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Abstract

Using hydrodynamic principles we investigate the nature of the disk viscosity following the parameterization by
Shakura & Sunyaev adopted for the viscous decretion model in classical Be stars. We consider a radial viscosity
distribution including a constant value, a radially variable α assuming a power-law density distribution, and
isothermal disks, for a late-B central star. We also extend our analysis by determining a self-consistent temperature
disk distribution to model the late-type Be star 1 Delphini, which is thought to have a nonvariable, stable disk as
evidenced by Hα emission profiles that have remained relatively unchanged for decades. Using standard angular
momentum loss rates given by Granada et al., we find values of α of approximately 0.3. Adopting lower values of
angular momentum loss rates, i.e., smaller mass loss rates, leads to smaller values of α. The values for α vary
smoothly over the Hα emitting region and exhibit the biggest variations nearest the central star within about five
stellar radii for the late-type, stable Be stars.

Unified Astronomy Thesaurus concepts: Be stars (142); Circumstellar disks (235); Stellar mass loss (1613)

1. Introduction

More than 80 years ago, Struve (1931) noticed that rapid
rotation seemed to be a prerequisite to the appearance of bright
lines in the spectra of some early-type stars, now known as Be
stars, that exhibited broad photospheric lines and bright emission
lines. He also pointed out that due to their rapid rotation these
objects were likely to lose material at the equator creating a
flattened circumstellar shell, where the emission lines form.
However, during the decades that followed, the nature and
mechanisms involved in the formation of such an envelope were
largely debated (as stated in numerous reviews Slettebak 1982;
Porter & Rivinius 2003; Rivinius et al. 2013). It is therefore not
surprising that even today the most broadly accepted definition
of Be stars as being nonsupergiant stars that exhibit, or have
exhibited at some time, hydrogen lines in emission (Jaschek
et al. 1981) was established on a purely observational basis. For
a detailed description of Be star characteristics, we refer the
reader to two complete reviews on the subject: Porter & Rivinius
(2003) and Rivinius et al. (2013).

During the past two decades, the viscous decretion disk
model (VDD; Lee et al. 1991; Okazaki 2001) has become the
most successful model to describe a number of the observed
characteristics of Be stars, including their variability timescales
(Carciofi et al. 2012; Ghoreyshi & Carciofi 2017; Vieira et al.
2017). In the VDD model, the central star loses mass and
angular momentum continuously, putting material in a
Keplerian orbit at the base of the disk. Beyond this inner
boundary, some kind of turbulent viscosity transports the
material outwards. If the angular momentum input from the
central star is suppressed, the star can lose its disk until a new
mass and angular momentum loss regime is set up.

In light of all the new observational data for Be stars, and the
success of the VDD model in describing them, Rivinius et al.
(2013) suggested to redefine Be stars as rapidly rotating,
nonradially pulsating stars without large-scale magnetic fields,
that form a VDD in Keplerian rotation around them from the
material ejected from the central star.

Despite the success of the VDD model in describing
different observables of Be stars, there are still missing pieces
to fully understand the appearance of the Be phenomenon. One
of these issues is the nature of the viscous mechanism driving
the angular momentum throughout the disk.
The kinematic viscosity associated with the mechanism

responsible for the transfer of angular momentum outward in a
decretion disk is described following the α-parameterization
that has been long used to characterize the viscous mechanism
of the transfer of angular momentum within accretion disks
(Shakura & Sunyaev 1973; Pringle 1981). The viscosity, ν, is
written in terms of the local characteristic length (scale height,
H(r)) and velocity (speed of sound, cS(r)) via ν(r)= αH(r)cs(r).
Because of the viscous nature of the circumstellar disk

surrounding Be stars, most of what is known about the
viscosity comes from the analysis of buildup and destruction
phases, which correspond to epochs of changes in the mass loss
and/or angular momentum loss rates (Carciofi et al. 2012;
Haubois et al. 2014). In most cases, α is assumed to be constant
throughout the disk and in time.
In the present work, we propose to obtain information of the

viscosity of circumstellar disks surrounding Be stars that have
reached a stable state.
We seek to understand whether considering α to be constant

throughout the disk of a stable late-type Be star is a good
approximation or not, by quantifying how α changes through-
out the Hα forming region. We note that Hα is thought to form
in the inner part of the disk out to a radius of order 10 stellar
radii (for example, see the reviews by Miroshnichenko et al.
2003 and Rivinius et al. 2013). The actual Hα emitting size
depends mainly on disk density so there is variation. Of course,
the stellar parameters also play a role since the star is the main
source of energy to the disk through its ionizing radiation.
We have chosen to focus on rapidly rotating late-type Be

