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Abstract: A spectral algorithm for processing staggered-pulse repetition time (SPRT) signals in weather radar is introduced. It
includes new approaches for ground clutter filter and hydrometeor spectral moments estimation. The algorithm uses ideas
similar to GMAP but applied to non-uniform sampled signals. This work is focused on staggered sequences 2/3, but can be
extended to other staggered sequences. Monte Carlo experiments were used to evaluate the performance of the spectral
moments estimators for simulated weather signal, in scenarios with and without the presence of ground clutter. When clutter is
present, a study using different clutter-to-signal ratios was carried out, showing that the method can deal with a wide range of
situations and is appropriate for implementation in real scenarios. A comparison against GMAP-TD was performed, showing
similar estimation results for both algorithms and a fivefold processing speed improvement for the proposed method. The
performance was also validated using real weather data RMA-12 from a radar located in San Carlos de Bariloche, Argentina.

The proposed algorithm has an easy implementation and is a good candidate for real-time implementations.

1 Introduction

In general, the weather radar returned signal can be modelled as the
sum of contributions from meteorological targets, ground clutter —
for low elevation angles — and noise. When the radar operates at
uniform pulse repetition time (PRT), there is a trade-off between
the maximum unambiguous range and the maximum unambiguous
Doppler velocity, improving one of them implies worsening the
other [1]. Several approaches have been proposed to deal with this
issue [2]. One of the most used consists of transmitting a pulse
sequence with the varying time interval between successive pulses,
i.e. the radar uses alternately different PRTs. This radar operating
mode, known as staggered-PRT (SPRT), allows estimating high
unambiguous velocity without the unambiguous range degradation.
Although there are different PRT combinations [3], a two-PRT
system is often used, where the pulse interval alternates between
PRTs T, and T, (T, > T,). The unambiguous velocity for this
scheme depends on 7, — T, [2].

Ground clutter is produced by reflections from ground targets,
like mountains, buildings, trees, among others. For low elevations
angles, ground clutter obscures the precipitation signal and
produces biased estimates of the spectral moments. Thus, its
suppression is an important task for improving weather radar data
quality. Clutter mitigation for SPRT signals is more challenging
than in the uniform sampling case. Doppler tools as the discrete
Fourier transform (DFT) cannot be used directly in the staggered
data time sequence [4].

In the case of uniform PRT, a basic technique used to mitigate
ground clutter consists of applying a notch filter around zero
Doppler velocity [5]. This approach has been adapted to SPRT [6];
the scheme uses two filters to mitigate the ground clutter. The input
time series with non-uniformly spaced samples are divided into
two time series with uniformly spaced samples and then processed
using one of the two filters for each uniform signal. To design the
filters, they use equirriple or window methods [6], obtaining better
performance with the windows design. If the precipitation Doppler
velocity is near zero, these notch filters have the disadvantage of
filtering the precipitation signal, leading to biased spectral
moments estimates.
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Advanced filtering methods have been proposed for clutter
mitigation and spectral moments estimation using SPRT signals [4,
7-14]. In general, they consist of adaptive strategies that
interpolate the removed spectral components.

Gaussian model adaptive processing (GMAP) is, probably, the
most common clutter adaptive filter [15]. It replaced the bank of
elliptic filters of the Weather Surveillance Radar-1988 Doppler
(WSR-88D) [16] and its current implementation was
complemented by the clutter mitigation decision (CMD) algorithm
which controls its application [17, 18]. GMAP is a spectral domain
method that filters ground clutter using a clutter mask and attempts
to recover the removed precipitation components considering a
Gaussian shape for the power spectral density (PSD) of the
meteorological target. GMAP was developed initially for uniform
sampling signals, but recently it had been adapted to process SPRT
signals [7-9]. It is worth pointing out that all of these approaches
generate a uniform time sequence from the SPRT sequence to
apply GMAP in its standard form. In [8], the authors separate the
SPRT signal into two uniformly time sequences with a greater time
period, T, + T, and then process each of them using GMAP for
uniform-PRT. After GMAP, they disambiguate the mean velocity.
The accuracy of the moment estimate is low as a consequence of
the Doppler interval reduction. In [9], the authors rebuild the
uniform sampled PSD of the signal using a technique for non-
uniform sampling digital spectrum reconstruction [19]. After the
PSD reconstruction, they use the standard form of GMAP for
clutter filter and spectral moments estimate. This method suffers
from the limitation that the unambiguous velocity depends on
(T, + Ty)/2.

