per plant
and mean per-seed mass. All analyses included species type (wild or
crop) as a categorical factor. The analysis of covariation considered
log,,(seed number per plant) as the dependent variable and log, ,(per-
seed mass) as a continuous independent variable, in addition to spe-

cies type and the species type x log,,(per-seed mass) interaction.
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Back-transformation of the regression relation for a specific species
type, log,oN = a + b-log,,S, yields N = 10°S?, which is a general ver-
sion of Equation 1, with 10? estimating mean | and b estimating the
scaling exponent of the number-size relation. Analysis of this relation
did not include measurements of total seed investment, as it was not
estimated independently of seed number and size for some species.

To illustrate the relation between seed number and mass, which
are both random variables, we depict the first principal component of
their correlation matrix, estimated separately for wild and crop spe-
cies. The first principal component is equivalent to a major axis model
Il regression (Legendre & Legendre, 2012). Principal component anal-
ysis involved the phyl.pca function of the r pHYTOOLS package (version
0.7-70: Revell, 2012), which accounts for phylogenetic relatedness.

Obijective 2a: Evidence of progenitor filtering of seed-production
traits—Ideally, the extent to which domestication began with a non-
random subset of wild species would be assessed by comparing
traits between crop progenitors and species not subsequently sub-
ject to domestication when domestication began. In the absence of
relevant historical measurements, we compared the trait means of
wild species between genera with sampled grain-crop species (18
genera, 44 species) and those without grain-crop species (33 gen-
era, 43 species). This comparison between genus types involved the
generalized least squares methods described above and a phylogeny
for only the 87 relevant species.

Objective 2b: Evidence of domestication selection on seed-
production traits—In this case, the ideal comparison would contrast
the contemporary trait means of grain crops with the historical
means of their progenitors. As the historical traits of many crop pro-
genitors are unknown, contemporary wild congeners of crop species
provide conservative proxies. Using this approach, we compared
seed-production characteristics between congeneric wild (n = 44)
and grain-crop species (n = 28) for 18 genera. These analyses in-
volved a general linear model with genus as a fixed blocking factor
to impose within-genus comparison of species type (wild, crop). The
phylogenetically independent observation model (with heteroge-

neous variances) was used for these analyses, as it fit better than the

Grafen model, indicating that the explicit inclusion of genus largely
accounted for phylogenetic relatedness.

Objective 3: Boundaries of nature—We characterized the bound-
aries of nature as the 95% inclusion ellipse for mean of seed number
per plant and per-seed mass (log,,-transformed) for the sampled
wild species, given a bivariate normal distribution. This ellipse was
identified using the ellipse function of the r MixTooLs package (ver-
sion 1.2.0). If crop species disproportionately transcend this range of
variation, more than 5% of their means should lie outside the ellipse.

Objective 4: Domestication syndrome—Parallel or convergent
evolution could generate different domestication syndromes. Parallel
evolution would create a general domestication syndrome whereby
grain-crop species differ in a qualitatively similar manner (e.g. larger
seeds) from wild species. Results from the analyses for Objectives 1
and 2 are all relevant in this context. In contrast, a specific syndrome
requires convergence among crop species to a similar phenotype.
In this case, the among-species component of overall trait variation
should additionally be smaller for crop species than for wild species.
We tested the latter expectation for the complete sample of 1,461
trials with the glimmix procedure of SAS/STAT 15.1 (SAS Institute
Inc., 2018), which allows between-group comparison of variance
components with likelihood-ratio tests. For each of the three seed
traits, the analysis included species type (crop or wild) as the fixed
factor, and species within species type, studies nested within species,
and trials for individual species within studies as random factors, with
separate estimates of the associated variance components for each
species type. Because these variance components were estimated for
log trait values, their magnitudes are unaffected by differences in trait

means (Lewontin, 1966) and can be compared directly.