stars with stable disks. Even though there is still an open debate
on how close to critical Be stars rotate, it has been found that
for late Be stars as a group, the rotational velocities are closer to
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critical than for early Be stars (Cranmer 2005; Huang et al.
2010). For some (still not understood) reason, the forces
involved in the appearance of the Be phenomenon seem to be
weaker for these objects, so larger rotational rates would be
required in order to launch stellar material into a Keplerian
orbit and form a circumstellar disk. This may be the reason why
later spectral types, rapidly rotating stars that have never
exhibited hydrogen emission lines yet, Bn stars, are most
common (Zorec et al. 2007; Cochetti et al. 2020).

For some late-type Be stars the hydrogen emission lines have
remained unchanged since the first observations were obtained
almost a century ago, evidence that the disk may have had a
constant input of matter and angular momentum throughout all
this time (see, for example, Merrill 1952; Marlborough &
Cowley 1974, for an older description of stable Be stars).

Based on the abovementioned observational pieces of
evidence, we propose that late-type Be stars with stable disks
are ideal laboratories to study the physics of decretion disks.
Moreover, we assume that a series of important simplifications
can be made:

1. We assume the central star is rotating at the critical limit
and that stellar evolution models adequately describe the
required angular momentum loss rates when this occurs.

2. The effects of stellar winds in removing mass and angular
momentum from the central star are negligible so the
angular momentum is only removed mechanically from
the equatorial regions of the star.

3. The matter and angular momentum expelled by the
central star form a circumstellar disk that is thin, in
Keplerian rotation, and has reached a steady state.

4. The angular momentum is transported throughout the
disk via a viscous process.

5. We assume the density and thermal distribution for such a
disk can be derived from observations.

The paper is organized as follows. In Section 2, we briefly
revisit equations to describe the radial viscosity distribution
under the assumptions described above. Section 3 considers
α(r) for disks with a constant α and a radial variable α
assuming power-law density distribution for isothermal disks.
We also briefly discuss the viscous timescale and the potential
of magnetorotational instabilities to transport angular momen-
tum within the disk. In Section 4, we extend our analysis by
including a self-consistent disk temperature distribution to the
late-type, stable Be star, 1 Delphini constrained by the observed
Hα emission profile and spectral energy distribution (SED). A
summary and a discussion of our findings are presented in
Section 5.

2. The Radial Viscosity Distribution

We briefly recall the treatment of the equation of conserva-
tion of angular momentum in an axisymmetric disk in steady
state.

Under the assumptions described in the previous section, at
each radius r, the viscous torque T exerted on an annulus of a
disk is

( )p n= S
W

T r
d

dr
2 , 13

where Σ(r) is the surface density, ν(r) is the kinematic
viscosity, and Ω(r) is the angular velocity of the annulus. We

note that we adopt italic T for torque and roman T for
temperature throughout this article.
Replacing (1) in the vertically integrated azimutal comp-

onent of the equation of conservation of angular momentum we
have
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We should bare in mind that in a viscous disk the surface
density depends on the disk viscosity: if the viscous eddies had
velocities close to the local speed of sound, shock heating
would occur modifying the thermal structure of the disk, and
therefore the scale height and the surface density. Because there
is no evidence of such shock heating in Be star disks, in the
present work we neglect its effects. The fact that radiative
processes dominate the disk energy balance in Be star disks has
been noted in the literature (for example, see Section 3 in
Millar & Marlborough 1998 and references therein). More
recently, Kurfürst et al. (2017) found that for  < -M M10 10

yr−1, which is satisfied for the present equatorial mass loss
rates considered, the effect of viscous heating would be
insignificant in Be star disks.
In a decretion disk, the constant C in Equation 4 is the

angular momentum loss rate  at the outer boundary of the
viscous disk,  = = WC MRout

2
out. The outer radius, Rout, is

defined as the region where viscosity is no longer efficient in
transferring angular momentum (see Krtička et al. 2011). It is
assumed that the mass and angular momentum are supplied at
the inner boundary by the critically rotating star. From the
equation of continuity,

  ( ) ( )

p p
=
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Replacing vr in Equation (4) leads to an expression for the
viscous torque exerted inside-out at radius r, or equivalently,
the flux of angular momentum across a radius r in the disk,

( ) ( ) ( )= W - WT r M r R , 62
out
2

out

written in terms of the mass loss rate through the viscous disk,
M , and the difference in specific angular momentum at a radius
r and at the outer border of the disk. Replacing T(r) with
Equation 1 gives us the radial dependence of the kinematic
viscosity,


