

Metamorphic Studies Group

40th anniversary Research in Progress meeting

29–31 March 2021

MSG 2021 CONFERENCE - SCHEDULE

MONDAY 29t	h MARCH	
1350–1400		Introduction and welcome to the MSG 2021 conference
1400–1430	Brown, M.*	A perspective on 40 years of advances in metamorphic geology
1430–1445	Cesare, B.	Polychromatic polarization: new spectacles for the good old petrographic microscope
1445–1500	Johnson, T.E.	The phases of the Moon
1500–1515		COFFEE BREAK
1515–1530	Nicoli, G.	Earth's metamorphic signal, supercontinent cycle and plate tectonics
1530–1545	Roberts, N.M.W.	Ultra-high temperature metamorphism in space and time
1545–1600	Palin, R.M.	Mafic Archean continental crust prohibited exhumation of orogenic UHP eclogite
1600–1615	Miocevich, S.R.	How did the Archean crust evolve? Insights from the structure and petrology of the Lewisian of Scotland
1615–1630	Murphy, M.E.	The Si isotope composition of Archaean continental crust from ~3.8 Ga West Greenland rocks
1630–1645		COFFEE BREAK
1645–1715	Lanari P.*	Mapping equilibrium relationships in metamorphic rocks—petrological modelling beyond
		equilibrium phase diagrams
1715–1730	Green, E.C.R.	Model-derived uncertainties in the calculation of geological phase equilibria
1730–1745	Forshaw, J.B.	Ferrous/Ferric partitioning among silicates in metasedimentary rocks
1745-1800	Ortolano, G.	Metamorphic Petrology Information System (MetPetIs): The new cyber-infrastructure for the
	,	management of metamorphic rocks analyses from outcrop- to micro-scale
1800–1900		POSTERS 1 - GATHER.TOWN
1000 1000	Bidgood, A.K.	The occurrence of vein and matrix kyanite hosted in carbonates of the greenschist facies
	Diagoou, A.K.	Menda deposit of the Congolese Copperbelt
	Cosaro P	
	Cesare, B.	Even the low-T garnet from the iconic Barrow's zone is tetragonal
	Elleray, A.A.	Plate tectonics on other planets: a stochastic analysis of interior mineralogy and composition
	Franke, M.G.	The effect of fluorine on reaction rim growth dynamics in the ternary CaO-MgO-SiO2 system
	Kersley, S.J.	Geochronometers; What do they really record?
	Kumar, R.R.	U-Th total-Pb chemical dating, phase equilibria modelling and geochemistry of high-grade
	,	gneiss from Daltonganj, Chhotanagpur Granite Gneiss Complex, Eastern India
	Mayne, M.J.	Adapting phase equilibria modelling to crustal and planetary scale problems
	Seliutina N.E.	Syenite formation after tonalite gneisses: Example from the Madiapala massif, Limpopo Complex, South Africa
	Tique-Ladino, N.D.	Integrated chemical and mineralogical characterization of the Alta Skarn, Utah, USA
	Van Schijndel, V.	Growth of non-typical garnet textures during amphibolite facies metamorphism: Dwalile Supracrustal Suite, Ancient Gneiss Complex, Swaziland
	Whitley, S.	Pyrometamorphism in calc-silicate xenoliths from Merapi (Indonesia)
	winney, 5.	ryiometamolphism in calc-sincate xenolitiis from werapi (indonesia)
ruesday 30tł		
1400–1430	Carvalho, B.B.*	Fate of CO ₂ -bearing fluids trapped in granulites – old perspectives and new insights
1430–1445	Mityaev, A.S.	Experimental study of generation of granite melt and aqueous-carbonic fluid in carbonate- bearing pelitic protholith at the mid-crustal conditions
1445–1500	Ferrero, S.	Melting and ultrahigh temperature in the Adirondack Highlands: a melt inclusion perspective
1500–1515	Sapegina, A.V	Fluid regime and P-T conditions of formation of granulite xenoliths from Udachnaya kimberlite pipe, Siberia
1515–1530		COFFEE BREAK
1530-1545	Airaghi, L.	Preservation of sharp composition gradients during high-temperature deformation in
		gabbros
1545–1600	Safonov, O.G.	Melt- to shear-controlled granulite exhumation related to granitic diapirism: Record from the Ha-Tshanzi structure, Limpopo Complex, South Africa
1600–1615	Evason, L.A.	Monazite and Titanite U/Pb analysis of the Grampian Shear Zone, Badenoch Group and the
		Grampian Group
1615–1630	López-Carmona, A.	Petrologic modelling and geochronology of Paleoproterozoic migmatites in the Zenaga inlier (Anti-Atlas, Morocco)
1630–1645		COFFEE BREAK
1645–1700	Oriolo, S.	The metamorphic architecture of the transpressional Gondwanide Orogen in southern South
	,	America: Insights from P-T-D-t paths
1700–1715	Ricardo, B.S.	Petrochronology applied into understanding the tectonometamorphic evolution of a
_, 1,15		Neoproterozoic metasedimentary unit in the Ribeira Belt, SE Brazil and its challenges
1715–1730	Torres-Sánchez, S.A.	Graphite within the Granjeno Schist metamorphic complex: a metamorphic indicator for the
_, 15 1, 50	iones sundrez, s.A.	NE mexican basement