3 | RESULTS

Based on 136 annual species, individual plants of grain crops invest
more mass in seed production than those of wild species, on average

(Objective 1: Table 1; Figure 2a, compare means in relation to grey

TABLE 1 Overall test statistics for comparisons of species mean seed number per plant (N), per-seed mass (S) and total seed investment
(I = N-S) relevant to Objectives 1 (characterize mean wild-crop differences), 2a (progenitor filtering) and 2b (domestication selection), and
of the among-species variance component relevant to Objective 4 (domestication syndrome). Effects considered include species type (wild
or grain-crop), genus type (with or without sampled grain-crops) and the genus to which species belong. Analyses of mean differences
accounted for phylogenetic relatedness by either estimating the interspecific phylogenetic correlation (Grafen model: Obj. 1, 2a) or by

including genus as an independent variable (Obj. 2b)

Objective and sample group Effect

Obj. 1: all species Species type
Obj. 2a: wild species Genus type
Obj. 2b: genera with crops Species type

Genus

Genus X species type
Obj. 4: all species

*p < 0.05;; **p < 0.01;; ***p < 0.001

Species type

Dependent variable

log,,(N) log,,(M) log,,(l)
Fy134=0.70 Fiipa=1510"" Fiigs=1287"
Fyg5 =240 Fyg5=0.05 Foas =208
Fy36=0.68 Fiae=22.22"" Fise=431
P =952 Fip36=2374" Fi736 = 1.43
Fiy56=1.68 Fiyge=2.61" Fip5e=172
X,2=2.50 X,2=0.24 X,2=093
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FIGURE 2 Relations of (a) overall mean (+95% confidence interval) and (b) individual species mean seed number per plant and per-

seed mass for 87 wild species (green) and 49 grain-crop species (blue). In panel (a), mean seed investment for wild and crop species can be
compared with reference to the dashed grey lines, which indicate isoclines of indicated investments (the number-size product: mg). Panel (b)
includes major axis regression lines for each species type and the green ellipse encloses 95% of the observations for the wild species (note
the log,, scaling). The dashed grey isoclines represent the 5, 25, 50, 75 and 95% quantiles (from left to right) of interspecific variation in seed

investment for all species, for which the slope is -1

investment isoclines). This difference largely reflects the produc-
tion of heavier individual seeds by grain crops, as total seed number
per plant did not differ statistically between crop and wild species
(Table 1; Figure 2a). Seed number varied strongly and negatively
with per-seed mass (F1,133 = 67.21, p < 0.001). Overall, seed number
per plant varied inversely among species with mean per-seed mass
(major axis slope = -1.046), so interspecific variation aligned largely
along seed investment isoclines for all species (Figure 2b). This rela-
tion did not differ statistically between wild and grain-crop species
(interaction, F1,132 =0.29, p > 0.5: generalized least-squares partial
regression coefficients [95% confidence intervals], wild species,
-0.597 [-0.793, -0.402]; crops, -0.666 [-0.868, —0.463]: major axis
slopes, wild species, -1.109; crops, -0.961: Objective 1).

The 87 wild species did not exhibit evidence of progenitor fil-
tering (Objective 2a). Specifically, mean total seed number, per-seed
mass and total seed investment did not differ statistically for wild
species between genera that also include sampled grain-crop spe-
cies and those that do not (Table 1).

In contrast, differences between wild and grain-crop species
in genera with both species types indicated considerable domes-
tication selection (Objective 2b). Overall, seed number per plant
and per-seed mass varied extensively among genera, unlike total
seed investment (Table 1, Obj. 2b, Genus; Figure 3). Comparisons
between wild and crop species detected heavier seeds and some-
what greater total seed investment for crop species, but no general
difference in total seed number per plant (Table 1, Obj. 2b, Species
type). Contrasts of wild and crop species also differed among genera
for per-seed mass, but not for seed number or investment (Table 1,
Obj. 2b, Genus x Species type interactions; Figure 3). Seeds of grain-
crop species were numerically heavier than those of wild species,
on average, in 16 of the 18 genera, with >18-fold differences in
Helianthus, Hordeum and Vicia. In contrast, individuals of grain-crop

species produced numerically more seeds that wild species in eight

10,000 -

1,000 4

100 A

Seed number per plant

0.1 1 10 100 1,000

Individual seed mass (mg)