Among the algorithms implemented in the time domain, we can
mention the parametric time-domain method (PTDM) [12], which
uses the maximum likelihood estimator to obtain the spectral
moments of ground clutter, precipitation and noise level, assuming
that the multivariate probability density function of the received
complex voltage has Gaussian shape. Also, they use a Gaussian
model for the observed Doppler spectrum of clutter and
precipitation. The main drawback of the method is its high
computational cost, which prevents it from being implemented for
real-time operation [13]. It is also difficult to assure the
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optimisation problem convergence for the reduced number of
samples available in practice for each coherent processing interval.
Another algorithm is the so-called Gaussian model adaptive
processing in the time domain [13] (GMAP-TD). This is a method
that consists of applying a filter to the signal autocorrelation and
recovering the precipitation signal component through an iterative
procedure based on fitting a Gaussian autocorrelation precipitation
model. GMAP-TD can be implemented for uniform and staggered
PRT signals, but is also computationally intensive. Unlike GMAP,
to our knowledge, PTDM and GMAP-TD have not had practical
implementations in any operational weather radar.

For methods applied in the spectrum domain, we can mention
the spectral algorithm for the clutter harmonics identification
(SACHI) algorithm [4, 10, 11], in which time signal is zero
interpolated in order to create an artificial uniform sampled signal.
The authors introduced a new method to filter ground clutter and
use a deconvolution process for precipitation signal spectrum
reconstruction. The original SACHI algorithm [4, 10] lacked the
flexibility to adapt to the clutter environment in real-time. For that
reason, a table with clutter widths was built in order to account for
dynamic changes of clutter characteristics, called SACHI-table
[20]. A robust method for staggered spectral width clutter
estimation is found in the algorithm SACHI-GMAP [7, 11], which
uses GMAP for clutter width estimation. Other important algorithm
is the clutter environment analysis using adaptive processing
(CLEAN-AP) [16], which was extended to work with SPRT
signals. At the core, this algorithm uses the autocorrelation spectral
density (ASD) introduced in [14] as an extension of the classical
periodogram-based power spectral density (PSD). ASD includes
spectral phase information, which provides a better tool for the
identification of narrow-band signals, such as those typical of
ground clutter.

In this work, we present an adaptive method that uses
processing steps similar to GMAP, for processing staggered
sequences, termed adaptive spectral processing algorithm for
staggered signals (ASPASSs). It is a novel spectral algorithm for
clutter mitigation and precipitation spectral moments estimation.
We assume the common hypotheses for this kind of problem, i.e.
Gaussian-shaped clutter and precipitation PSDs, with precipitation
spectra significantly wider than clutter spectra [1, 21-23]. Even
when ASPASS's approach is similar to GMAP, it differs from the
existing versions of GMAP for SPRT sequences. It does not apply
GMAP in its standard form after signal manipulation as in [7-9],
instead, ASPASS processes the SPRT spectrum obtained by
transforming the zero interpolated staggered sequence, following
GMAP's logic of finding a clutter mask, removing clutter and
iteratively reconstructing the weather spectra while performing
moments estimation. The clutter mask and the reconstruction stage
consider the spectral replicas resulting from the zero interpolation,
and the moment estimators have been modified for this situation.
The main advantage of the proposed algorithm is computational
load reduction while providing accurate estimators.

The paper is organised as follows. The description of the
algorithm is presented in Section 2. Numerical simulations using
synthetic data are discussed in Sections 3. Real weather radar data
from radar RMA-12 is processed in Section 4. Finally, Section 5
presents conclusions.

2 ASPASS description

ASPASS operates on the spectrum of the zero interpolated
staggered sequence, applying a mask to remove the clutter — and
possibly signal — components. It then iteratively reconstructs the
weather signal by adjusting the signal model to the weather
samples remaining. In this process, the spectral moments are
estimated, until the reconstruction process converges. The
following are the main steps of the algorithm, also described
graphically in Fig. 1, the rest of the section contains a detailed
description of each step.

e Zero interpolation in order to have a uniform sampling time T,
windowing and PSD estimation using periodogram [24].

» Ground clutter power estimation, if present.