( ) ( ) ( )n

p
=

S
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¶W
¶

r
M

r
r R

2
. 7

r
3

2
out
2
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Following the numerical calculations by Krtička et al. (2011;
and also Kurfürst et al. 2014), W =R GMR0.5out out

2
out . As

shown by these authors, between the stellar surface and the
outer disk radius, ( )kW =r r GMr2 . Close to the central star
within the innermost 80 stellar radii, which largely covers the
forming region of traditional disk tracers as the Hα line, we can
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assume that κ(r)= 1, which means that the disk is in Keplerian
rotation. In this work, we will consider we are close enough to
the star so that this assumption is valid. In this case, we can
rewrite Equation 7 as,

⎜ ⎟
⎛
⎝

⎞
⎠


( ) ( )n

p
=

S
-r

M R

r3

1

2
1 . 8out

We also consider for the present analysis that r is
significantly smaller than Rout/4 so that the term between
brackets is always positive in our analysis. Then, if we consider
the mass loss rate from evolutionary models and the surface
density of the viscous Keplerian disk derived from observa-
tions, we can investigate the radial dependency of the viscosity
that is compatible with such a disk structure.

We are implicitly assuming here that the density structures
derived from observations are the result of the viscous
mechanism driving the disk.

In this sense, we describe how the viscosity parameter, α,
changes with radial distance relating the viscosity to H(r) and
velocity, cS(r). Under the assumption that the disk is isothermal
in the vertical direction, we can write the speed of sound as

( ) ( ( )) ( )m=c r k r mTs H , where k is Boltzmann’s constant, μ
the mean molecular weight, and mH the mass of the hydrogen
atom. In the case in which the vertical structure of the disk is
not considered isothermal, we define the characteristic speed of
sound by replacing T(r) by the density weighted temperature
(see Equation (11) in Sigut et al. 2009 and Section 4). We then
obtain,

( ) ( )
( ) ( )

( )a
n

=r
r

H r c r
. 9

s

It is worth pointing out that there is a dependence between
the disk temperature distribution and the value of the viscosity
via the sound speed.

3. α(r) for Particular Cases

As mentioned in the previous section, throughout the present
work we assume that the mechanical angular momentum loss
rate, , is supplied by a critically rotating central star. This
quantity can be obtained from stellar evolution calculations
using the Geneva code (Ekström et al. 2012; Georgy et al.
2013). Then, in order to derive an estimate for M , we use the
expression provided by Krtička et al. (2011) that takes into
account that at large distances from the star, the disk is no
longer rotating with Keplerian velocities. These authors
showed that the angular momentum loss rate  at the outer
radius and the mass loss rate are related via,

  ( ) ( ) = MV R R
1

2
, 10K out out

with the outer radius given by
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with Ro being the stellar equatorial radius, and VK Ro and cs Ro

being the Keplerian velocity and speed of sound at the stellar
equator, respectively. Here, we are assuming that the disk is not
truncated by an orbiting companion and, therefore, this
expression is likely an upper limit for . As described in

more detail later, the parameter, m, is the exponent when
considering a power-law temperature distribution.
Using these relations, Granada et al. (2013) provided values

for mean mechanical angular momentum loss rates, the
corresponding disk outer radius and mass loss rates for stars
between 1.7 and 15 Me, and different metallicities, assuming
an isothermal disk. Considering α= 1, viscous timescales and
disk masses were also derived.
Because the outer radius, and hence the mass loss rate, do

not strongly depend on the viscosity parameter α throughout
the disk, we use the previous expressions even in the case of a
radially varying α.

3.1. The Particular Case of a Disk with Radially Constant α

As is usually done in the literature, for example, see Carciofi
(2011), we first consider the case of α being constant
throughout the vertically isothermal disk. In this case, replacing

( ) ( ) ( ) ( )n a a= = Wc r H r c r rS S
2 , and considering once again

that Ω(r) is the Keplerian angular velocity, the known
expression for the surface density Σ(r) is obtained:
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This relation shows that close to the star the surface density
Σ(r)∝ r−2 if the disk is isothermal, or equivalently
ρ(r)∝ r−3.5. As before, the subscript o indicates quantities at
the equatorial radius. We note that in what follows we often
describe density distribution with a base value of ρo at the
innermost part of the disk at the stellar surface in the equatorial
region, which falls off with a power-law value denoted by n.
If we evaluate the previous equation at r= Ro and rearrange

the terms, we have an expression for α, constant throughout the
disk:

⎜ ⎟
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We can derive the mass loss rates through the angular
momentum loss rates obtained from stellar evolution calculations
directly from Table 5 in Granada et al. (2013) and the outer disk
radius computed using the expression given by Krtička et al.
(2011). These mass loss rates are therefore independent of α. We
note that during the mechanical mass loss phase, the star is
assumed to be rotating critically with the Teff consistent with the
stellar luminosity and surface of the rotationally distorted star.
Considering also a base density of ρ0= 10−11 g cm−3 and an
isothermal disk temperature (Td) of 0.6 Teff (Carciofi &
Bjorkman 2006), typical values derived from the observation
of steady state disks surrounding Be stars (Rivinius et al. 2013
and references therein), we find that α is 0.136, 0.365, and 0.422
for stars of 3, 4, and 5Me, respectively. If instead of considering
the same value of ρ0, we assumed a mass dependent value for ρ0
of 3× 10−12g cm−3, 8× 10−12g cm−3, and 10−11g cm−3 for 3,
4, and 5 Me stars, the values of α are 0.454, 0.456, and 0.422.
Interestingly, these values around 0.5 are between the median
values obtained for disk buildup (α= 0.63) and disk dissipation
phases (α= 0.26) by Rímulo et al. (2018).
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3.2. Radially Variable α: General Solution for Power-law
Dependences

For a disk that is isothermal in the vertical direction, the
density law is written as

⎛
⎝

⎞
⎠

( )( ) ( )r r= -r Z
r

r
e, , 14

n

0
0 0.5 Z

H

2

with the scaleheight
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( ) ( )=H r H
r

r
, 15

s

0
0

and H0= cs0/Ω0. In this case, the subscript “o,” refers to the
innermost grid location of the disk nearest the star in the
equatorial plane. The radial power-law dependence, typically
assumed for Be star disks, has succeeded in describing different
observables during the past decades, with values of n ranging
between 2 and 4 (see Rivinius et al. 2013 and references therein).

For a temperature law also following a power law

⎛
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r
T T , 16
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the exponent of the power law characterizing the scale height is
s= (3−m)/2. In this case
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where prS = H20 0 0.
Replacing these relations in Equation 9, we find an

expression for the radial dependence for the parameter α,
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For a certain stellar mass and fixed value of M , that is linked to
the angular momentum loss rate via   = WMRout

2
out, the shape

of this curve depends only on the parameters n and m.

3.3. Solution for Isothermal Disks

A particular case of the general power-law dependences is
the case of an isothermal Keplerian disk, m= 0, which is the
model typically used to represent Be disks.

In this case, the exponent s describing radial dependence of
the scaleheight is 3/2 and the speed of sound cs is constant
throughout the disk. Then, Equation (18) results in,

⎜ ⎟
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For fixed values of stellar mass and M , the shape of this curve
depends only on the parameter n.

We consider again a central star of 3, 4, and 5Me with the
corresponding equatorial radius and mean angular momentum
loss rate as given by Granada et al. (2013). We assume that the
disk isothermal temperature, Td, is 0.6 Teff and ρ0= 10−11g cm−3,
for four different values of n, 2.75, 3.25, 3.50, and 3.75. The
resulting α distributions are plotted in Figure 1. The innermost
values of α lead to small outflow velocities at the inner boundary
of the disk, as those listed in Table 1, which are consistent with
observations of Be star disks for which no evidence of large
outflow velocities are found close to the central star. For values of

n� 3.5, α decreases for all radii, whereas for values of n> 3.5 it
increases, reaches a maximum value, and then decreases outwards.
We present the value of α at the inner border of the disk (α0), at 10
stellar radii (α10), and at 20 stellar radii (α20) in Table 1.
We briefly comment on how α(r) behaves when other

parameters (other than the mass of the central star and n) are
changed.
From Equation (18), it is clear that taking different values for

ρ0, Td, and  (that changes M) does not change the shape of
α(r), but simply scales it. Smaller densities and temperatures
and larger angular momentum loss rates lead to larger values
of α.
Modifying M while keeping  unchanged is equivalent to

changing the outer radius, and this changes the shape of α(r). When
Rout is decreased by 25% of the standard value, α0 is slightly
smaller, and α decreases faster with radius than the standard case.
In the case in which a nonisothermal disk is considered

(m> 0 in Equation (18)), the behavior of α is similar to that of
an isothermal disk with a larger parameter n, with a different
outer radius.