1730–1745	Zuluaga, C.A.	Kyanite-Andalusite-Sillimanite crystallization sequence during two separated orogenic	
		episodes: new occurrence from the Northern Andes	38
1745-1800		COFFEE BREAK	
1800-1900		PANEL DISCUSSION: "HOW TO BE INCLUSIVE - BIG CHANGE OR SMALL STEPS?"	

WEDNESDAY	31st MARCH	
1330–1400		MSG Annual General Meeting
1400–1430	George, F.R.*	There's no accounting for oscillations: rhythmic garnet zoning unrelated to heterogeneous
		high pressure low temperature fluid transfer?
1430–1445	Maffeis, A.	HP-UHP fluid inclusion evolution predicted by molecular and electrolytic fluid models:
		implications for HP-UHP metamorphic fluid composition
1445–1500	Menzel, M.D.	Deformation and textural evolution during devolatilization of meta-ophicarbonates in
		subduction zones
1500–1515	Harris, B.J.R.	In situ measurements of nitrogen contents in formerly subducted rocks reveal variable
	,	behaviour of nitrogen during fluid-rock interaction
1515-1530		COFFEE BREAK
1530–1545	Tropper, P.	Experimental simulation of geodynamic processes using piston cylinder P-T loop
		experiments: the subduction P-T path of a natural metapelite sample
1545–1600	Soucy La Roche, R.	Monazite, xenotime and Al2SiO5 polymorphs, the perfect team to characterize
	•	polymetamorphism
1600–1615	Hillenbrand, I.W.	Petrochronologic constraints and P-T-t history of multiple crustal levels of an ancient
		orogenic plateau, Appalachian orogen, USA
1615–1630	Oldman, C.J.	Multiple Melt Generations in the Himalaya: Zircon isotope geochemistry
1630-1645		COFFEE BREAK
1645–1700	Cawood, I.	Field and petrographic constraints on the structural and metamorphic evolution of the
		Zanskar Himalaya, Suru Valley, NW India
1700–1715	Catlos, E.J	Development and Application of High-Resolution Garnet P-T-t paths to Himalayan Tectonics
	,	
1715–1730		Announcement of Award Winners
1730–1800	Powell, R.*	Barrow Award Winner talk
1800-1900		POSTERS 2 - GATHER.TOWN
	Benetti, B.	Unraveling tectono-metamorphic discontinuities in NW Himalaya: consequences for the mid-
		crust assembly during continental collision
	Corvò, S.	Unravelling the evolution of a major extensional lower crust shear zone from Val d'Ossola
		(Ivrea-Verbano Zone, Western Alps, Italy
	Cruciani, G.	P-T conditions of garnet-staurolite-bearing schists from Variscan NE Sardinia (Italy)
	Dulcetta, L.	Metamorphic and structural data of the Monte Filau Orthogneiss, SW Sardinia (Italy
	Evans, J.T.	Petrogenesis of the Kennack gneiss and other felsic units within the Lizard ophiolite,
		Cornwall, UK
	González, P.D.	Permian nappe tectonics and high-grade metamorphism related to Gondwanide Orogeny in
		northern Patagonia terrane
	Lamont, T. N.	Petrological modelling of Garnet-Amphibolite from Ardalanish Bay, Ross of Mull: New
	,	insights into a crustal thickening event affecting the Moine
	Marcos, P.	Tectonic evolution of the late Paleozoic basement in western Patagonia region (Argentina-
	,	Chile)
	Papeschi, S.	The lawsonite-glaucophane blueschists of Elba and their significance for the Northern
	. upeseni, s.	Tyrrhenian Sea
	Putnaitė, J.	P-T evolution of the Proterozoic aluminous granulites from the western East European
	r athance, J.	Craton, West Lithuani
	Ponda E M	
	Nellua, E.IVI.	
	Renda, E.M.	Medium-high grade igneous-metamorphic basement unit in Central Patagonia, Argentina its relation with the Terra Australis Orogen

Notes:

*Keynote/invited/prize talk (30 minutes)

All times = British Summer Time = BST = GMT+1

All sessions hosted on Zoom except for the poster sessions, which will be on Gather. Town

The metamorphic architecture of the transpressional Gondwanide Orogen in southern South America: Insights from P-T-D-t paths