* Determination of clutter points and removal of clutter points
using a mask. If no clutter is present, the mask is not applied.

» Inverse Fourier transform of PSD and estimation of power,
mean velocity and spectral width of precipitation.
Reconstruction of PSD using the last estimates and the PSD
model consisting of five Gaussian functions. Replace clutter
points in the PSD. Repeat this process until the difference
between two consecutive velocity and power estimates are less
than 0.005v,,,, and 0.1 dB, respectively.

2.1 Zero interpolation, windowing and PSD estimation

In general, the staggered PRT technique uses two different pulse
spacings T, and T, alternately [2]. These pulse spacings can be
selected such that they are integer multiples of some basic PRT T,
T, =nT, and T, = n,T,,. In this work, we focus on the case where
n; =2 and n, = 3 known as staggered 2/3. This PRTs ratio is the
most used in weather radar [25], because it achieves the best
compromise between the maximum unambiguous velocity and the
quality of the spectral moments estimates [2]. In staggered PRT
sequences, the signal spectrum cannot be obtained using the
standard DFT, which is defined for uniformly sampled sequences.
For that reason, we interpolate the time series data with zeros in
order to obtain a uniform sequence with a sampling rate 7, (the
zeros are added between the staggered samples). The PSD of this
new data is estimated using the periodogram [24]. It contains
replicas of clutter and weather echoes present at certain velocities.
These velocities depend on the staggered PRT relation (n,/m,).
Windowing is needed before PSD estimation in order to attenuate
the sidelobes effect. The window used depends on the clutter-to-
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signal ratio (CSR). We used Kaiser windows since one parameter
allows for a large range of sidelobe level attenuation [26].

For ground clutter, the main replica is located at zero velocity
and the others at  +£Q2kv,./(n +n)) [13], where
k=1,2,...,Integer[(n, + n,)/2] and v, = A/4T, is the maximum
unambiguous velocity, 1 is the wavelength. For the weather
spectrum, the replicas are separated 2v,,./(n, + n,) from each other
as clutter replicas, but the main replica is at v,. Fig. 2 shows the
PSD of a 2/3 staggered sequence after zero interpolation of
simulated ground clutter, precipitation and noise. The simulation
parameters were F. =3 GHz (carrier frequency), CSR =40dB,
N =64 (number of samples), 7,=1ms, 7,=15ms,
SNR =20dB (signal-to-noise ratio), 7= 1000 (number of
realisations to estimate the PSD), v, = 0.4v,,, (precipitation mean
velocity) and o, =3m/s (precipitation spectral width). This
simulation is denoted as a #ypical staggered case in the remaining
of this paper, and will help to visualise the PSD for the different
steps of the algorithm. Synthetic data used through this paper was
generated following the ideas presented in [27].

2.2 Ground clutter filtering

For staggered sequence 2/3, the five clutter replicas are located at

0 m/s, +0.4v,,,, and +0.8v,,.. To filter the clutter, we construct a

mask and select the five regions in which the clutter is present. The

mask is modelled as the sum of five Gaussian functions. Fig. 3

shows the signal PSD and the clutter mask for the typical staggered
case. The mask equation results
_ L 21202
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where p. is the estimated power of the clutter replica at zero
velocity. The coefficients 0.095 and 0.655 were obtained
numerically using Monte Carlo simulation; see Section 8.1 of the
Appendix. The actual clutter power is estimated as 2.5p...

2.2.1 Clutter power: To build the clutter mask, we need to
estimate 13C and o.. The last parameter is estimated as in [28] but
using a Kaiser window. The authors in [28] use the fact that the
observed PSD after windowing is the convolution of the
asymptotic PSD and the window energy spectral density (ESD).
They calculate the observed clutter o, width as o, = /o + o,
where oy is the asymptotic clutter width, calculated using physical
antenna parameters like the scan rate, antenna diameter,
wavelength and the 3-dB one-way power pattern beamwidth [1],
oy, 1s the spectrum width of the ESD and it is obtained as the result
of the Gaussian fit. o,, has been tabulated for different Kaiser
windows and samples number N.

In order to obtain [A’C, we use the three central points of the main
clutter replica, as in GMAP [15]. This clutter mask is dynamically
calculated, so the algorithm can be used in real scenarios. Fig. 4
shows the PSD after clutter mitigation for the typical staggered
case.