3.4. The Viscous Timescale

Under the mentioned assumptions we can also estimate the
viscous timescale that characterizes the disk evolution from the
inner radius up to a distance r considering

⎜ ⎟
⎛
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R
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2

2
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We provide the viscous timescales up to 10 and 20 stellar
radii (t10 and t20, respectively), representative of the Hα line
forming region, in Table 1. The tabulated timescales are
compatible with the long-term variability observed in late-type
Be stars. Through the study of the long-term photometric
variability of a few late-type Be stars Hirata (1995) obtained
long-term cycles of 10–30 yr, and found these stars spent about
20% of the time in the buildup phase and the rest of the time
recovering slowly to their initial state. In this particular study,
the sample consisted of Be stars in binary systems. Hubert &
Floquet (1998) characterized timescales of variability for Be
stars from Hipparcos photometry. They obtained cycles within
the Hipparcos mission (P< 1200 days) for Be stars earlier than
B6 spectral type. Also, similar to Hirata (1995), they found in
the case of late Be stars that their light curve varied smoothly,

Figure 1. α(r) in the innermost 100 Re, where the Hα line is formed. For
n = 3.5, α(r) changes little with radius; however, for the other values of n,
there are changes in α, most notably in the innermost regions.
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not disturbed by short-lived outbursts. In a more recent study,
Labadie-Bartz et al. (2018) studied the growth and evolution of
circumstellar disks around classical Be stars through the
analysis of optical time-series photometry with simultaneous
spectroscopy for a sample of 160 Be stars. As in previous
works, they found that outbursts are more commonly observed
in early (57%), compared to mid- (27%) and late-type (8%)
systems, and determined that the average outburst takes about
twice as long to dissipate as it does to build up in optical
photometry for mid and early Be stars, and probably longer for
late Be stars. Our timescales, computed for a typical density at
the base of the disk of 10−11 g cm−3, are listed in Table 1 and
increase for smaller stellar masses, which is consistent with
the fact that late Be stars tend to have longer-lasting disks.
With the aim of exploring how a change in the base density
changes the timescales, we considered smaller values of ρ0,
3× 10−12 g cm−3, and 8× 10−12 g cm−3, which follows the
trend described by Vieira et al. (2017), where smaller base
densities are observed for later spectral types. For this set of ρ0,
the viscous timescales are very similar for the range of masses
described in the present work.

3.5. Magnetorotational Instability as the Mechanism
Transferring Angular Momentum throughout the Disk

As shown by Krtička et al. (2015), the magnetorotational
instability (MRI; Balbus & Hawley 1991) could be a source of

anomalous viscosity in outflowing disks. Based on an order-of-
magnitude viscosity estimate for an isothermal decretion disk,
Krtička et al. (2015) found that α does not depend on the radius
close to the star. As shown in Figure 1, we recover a similar
behavior for an isothermal disk with n= 3.5.
We assume here that MRI is the mechanism driving the

angular momentum throughout Be star disks not only for the
isothermal case with the density parameter n= 3.5, but also for
other disk structures. Krtička et al. (2015) provided a useful
expression written in scaled quantities for the strongest vertical
equatorial magnetic field Bz that allows the instabilities to
develop:

⎜ ⎟
⎡
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⎛
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⎞
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B
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250 G
10 R

, 21z
S r

K3 9
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1
2

where vK100 is the rotational velocity at the radius r in units of
100 km s−1 and -M 9 is the mass loss rate given in units of
10−9Me yr−1.
Then, for the different isothermal disk structures mentioned

in the previous subsection, we computed the maximum vertical
component of the magnetic field Bz that allows the instabilities
to develop at the inner border of the disk (Bz0), and also at 10
and 20 stellar radii (Bz10 and Bz20, respectively). The results are
summarized in Tables 1 and 2. We find that in all cases the
maximum allowed value Bz0 is less than 10G, compatible with

Table 1
Column 1: Mass of the Central Star

M* v0 α0 Bz0 n α10 tn10 Bz10 α20 tn20 Bz20

(Me) (km s−1) (G) (yr) (G) (yr) (G)

3.75 0.192 8.9 0.086 0.192 15.0 0.023
3 0.004 0.136 6.277 3.50 0.108 18.9 0.114 0.091 35.6 0.034

3.25 0.061 37.2 0.151 0.043 80.4 0.049
2.75 0.019 133.1 0.268 0.010 391.5 0.103

3.75 0.511 3.3 0.096 0.509 5.6 0.026
4 0.011 0.365 7.051 3.50 0.288 7.0 0.128 0.241 13.4 0.038