FIGURE 3 Contrasts of mean seed number per plant and per-
seed mass between wild and grain-crop species within 18 genera.
Linked green and blue symbols, respectively, represent the means
of wild and crop species sampled for a genus. Letters beside blue
symbols identify the associated genus: Am, Amaranthus; Av, Avena;
Br, Brassica; Ci, Cicer; El, Eleusine; He, Helianthus; Ho, Hordeum; Le,
Lens; Ni, Nigella; Or, Oryza; Pe, Pennisetum; Pi, Pisum; Sc, Secale; Ss,
Sesamum; Tg, Trigonella; Tt, Triticum; Vc, Vicia; Vg, Vigna. The dashed
grey isoclines represent the 5, 25, 50, 75 and 95% quantiles (from
left to right) of interspecific variation in seed investment, for which
the log-log slope is -1. Note the log,, scaling

genera, but fewer seeds in 10 genera, indicating more heteroge-
neous changes than for per-seed mass. Despite evidence of domes-
tication selection, number-mass means for grain-crop species do not
lie disproportionately outside the 95% inclusion ellipse for wild spe-
cies (Figure 2b), and so do not transcend the boundaries of nature
(Objective 3).

Seed characteristics of the 136 sampled species support general,
but not specific, features of a domestication syndrome (Objective 4).

As described above, grain-crop species commonly produce heavier
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individual seeds and a greater total seed mass than wild species
(Figures 2a and 3). However, contrary to expectations for conver-
gent evolution, differences among grain-crop species do not account
for less of the overall variances in seed number, mass or investment
than for wild species (Table 1; Figure 4). Furthermore, differences
among grain-crop species account for more of the total trait vari-
ance than intraspecific variation for both seed number per plant and
per-seed mass (Figure 4). Thus, domestication selection of per-seed
mass and seed investment maintained heterogeneity among grain-
crop species, rather than promoting convergence towards a common

crop phenotype.

4 | DISCUSSION

Comparative analysis of 87 wild species and 49 grain-crop species
revealed mixed influences of domestication on seed-production
characteristics. On average, grain-crop species invest greater mass
in seed production per plant in association with production of larger,
but not more, seeds (Figure 2a). This difference largely reflects re-
sponses by grain-crop species to domestication selection (Figure 3),
as no effects of initial progenitor filtering were evident (Table 1). The
resulting crop evolution did not alter the interspecific seed number-
size relation compared to that among wild species (Figure 2b).
Correspondingly, seed number-size phenotypes of grain-crop spe-
cies lie within the boundaries of nature represented by the range
of variation among wild species (Figure 2a). Greater total seed in-
vestment and heavier seeds (Figure 2) are features of a general do-
mestication syndrome, but similar interspecific variation between
grain-crop and wild species indicates that crop evolution has not
targeted a specific syndrome.

4.1 | Progenitor filtering
The lack of evidence of progenitor filtering (Table 1, Obj. 2a) could

reflect either of two aspects of the data. Progenitor filtering could
have been involved early during the domestication of the grain-crop

species included in our sample, but it involved traits other than
seeds per plant, per-seed mass and seed investment (see Preece
et al., 2018). For example, preliminary analyses of toxicity for the
sampled species suggest less toxicity among wild species in genera
with grain-crop species than in genera without crop species (M.
Strelin, unpubl. data). Alternatively, the traits of contemporary wild
species belonging to genera that also include crop species may be
poor surrogates of the phenotypes of crop progenitors. Importantly,
when grain-crop progenitors were first identified as worthy of cul-
tivation they may have differed in desirable characteristics from
both congeners and species in other genera. In addition, traits of
non-progenitor congeners may have evolved since domestication of
related grain-crop species was initiated, obscuring differences that
may have existed when domestication began.