2.3 Precipitation spectral moments estimation

If the weather signal only contains precipitation with power P,
mean velocity v, and spectrum width o, obtained with staggered
sequence 2/3, after zero interpolation the precipitation PSD consist
of the sum of five Gaussian functions centred at v, v, + 0.4v,,,, and
Vp £ 0.8V
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where p,, is the power of the Gaussian at v,. This model is a good
approximation for the range of spectrum widths in which the
overlap of replicas can be ignored. The autocorrelation function
R,(7) is obtained by taking the inverse Fourier transform of (2)
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It is important to note that R,(r) is not the same as the
autocorrelation of the staggered signal without zero interpolation,
R(7). There is a strong relationship between R and R, coefficients,
they differ only by a scale factor for some lags. An analogue
methodology to pulse pair processing (PPP) [1], which uses the
first lags of the function R,(r) can be applied to estimate the
precipitation power, mean velocity and spectrum width

P, =R,0)=2.5p, (5)

R A R,(T))

p= 4ﬂTuang]e(RZ(Tz)) (©)
. A R,(0)
%= zﬁﬂrl\/”’ 2R, (T ™

Note that the expression of the velocity estimator is similar to the
classical PPP for staggered sequences (PPP-S) [2], since the phases
of R(T)) and R(T,) are equal to the phases of R,(T}) and R,(T>),
respectively. For this reason, we denote the velocity estimator as
equivalent to PPP-S (EPPP-S) estimator. EPPP-S, like PPP-S, is
computed as the quotient of two estimators what generally implies
that it has a high variance [10]. In order to improve the estimator
precision, it is possible to use the dealising method (DA) [10] in
terms of the autocorrelation function R,(z). It consists on the
computation of two velocity estimates, v, from R,(T)) and v, from
R,(T,), which, in general, are aliased. Then, v, is only used to
disambiguate the velocity estimate obtained using R,(7)) that has a
lower variance. The estimators EPPP-S and DA are compared in
Section 3.1 to appreciate the difference in their performance.

2.4 Precipitation PSD reconstruction and noise consideration

After clutter filtering some, overlapping, precipitation spectrum
samples are eliminated too. The truncated PSD is antitransformed
to obtain Rp(r). The parameters ﬁp, v, and o, are obtained using the
proposed estimators. Then, the missing PSD samples are filled
using (2). This process is repeated until the computed power does
not change by >0.1 dB and the mean velocity does not change by
>0.005 of v, [15]. Fig. 5 shows the reconstruction process of the
precipitation PSD for the typical staggered case.

Noise is present in all real systems and is herein modelled as
white [1]. If the weather target is not too far from the radar, the
SNR is normally >20 dB. Thus an SNR of 20 dB is used in all the
simulations in this work. This is reasonable since clutter is present
at close ranges, generally in the first 20 km where the previous
consideration is valid. Since the spectrum floor is dominated by
clutter and precipitation spectrum overlapping replicas, the noise
effect was not taken into account in ASPASS estimators. For the
case of smaller SNR the noise level should be taken into account,
resulting in a degradation of the ASPASS estimates.

3 Numerical simulations

Monte Carlo simulations were conducted in order to verify the
correct operation of the algorithm. The section is splitted in four
subsections. In the first one, the performance of the estimators
presented in Section 2.3 is studied using different o, values when
ground clutter is not present. The second subsection presents
ASPASS performance when clutter is present. A comparison
against GMAP-TD is done to assess performance. The third
subsection presents a computational complexity analysis. The last
subsection shows the error analysis for different CSR values.

3.1 ASPASS performance without ground clutter

In this subsection, we simulate weather radar signals without
clutter, only precipitation and noise. The purpose is to compare the
performance obtained using three different velocity estimators,
EPPP-S (6), DA and the classical PPP-S, and the performance of
the PPP-S spectral width estimator with the one proposed (7). The
precipitation signal was simulated having a Gaussian PSD, and
white additive noise. The simulation parameters are shown in
Table 1, 10,000 Monte Carlo realisation where used for each
spectral width in the range of 1-8 m/s.