3.25 0.162 13.9 0.170 0.114 30.2 0.055
2.75 0.051 26.5 0.226 0.026 66.7 0.080

3.75 0.590 2.9 0.104 0.586 5.0 0.028
5 0.015 0.422 7.642 3.50 0.332 6.2 0.139 0.277 18.8 0.041

3.25 0.187 12.2 0.184 0.131 26.7 0.060
2.75 0.059 43.8 0.326 0.030 129.8 0.126

Note. Columns 2–4, radial velocity, α, and magnetic field at the inner boundary of the disk, respectively. Column 5: value of n characterizing the isothermal models
with ρ0 = 10−11 g cm−3. Columns 6–8, α, viscous timescale, and magnetic field at 10 stellar radii. Columns 9–11, α, viscous timescale, and magnetic field at 20
stellar radii.

Table 2
Same as Table 1 but Considering Values of ρ0 = 3 × 10−12 g cm−3 and ρ0 = 8 × 10−12 g cm−3 for the 3 Me and 4 Me Models, Respectively

M* v0 α0 Bz0 n α10 tn10 Bz10 α20 tn20 Bz20

(Me) (km s−1) (G) (yr) (G) (yr) (G)

3.75 0.639 2.7 0.047 0.639 4.5 0.013
3 0.012 0.454 3.438 3.50 0.360 5.7 0.062 0.303 10.7 0.019

3.25 0.203 11.2 0.083 0.143 24.1 0.027
2.75 0.064 39.9 0.147 0.032 117.4 0.057

3.75 0.639 2.7 0.086 0.636 4.5 0.023
4 0.014 0.456 6.306 3.50 0.360 5.6 0.114 0.301 10.7 0.034

3.25 0.203 11.1 0.152 0.143 24.1 0.049
2.75 0.064 21.2 0.202 0.032 61.5 0.072
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the nondetection of large-scale magnetic fields in Be stars
(Wade et al. 2014).

4. A Self-consistent Density and Temperature Distribution:
The Disk of the Be-shell Star 1 Delphini

1 Delphini (HD 195325) is a late-type, Be-shell star. The
shell star designation follows from the deep central absorption
observed in Hα, indicating that its disk is seen nearly equator-
on. 1 Del’s large projected rotational velocity is consistent with
a shell star status, with v isin values in the literature ranging
between 200 and 320 km s−1 (Bernacca & Perinotto 1970;
Uesugi & Fukuda 1970; Abt & Morrell 1995; Royer et al.
2002). 1 Del may be rotating close to its critical limit, and such
an object is expected to be deformed and gravity darkened by
rotation. The Hα profile of 1 Del has remained virtually
unchanged since the first spectra were obtained almost one
century ago (Merrill 1952; Marlborough & Cowley 1974;
Gulliver 1981; Silaj et al. 2014), with the exception of Iliev &
Kubát (2013), Kubát et al. (2016), and Abt (2008), who
reported very marginal variations.

The stability of the profile through several decades indicates
that there is a constant mass and angular momentum input from
the star into the circumstellar disk, making it an excellent target
to study disk viscosity as proposed in the previous sections.

We have modeled the Hα line profile and near-IR SED of
1 Del using the radiative transfer codes BEDISK (Sigut &
Jones 2007; McGill et al. 2011) and BERAY (Sigut 2011).
Details of the modeling approach, as applied to the Be-shell
star o Aqr, can be found in Sigut et al. (2015), although in the
present case we do not have interferometric visibilities. Our
computational grid consists of a total of 2600 disk locations
including 65 radial positions out to a distance of ∼200 solar
radii with 40 vertical positions at each radial location. The grid
is nonuniform to ensure greater sampling nearest the star and in
the equatorial plane where density and potentially temperature
change more rapidly. Briefly, we have assumed 1 Del is an
M= 3.8 Me star with a polar radius of Rp= 3.7 solar radii
rotating at 90% of its critical speed. These stellar parameters are
consistent with other values available in the literature for 1
Delphini (e.g., Kervella et al. 2019). In the Roche model, this
gives an equatorial-to-polar radius ratio of 1.37 and a polar to
equatorial Teff range of 13,150–9460 K, assuming the Espinosa
Lara & Rieutord (2011) treatment of gravitational darkening.
Hα line profiles and near-IR SEDs were computed assuming
that the central star is surrounded by an axisymmetric,
equatorial, circumstellar disk in Keplerian rotation with a
density variation given by Equation (14).