Despite the preceding qualification, our results may be repre-
sentative of a generally limited contribution of progenitor filtering to
differences in seed-production traits between grain-crops and wild
species. Previous, more focused, common-garden studies compar-
ing putative grain-crop progenitors and wild relatives with archae-
ological evidence of harvesting, but not of domestication, detected
differences consistent with progenitor filtering in Poaceae, but not
in Fabaceae (Cunniff et al., 2014; Preece et al., 2015). Among the
Poaceae considered by those studies, crop progenitors had larger
seeds than wild species, but seed number of progenitors was ei-
ther equivalent (Cunniff et al., 2014) or less than that of wild spe-
cies (Preece et al., 2015). Additionally, Preece et al. (2015) found no
difference in seed investment between related progenitor and crop
species or subspecies (not examined by Cunniff et al., 2014). This
heterogeneous evidence suggests that progenitor filtering may have
contributed to distinctive seed characteristics of some grain crops,
but it has not been involved universally.

4.2 | Domestication selection

Unlike assessment of progenitor filtering, intra-generic comparison
of grain-crop and wild species revealed clear evidence of domestica-
tion selection on seed-production traits. The generally greater total

Seed number Individual Total seed

S 12 A per plant 19 - seed mass 19 o Investment

= - ® Among species

2 1.0 A 1.0 A 1.0 4 © Among studies

2 O Within studies
FIGURE 4 Comparison of variance S 0.8 1 08 1 038 1
components (+95% confidence intervals) §_ 0.6 4 0.6 - 0.6 -
among species and among and within S
studies of individual species for seed 8 04 - 0.4 1 0.4 4

[} L
number pe.r plant, per-seed mass and. S o 5 E 02 02 |
total seed investment (the number-size 8
product) between wild and grain-crop L 0.0 - : ,O 0.0 - o ico 0.0 - , ,O
species. Based on 412 records for 87 wild Wild Crop Wild Crop Wild Crop
species and 1,049 records for 49 grain-

Species type
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seed investment by grain-crop species is an expected outcome of
artificial selection targeting increased collective yield (see Equation
2). Greater total investment in seed mass could arise from combined
net increases in four components of plant resource economy; overall
plant mass and the hierarchical relative allocations to reproductive
versus vegetative function, female versus male function and seeds
versus accessory tissues (Harlan, 1992; Milla & Matesanz, 2017;
Preece et al., 2017; Stitzer & Ross-Ibarra, 2018). These changes can
arise from direct selection for increased yield, or as a correlated
response to selection for other traits. An example of the latter is
increased relative allocation to female function resulting from se-
lection for self-fertilizing varieties (see Charnov, 1987; Dempewolf
etal., 2012; McKone, 1987). This variety of options suggests that the
general increase in seed investment likely involved heterogeneous
responses of resource investment and allocation to domestication
among grain-crop lineages.

Although artificial selection that targets increased seed yield
should not, by itself, have also selected for larger seeds (see expla-
nation involving Equation 2), that change commonly distinguishes
grain crops from wild relatives (Table 1, Obj. 2b; Figure 3: Preece
et al., 2017; Purugganan & Fuller, 2009). Instead, increased per-
seed mass could reflect additional aspects of artificial and natural
selection during domestication. Artificial selection should have had
contrasting consequences for seed number per plant and per-seed
mass. Independent of its contribution to seed investment, seed
number per plant may often be irrelevant to artificial selection of
grain-crops, because agricultural propagation of the next generation
involves a minor fraction of a crop's bulk production, the majority
being used for human purposes. The heterogeneous changes in seed
number during domestication (Figure 3) are consistent with this
practice. In contrast, breeders could have imposed indirect artificial
selection on per-seed mass by choosing propagation stock based on
correlated aspects of seed quality related to seed growth capacity
or nutritional value. Specifically, per-seed mass often varies posi-
tively within species with seedling emergence and establishment
(Preece et al., 2017; Purugganan & Fuller, 2009; Sadras, 2007) and
(or) with the concentrations of beneficial constituents of human and
livestock diets (e.g. Kulwal & Mhase, 2017; Meru et al., 2018; Ries &
Everson, 1973; Wang et al., 2020). Thus, artificial selection for seed
quality could have induced evolution of larger seeds, even if seed
size was not the explicit selection target.