Fig. 6 shows the bias and standard deviation of mean velocity
and spectrum width for the aforementioned estimators. In the case
of PPP-S, the spectrum width estimator used is based on
log[R(0)/R(T})]. PPP-S results consider the raw data stream, no
window, while EPPP-S and DA use a Kaiser window with a = 6
because for these methods the autocorrelation is estimated by
means of the PSD. The usage of windows other than the
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Table 1 Simulation input parameters. Depend on the simulation type, some parameters are used or not

Parameter Value
F,., GHz 3
CSR, dB 0,40
SNR, dB 20
o, m/s 0.3
Cps m/s [1,2,3,4,5,6,7,8]
v, M/s 0, ..., Vinax
N, samples 64
T,, ms 0.5
T,/T, 2/3
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Fig. 6 (a), (b) Velocity error analysis for EPPP-S, PPP-S and DA using staggered 2/3 simulated weather signal without clutter
(a) Bias and (b) Standard deviation. (c), (d) Spectrum width error analysis for ASPASS and PPP-S. (¢) Bias and (d) Standard deviation

rectangular worsens the estimation results. Even though there is no
clutter present we want to consider a worst case scenario. From
Fig. 6 we can conclude that all the methods present similar biases
for velocity and spectrum width. The standard deviation in velocity
is noticeably smaller for DA, as expected. Finally, the standard
deviation in the spectrum width is smaller for PPP-S due to the
windowing effect. In the case of no window, (6) and (7) have
identical performance to PPP-S since these equations boil down to
PPP-S equations.

DA will be used for velocity estimation in ASPASS, instead of
EPPP-S, given its lower variance and extended operation range in
terms of weather spectrum width, providing good estimates up to 7
m/s. For wider spectrum the Gaussian replicas considerably
overlap, worsening the estimation independently of the estimator
used.

3.2 ASPASS performance when ground clutter is present

As a second step for performance evaluation of ASPASS we
simulate weather radar signal with clutter. The simulation
parameters are in Table 1, with CSR = 40 dB. For each v, and 0,
1000 Monte Carlo realisations were used to evaluate estimation
performance.
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Fig. 7 shows the velocity error analysis. Three spectrum width
regions, can be defined. For small spectrum widths, the bias and
standard deviation at velocities 0 m/s, +0.4v,,, and +0.8v,,, are
big, because when clutter is filtered considerable precipitation
power is filtered too, biasing the first velocity estimate. This affects
the convergence of the reconstruction process. For spectrum widths
between 3 and 5 m/s, the bias and standard deviation are the
smallest, the filtered precipitation spectrum samples do not prevent
the algorithm from finding a good initial velocity estimate,
obtaining a properly reconstructed PSD. For large spectrum widths
the PSD gets distorted due to overlapping, affecting the
estimations.

Fig. 8 shows the spectrum width error analysis. We can define
the same three regions as in the velocity analysis. The performance
when the spectrum width is around 1 m/s is the worst, for the same
reason as the previous case. For 3 <= ¢, <=5, the performance
improves, again due to having more precipitation spectrum samples
for reconstruction. When spectrum width increases above 5 m/s,
the bias stays around cero, but the standard deviation increases, due
to PSD overlapping. It is worth mentioning that in all cases, the
bias and standard deviation values are in the same order.

Fig. 9 shows the power error analysis. The same three regions
can be observed. In the bias case, only the first region is noticeably
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worst and improves as the spectral width increases. The same
behaviour can be observed for the standard deviation, showing that
for power estimation the effect of the overlapping replicas does not
affect as in the previous cases.

We compared ASPASS against the staggered version of GMAP-
TD. Figs. 10-12 show the bias and the standard deviation of the
power, the velocity and the spectral width estimates as a function
of the velocity, respectively, for both methods considering
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spectrum widths of 2, 3 and 4 m/s. For ASPASS, these plots
correspond to the boxed regions in Figs. 7-9.

In the case of power estimates, ASPASS shows large bias and
standard deviation at velocities 0 m/s, +0.4v,,, and +0.8v,,, for the
case of narrow spectral width, 6, =2m/s. When centred around
the clutter replicas, this narrow signal is heavily affected by the
clutter mask, which removes considerable precipitation power,
biasing the first spectral moments estimates. For spectrum widths 3
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staggered 2/3 simulated weather signal with CSR = 40 dB
(a) Bias, and (b) Standard deviation

and 4 m/s ASPASS shows good performance, since the remaining
precipitation power after clutter elimination is enough to make a
good initial estimate. GMAP-TD obtains better power estimates for
lower spectral widths than for larger widths. The reason can be
traced to the overestimation of the noise floor. This estimate is used
to construct the clutter filter, and is obtained in the spectrum
domain where the replicas add to the noise floor resulting in an
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Fig. 13 Execution time and the average number of iterations required to
converge for ASPASS and GMAP-TD

increasing over estimation, the wider the weather spectra. In
general, both algorithms have power estimates degradation at the
velocities where there are clutter replicas.