In this equation, we take r0 to be the star’s equatorial radius,
Ro. The disk scale height, H, was computed assuming the disk
is in vertical hydrostatic equilibrium (Sigut et al. 2009), giving
s= 3/2, i.e., H∝ r3/2. Thus the disk density is described by the
base density of the disk, ρ0, and the power-law index, n. The
disk is assumed to extend out to a radius of Rd equatorial radii,
and the star-plus-disk system is viewed at an inclination angle
(angle between the star’s rotation axis and the line of sight) of i.
Thus each computed Hα line profile and near-IR SED is a
function of the four model parameters (ρ0, n, Rd, and i). In the
computational pipeline, the BEDISK code computes the
thermal structure of the disk, T(R, Z), by enforcing radiative
equilibrium in a gas of solar composition, and the BERAY code
solves the radiative transfer equation along a series of rays
directed at the observer. Rays that terminate on the stellar

surface use an appropriately Doppler-shifted, LTE, photo-
spheric Hα line or photospheric continuum intensity (based on
the local, stellar surface value of Teff and glog where the ray
terminates) for the intensity boundary condition on the transfer
equation.
Figure 2 shows our calculated disk temperature distribution

through a slice of the disk as a function of radial distance and
height above and below the equatorial plane for the model with
ρ0= 6.2× 10−12 g cm−3 and n= 3.25. Note that near the star
in the equatorial plane, the optical depths are greater, which
results in a region of cooler gas. The upper left of the Figure 2
provides the density weighted temperature as a function of
radial distance. We use this average temperature, as explained
in detail below, for our α(r) analysis.
Hα line profiles and SEDs were computed for disk parameters

in the range of ρ0= 1× 10−12 to 2.5× 10−10 gm cm−3 (19
values equally spaced in rlog10 0), n= 1.5–4.0 (11 values in
equal steps of 0.25), Rd= 10, 15, 20, 25, and 50 Ro), and
inclinations from i= 76°–88° in steps of 2°. In total, a library of
7315 individual model Hα and near-IR SEDs were computed.
The best-fit Hα profiles were selected as those having the
smallest absolute percentage difference between the observed
spectrum and model line within the central±15Å of Hα. The
top five models are shown in Figure 3 along with an observed
Hα profile of 1 Del originally presented in Silaj et al. (2010; see
Table 4) and subsequently modeled in Silaj et al. (2014). The
profile is from JD 2454453.5 (2007) and was observed by the 42
inch John S. Hall Telescope at the Lowell Observatory located in
Flagstaff, Arizona, with a resolving power of 10,000. The best
profile fits all have i= 84° with Rd� 20 Req and (n, ρ0)= (2.75,
2.5× 10−12) or (3.25, 6.2× 10−12) as shown in Figure 3. The
residuals between the observed profile and the models are shown
at the bottom of the Figure.
Since 1 Del’s disk is observed to be very stable, the n= 3.25

solution may be slightly preferred as Vieira et al. (2017)
suggest that stable disks are expected to have n in the range of
3.0–3.5; though, different pieces of evidence indicate that
stable late-type Be stars seem to prefer values of n� 3, as is the
case for β CMi with n= 2.9 (Klement et al. 2017), and the case
of o Aqr with n= 3 (de Almeida et al. 2020). Finally, i= 84°

Figure 2. Disk temperatures, T(R, Z) in Kelvin, for the model with
ρ0 = 6.2 × 10−12 g cm−3 and n = 3.25. The stellar outline is indicated. The
upper left insert shows the density weighted disk temperature as a function of
disk radius.
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implies = -v isin 325 km s 1, which is at the upper limit of
suggested values.

We adopted the observed SED of 1 Del from Pickles &
Depagne (2010), which specifies the spectrum at 10 wave-
lengths, from 0.42 to 22.1 μm. The fluxes for 1 Del were
assembled by Pickles & Depagne (2010) using photometric
observations from 2MASS, WISE, and AKARI. To compare
the observed and model fluxes, the models were normalized to
the observed optical flux at 0.42 μm. However, the issue of
reddening must be considered, particularly as the distance to
1 Del is 228 pc. We note that 1 Del’s IR excess is very small or
even perhaps has a deficit of IR flux, and there seems to be no
information available on a reliable E(B− V ) for 1 Del. For this
reason, the observed fluxes were dereddened for an E(B− V )
ranging from 0 to 0.2 (using the extinction curve of Fitzpatrick
(1999) and AV/E(B− V )= 3.1) and compared to the models.
Overall, an E(B− V )= 0.13 gave the best fit to the SED over
all models and E(B− V ) values considered. As with the Hα
line profiles, very good fits to the SED were obtained, as shown
in Figure 4.