Natural selection could also have contributed to the evolution
of larger seeds in grain crops if domestication increased the optimal
seed size that maximizes individual fitness, given the within-plant
number-size allocation constraint. The general interspecific asso-
ciation of greater seed investment and seed mass by grain crops
(Table 1, Obj. 1, 2b) suggests that artificial selection for enhanced
yield shifted the seed-size optimum, causing coincident natural se-
lection (see Venable, 1992). The novel agricultural environments
experienced by crops could also have imposed unintended natural
selection during domestication. In particular, the positive associa-
tion of seed mass and seedling establishment (Leishman et al., 2000;
Purugganan & Fuller, 2009; Sadras, 2007) could have favoured

natural selection of larger seeds to contend with aggravated intra-
specific competition associated with cultivation (Preece et al., 2017;
also see Turnbull et al., 1999). In either case, increased seed invest-
ment would have allowed evolution of seed size with heterogeneous
change in seed number, despite individual plants being subject to a

number-size trade-off.

4.3 | Boundaries of nature

During more than 10,000 years (generations) of domestication ef-
fort, seed evolution in annual grain-crop species has not expanded
the phenotypic space they occupy compared to that of wild plants.
Specifically, although grain crops generally produce large seeds
relative to wild species, their mean per-seed mass does not lie dis-
proportionately outside the 95% inclusion ellipse for wild species
(Figure 2b). Explanation of this constrained evolution likely lies in the
consistent interspecific seed number-size relation for both grain-
crop and wild species, the slope of which largely parallels isoclines
of fixed seed investment (Figure 2b). This consistency, despite the
generally greater per-seed mass of grain crops, suggests a boundary
of nature for annual plants associated with a pervasive upper limit on
relative seed investment arising from the requirement that resources
must also be expended on other plant functions. Such boundedness
has also been reported for other trait relations, such as nitrogen con-
tent and specific leaf area (Milla et al., 2015), nitrogen use for photo-
synthesis (Rotundo & Cipriotti, 2017), and plant canopy height, leaf

nitrogen content and seed dry mass (Milla et al., 2018).

4.4 | Domestication syndrome

Comparison of seed-production characteristics by congeneric wild
and grain-crop species suggests that domestication of multiple an-
nual grain crops has, at most, involved parallel, rather than conver-
gent, evolution. Although grain-crop species generally produce a
greater mass of larger seeds than related wild species (Figure 3), this
evolution has not reduced interspecific variation among grain crops
(Figure 4). The latter result is inconsistent with convergent evolu-
tion. Thus, the generally greater seed investment and per-seed mass
for grain-crop species compared to wild relatives suggests roughly
parallel evolution for these traits during domestication from con-
trasting initial states. These patterns are consistent with a general
domestication syndrome (greater mass of larger seeds), rather than
a specific syndrome represented by similar investment and per-seed

mass among crop species.

5 | CONCLUSIONS

Results of this study suggest both common and heterogeneous as-
pects of the domestication of annual grain crops. Differences between

wild and crop species in seed number and per-seed and total seed mass
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seem to have arisen largely in response to domestication selection,
rather than from initial progenitor filtering of candidate crops. In keep-
ing with the general agricultural objective of enhancing yield, grain-crop
evolution tended to increase total mass investment in seed production.
However, yield improvement seems subject to an upper limit that is
also evident among wild species (a boundary of nature). Within this
apparent constraint, yield improvement typically involved increased
per-seed mass, in contrast to varied changes among species in seed
number per plant. The magnitude of shifts in seed-production charac-
teristics differed considerably among clades, even among those with
a long history of domestication (e.g. Triticum vs. Hordeum, Figure 3).
Given this heterogeneity, fecundity characteristics seem to represent a

minor component of an interspecific domestication syndrome.
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