For velocity estimates, ASPASS again shows degradation at
velocities 0 m/s, +0.4v,,, and +0.8v,,, for the case 6, =2m/s.
This degradation can be accounted for the same reason as in the
case of power estimates. Similarly GMAP-TD shows good
performance for lower spectrum widths, as the spectral width
increased the performance degrades due to the erroneous noise
floor estimation. In both algorithms, there is degradation at the
velocities where there are clutter replicas.

The spectrum width error analysis shows good results for both
algorithms, with slighter better quality in the case of ASPASS. The
estimates degradation at velocities 0 m/s, +0.4v,,, and +0.8v,,, is
not as noticeable as in the other cases, for both algorithms. Again
GMAP-TD shows an appreciable degradation for ¢, = 4m/s due
to poor noise floor estimation.

3.3 Computational complexity of ASPASS

In this subsection, we present a computational complexity analysis
of ASPASS and GMAP-TD, under a well-defined simulation
scenario. Given that the algorithms are iterative, it is not possible to
calculate exactly the number of operations required. Average
runtime and average loop iteration number are chosen as the
metrics to analyse complexity. The simulation consists of 1000
Monte Carlo experiments for each v,, with the parameters listed in
Table 1, considering only ¢, = 3m/s, and these were run over the
same platform using a PC with Intel core i3 8100 (3.6 GHz)
processor and 16 GB of RAM.

Fig. 13 shows average execution time and average number of
iterations until convergence for both algorithms. Even when they
take a similar average number of iterations to converge, ASPASS is
approximately five time faster than GMAP-TD, for the entire
velocity range. This is a consequence of the number of operations
that ASPASS requires at its most intensive step, i.e. the FFT, which
is O(Mlog(M)), where M =2.5N, while GMAP-TD performs
matrix multiplications, which are O(N°), and a matrix inversion
which is O(N”). Note that the overlapping effect of the weather
spectra with clutter replicas at velocities 0 m/s, 0.4v,,, and 0.8v,,,
is again evident. In this case, through the increase of the iteration
number required to converge in both methods.

3.4 ASPASS performance using different CSR

In this section, we study, which window to use depending on the
CSR, since when the CSR increases, a more aggressive window is
needed to reduce sidelobe effects. This in turn implies spectrum
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Table 2 Simulation input parameters to evaluate ASPASS
performance for different CSR

Parameter Value
F,., GHz 3
CSR, dB 0-70
SNR, dB 20
o;, m/s 0.3
6, M/s 4
vy, M/s 0.4Vmax, 0.6Vinax
N, samples 64
T,, ms 0.5
T,/T, 2/3
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Fig. 14 ASPASS power error analysis for different CSR
(a) Bias, and (b) Standard deviation. Two Kaiser windows with @ = 10 and a = 8 were

used

broadening. To evaluate the performance of ASPASS for different
CSR, 1000 Monte Carlo realisations were used. Simulations
parameters are shown in Table 2. The two velocities were selected
in order to see how the ASPASS performance changes when there
is and there is not strong superposition between clutter and
precipitation DEP. Figs. 14a, 15a and 16a show the bias and
Figs. 14b, 15b and 16b show the standard deviation of the
precipitation power, mean velocity and spectrum width,
respectively. In order to compare the performance, two Kaiser
windows with a = 10 and a = 8 were used. For CSR smaller than
50 dB, the less aggressive window performs slightly better in all
cases. The performance differences can be accounted by the effect
of the spectrum broadening. For CSR larger than 50 dB, the
sidelobe level of the window with a = 8, about 57 dB, becomes
appreciable and degrades performance. The more aggressive
window, in turn, keeps performance to a reasonable level.