Oriolo, S.¹, González, P.D.², Schulz, B.³, Giacosa, R.², Renda, E.⁴, Marcos, P.⁴, Suárez, R.⁵, Ballivián Justiniano, C.^{6,1}, Christiansen, R.⁷, Yoya, B.¹, Restelli, F.¹, Basei, M.A.S.⁸

¹CONICET-Universidad de Buenos Aires, Argentina. <u>soriolo@gl.fcen.uba.ar</u>, <u>seba.oriolo@gmail.com</u>
²Servicio Geológico Minero Argentino, Centro General Roca, Río Negro, Argentina
³Institute of Mineralogy, TU Bergakademie Freiberg, D-09596 Freiberg/Saxony, Germany
⁴Instituto de Investigación en Paleobiología y Geología, R8332EXZ General Roca, Argentina
⁵Instituto de Estudios Andinos (Universidad de Buenos Aires - CONICET), C1428EHA Buenos Aires, Argentina
⁶CONICET, Instituto de Recursos Minerales, Universidad Nacional de La Plata, 1900 La Plata, Argentina
⁷CONICET, Instituto Sismológico-Geofísico Volponi, Universidad Nacional de San Juan, 5407 San Juan, Argentina
⁸Centro de Pesquisas Geocronologicas, Instituto de Geociências, Universidade de São Paulo, Brazil

The Gondwanide Orogeny represents a major late Palaeozoic tectonometamorphic event along southern Gondwana, roughly coeval with the Variscan collision recorded along the northern Gondwana margin. In South America it is nearly ubiquitous along the proto-Pacific margin, being intimately associated with protracted subduction. Most relics of the Gondwanide Orogen were upper crustal rocks, but lower to middle crustal remnants are well-exposed in Patagonia (Argentina & Chile). Since robust P-T-D-t constraints are still scarce for the region, the aim of this contribution is to present a regional evaluation of integrated structural, petrological and petrochronological data, in order to evaluate the spatial and temporal evolution at the orogeny scale.

The orogen core comprises medium- to high-grade metamorphic complexes exposed between the North Patagonian Andes and the western North Patagonian Massif, recording dominantly high-T/high- to medium-P metamorphic conditions between the middle Carboniferous and the early Permian [1, 2, 3]. They are spatially associated with coeval calc-alkaline granitoids with continental arc affinity [4, 5, 6]. Further northeast, regional medium- to highgrade metamorphism is documented by the middle to late Permian in the eastern North Patagonian Massif, yielding comparable high-T/high- to medium-P metamorphic conditions. In a similar way, these metamorphic rocks are intruded by middle to late Permian granitoids [e.g., 4]. Finally, Permian low- and very low-grade metamorphism is documented in the Ventania System to the northeast of the North Patagonian Massif as part of the Gondwanide foreland. Permian felsic magmatic rocks are also present, but mainly restricted to tuffs within the sedimentary sequence and a small syenitic-granitic intrusion. In all these areas the Gondwanide Orogen is dominated by WNW-ESE- to NNW-SSE-striking fabrics, mainly associated with a regional metamorphic foliation and, locally, late shear zones. Deformation fabrics and kinematic data suggest a dextral-transpressive regional deformation regime. The marked contrast between metamorphic conditions in northern Patagonia and the Ventania System seems to result from different crustal-scale geodynamic controls. In Patagonia the pre-Gondwanide evolution was related to protracted Palaeozoic subduction and basin evolution along an accretionary margin [7]. In contrast, in the Ventania System there was reactivation of a crustal discontinuity between its Neoproterozoic basement and the adjacent Río de la Plata Craton (RPC) [8]. In this context, widespread crustal thickening during the Gondwanide Orogeny in northern Patagonia might have favoured stabilization of the Palaeozoic accretionary margin [1]. In contrast, the RPC had already attained a high thermal stability during Late Paleoproterozoic cratonization, thus resulting in a thick lithospheric mantle that behaved as a relatively rigid keel. Consequently, the RPC only recorded limited far-field Gondwanide deformation and exhumation [9].

References:

[1] Oriolo S et al. (2019) Tectonics 38:2378-2400; [2] Marcos P et al. (2020) Lithos 376:105801; [3] Renda E et al. (2020) J S Am Earth Sci 106:103045; [4] Pankhurst R et al. (2006) Earth-Sci Rev 76:235-257; [5] Varela R et al. (2015) Rev Asoc Geol Arg 72:419-432; [6] Renda E et al. (2019) Tectonophysics 772:228232; [7] Suárez R et al. (2019) J S Am Earth Sci 95:102256; [8] Christiansen R et al. Precambrian Res, under review; [9] Zalba PE et al. (2007) J Sediment Res 77:528-538