In the case of power estimation, the behaviour for CSR around
60 dB is counter intuitive as the standard deviation diminishes
rather than increasing. The reason is the initial underestimation of
the power level turns into an overestimation for high CSR. Around
60 dB the bias errors cancel out explaining the performance
improvement.

In practice, we suggest using different windows for different
CSR. When there is no clutter use a rectangular window. For
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intermediate CSR (5-30 dB) use a Kaiser window with a =6,
which has a sidelobe rejection close to 43 dB. For strong CSR (30—
50 dB) use a Kaiser window with a = 8. In the case of having
larger CSR, a more aggressive Kaiser window can be used having
reasonable performance too.
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4 Application to RMA-12 data

In this section, we present results when using the proposed
algorithm on real weather radar data. The measurements were
collected by the RMA-12 Argentinian weather radar, located in San
Carlos de Bariloche city. The RMA-12 is a C-band polarimetric
radar, designed and developed by the company INVAP.
Specifically, the used data were recorded on 1 June 2015, under
intense rain meteorological conditions.

The show results correspond to two complete sweeps of the
horizontal polarisation (HH) at 2.3° elevation angle, ensuring that
there were precipitation and clutter components present. The first
sweep uses a staggered-PRT 2/3, with 7, = 0.8 ms and 7, = 1.2 ms,
resulting an unambiguous velocity of 33.25 m/s. The second sweep
corresponds to a uniform PRT sequence, with 7 = 2ms resulting
an unambiguous velocity of 6.66 m/s.

For uniform acquisition mode, GMAP algorithm [15] was used
in order to filter and estimate the power and mean velocity.
Figs. 17a and ¢ show the plan position indicator (PPI) displays of
the reflectivity and the Doppler velocity estimates, respectively,
obtained by means of PPP without ground clutter filtering.

The regions of highest reflectivity observed in Fig. 17a
correspond to ground clutter. For example, at a range of 25 km and
an azimuth of 185° we identify the Cerro Catedral peak and at 60
km of range and an azimuth of 180° we observe the Cerro
Tronador peak, they have a top elevation of 2100 and 3491 m
above the sea level, respectively. There are a lower relevant
mountain clusters at 25 km range and 100° azimuth, with average
top elevation around 2000 m above the sea level. In the Doppler
map, Fig. 17¢, the described regions present a mean velocity of
approximately zero, as expected.

Note that Fig. 17¢ presents stripes of Doppler velocities of 5.7—
6.6 m/s next to stripes of Doppler velocity of —6.6 to —5.7 m/s,
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with abrupt transitions between stripes. This behaviour suggests the
existence of aliasing as a consequence of the low value of
unambiguous velocity.

On the other hand, Figs. 175 and d, also show the PPI displays
of the reflectivity and the Doppler velocity estimates, respectively,
but after applying the GMAP algorithm to remove ground clutter.

From a qualitative analysis of the graphics we observe in both,
the reflectivity and the Doppler velocity, that the identified ground
clutter was suppressed with the use of GMAP. In addition, the
zones where there is no ground clutter the reflectivity and the
Doppler velocity is similar with and without clutter filtering.
Naturally, the aliasing effect also appears when GMARP is applied.

In order to increase the unambiguous velocity to reduce the
aliasing effect and to resolve the true velocity we used the dataset
collected using the staggered acquisition mode.

Analogous to the processing with uniform-PRT, we estimate the
reflectivity and the Doppler velocity in two situations: using and
without using a ground clutter filter. In this case, we applied the
proposed ASPASS.

Figs. 18a and ¢ show the PPI displays of the reflectivity and of
the Doppler velocity, respectively, obtained without ground clutter
filtering and by means of DA for the velocity. Note that, while
there are small intensity differences, there is a correspondence
between Fig. 18a and Fig. 17a regarding clutter and meteorological
target regions.

On the other hand, great differences can be observed between
Fig. 18b and Fig. 17b. The Doppler velocity map in the second one
does not have the abrupt velocity transition stripes, as expected.
With staggered-PRT processing the radial velocity changes
gradually, and the aliansing effect is not appreciated. This
behaviour can be interpreted as the storm moving above the radar
in, approximately, northwest-southeast direction. There are only
two small regions located after 50 km of range for azimuth of 10°
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and —20°, approximately, where the aliasing effect persists as the
unambiguous velocity of 33.25 m/s is not yet large enough for the
storm's radial velocity.

In addition, Figs. 18b and d show the PPI displays of the
reflectivity and the Doppler velocity estimates, respectively, after
applying ASPASS, using a Kaiser window with a = 8, to remove
ground clutter. In Fig. 18b, it can be clearly observed that the
ground clutter regions that we identified were removed by
ASPASS. From both figures Figs. 185 and d note, also, that the
reflectivity and the Doppler velocity are reconstructed after
applying ASPASS. Finally, comparing Figs. 18c and d we observe
that ASPASS also reduces the aliasing effect. The zero Doppler
velocity stripes that persist in the velocity PPI display of Fig. 18d is
due to storm zero velocity.

5 Conclusion

We proposed a novel spectral algorithm for ground clutter filtering
and meteorological target spectral moments estimation in weather
radar with staggered-PRT. It can be considered an extension of the
GMAP algorithm for non-uniform-PRT. ASPASS is based on the
fact that after zero interpolation of the staggered data sequence the
resulting spectrum has five replicas and each one is assumed
Gaussian-shaped. Then, the ground clutter is removed using a
clutter mask built considering five Gaussian replicas. Given its
mathematical complexity, we evaluated the amplitude ratio
between replicas by means of numerical simulations.

Due to the problem particularities the spectral moments
estimators were also modified with respect to their classical
versions in order to get the power, the Doppler velocity and the
spectrum width, obtaining expressions for each estimator.

We evaluated the bias and the standard deviation of the spectral
moments estimates by means of Monte Carlo simulations using
synthetic data in different signal composition situations.
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Comparison against GMAP-TD was performed, showing
comparable results for both algorithms, and that in average
ASPASS gets better estimates for weather spectral widths above 2
m/s. In terms of complexity, GMAP-TD takes a five-fold higher
computation time than ASPASS. The study varying the CSR shows
that ASPASS perform well even for large CSR values.

We also compared the performance of the ASPASS algorithm
using a staggered-PRT sweep of real radar data with the GMAP
algorithm using a uniform-PRT sweep of real radar data recorded
with a difference of 5 min, under the same meteorological
conditions. We identified ground clutter regions based on the
knowledge of the terrain where the radar is located. The analysis
shows that ASPASS and GMAP are able to remove the ground
clutter. However, the uniform-PRT processing presents aliasing due
to the low value of the unambiguous velocity. Instead, the
staggered-PRT processing reduces the aliasing.

Finally, ASPASS shows a good performance, similar to the
performance of other ground clutter filters of its kind. However,
analogous to GMAP, ASPASS has the advantage of a low
computational load as a consequence of its spectrum domain
operation, making it attractive for real time applications. A possible
next step is to extend the ASPASS approach to also evaluate
polarimetric variables (i.e. differential reflectivity, differential
phase, and correlation coefficient) for dual-polarised staggered
PRT data in alternating modes [29, 30]. Including polarimetric
information would also allow to increase by a factor of 2 the
unambiguous velocity interval with the proper procedure to resolve
the ambiguity [1].
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8 Appendix

8.1 Calculation of Gaussian amplitudes

In 2/3 staggered acquisition mode, after zero interpolation of time
signal, five replicas of the original clutter and precipitation PSD are
present [13]. In this section, the amplitudes of the replicas with
respect to the main replica are studied. Due to the problem
complexity, we have not found an analytic expression for the
interpolated PSD. Instead we used Monte Carlo simulations to
estimate the ratios PSD(0.4v,,,,)/PSD(0) and PSD(0.8v,,..)/PSD(0).
Different number of samples and spectrum widths were considered.
The simulation parameters are like in Table 2, except for
c=1[0.2,1,4]m/s and N =[16,32,64,128]. 1000 Monte Carlo
realisation were used for each ¢ and N. Fig. 19a shows the mean
value of the ratio PSD(0.4v,,,)/PSD(0), the error bar corresponds
to the standard deviation. Fig. 19b shows the mean value of the
ratio PSD(0.8v,,)/PSD(0), the error bar corresponds to the
standard deviation. For this study, a Kaiser window was used with

1



a = 8. From last figure, and similar studies using other windows, values of this ratio are not relevant as ASPASS is not sensible to
we consider that reasonable approximate values for the amplitude them.
replicas are 0.095 and 0.655 respect to the main replica. The exact
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