1 Del’s IR continuum can be matched by a wide range of
models with n ranging from n= 1.5 to n= 4.0. However, the
allowed range of parameters does overlap with the previously
selected parameters of the Hα line profile. The Hα line profile
is more constraining because of the presence of positional
information within the disk provided by the projected surfaces
of constant radial velocity on the sky arising from the Keplerian
rotation of the disk. For this reason, we adopt the parameters
determined from the Hα profile matching as the best
representatives of 1 Del’s disk density distribution.

Figure 5 shows our best-fit Hα profiles and our SED fitting
over our computational grid, which we call the disk parameter
grid. The Hα fits are shown as circles which are increasingly
smaller and lighter as the fit figure-of-merit increases. We see
that the best fits from Hα modeling are along an approximately
diagonal position in the Figure. This is expected since with

increasing density, ρ, and an increase in the value of n
essentially results in a similar overall amount of Hα emitting
gas. The SED fits are shown as contours corresponding to the

Figure 3. The best-fit profiles to the observed Hα profile of 1 Del from Silaj
et al. (2014) fall into essentially two groups: one with n = 2.75 (two profiles,
light gray line) and n = 3.25 (three profiles, black line). All models have
i = 84°. The difference between the model profiles and the observations is
shown at the bottom. The vertical dotted lines indicate the wavelength range
used in the fitting procedure.

Figure 4. The best-fit models to the observed SED of 1 Del satisfying a
reduced χ2 < 1.75. The best-fitting model has a reduced χ2 of 1.35. The solid
lines are the model fluxes, and the open squares are the observed fluxes
normalized to the models at λ = 0.42 μm and dereddened assuming
E(B − V ) = 0.13, as discussed in the text. The red diamonds are the predicted
model fluxes of the star alone. The errors in observed fluxes are smaller than
the symbols. The red diamonds are the predicted fluxes of the star alone
(without a disk). Note that the IR excess of 1 Del seems very small or even
negative (i.e. with an IR flux deficit).

Figure 5. The best-fit models of both Hα (symbols) and the SED (contours) in
the ( )rn, log 0 disk parameter plane. The Hα profile models are shown as
circles, which become smaller and lighter as the figure-of-merit increases.
Shown are all ( )rn, log 0 combinations that fit the Hα profile within 25% of the
best figure-of-merit. The SED fits are shown as contours of equal ( )c nPlog 2

according to the color bar at the top. The observed SED was dereddened
assuming an E(B − V ) = 0.13. The inset plot shows the reduced χ2 of the SED
fit as a function of the assumed E(B − V ), where a strong minimum at
E(B − V ) = 0.13 is seen.
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color bar at the top of the figure. The inset at the top left of the
figure shows the reduced χ2 as a function of E(B− V ). Note
the minimum, at the location corresponding to E(B− V )=
0.13, at the value that corresponds to our best-fitting SED. The
reduced χ2 for our best-fitting SED is 1.35.

In order to explore the α(r) distribution, we use as inputs the
disk density profile and the corresponding temperature profile,
together with the angular momentum loss rate predicted from
stellar evolution models for a star corresponding to the
observed spectral type of 1 Del, as obtained in Granada et al.
(2013). It is important to remark that to compute α(r) for 1 Del
we used the density weighted temperature (Sigut et al. 2009)
corresponding to the thermal structure computed by BEDISK
for the best fit of Hα and the SED. Through this density
weighted temperature, we obtained the radial dependence of the
sound speed and of the scale height. We also note that for a
nonisothermal disk, it is possible to vary T(r) and α(r) in such
as way as to keep ν(r) constant. Therefore, in this case, α and T
are degenerate. This issue was examined in detail by Marr et al.
(2021) in the case of the Be star, 66 Ophiuchus. However, in
our study, this degeneracy is not a factor because we use the
temperature structure to calculate α(r).

The results are summarized in Figure 6, which shows α
versus radial distance. We chose to show the innermost 20 R*
so that the changes in α near the central star can easily be seen.
We note that this radial distance is also where the bulk of the
Hα line profile forms. The thick continuous purple line
assumes the angular momentum rate from Granada et al.
(2013) and the mass loss rate, M , as computed using Equation
(15) from Krtička et al. (2011). These authors showed that the
solution actually does not depend significantly on α, but that
the temperature structure was important, affecting the disk
outer radius and therefore the mass loss rate for a given angular
momentum loss rate. Because of this, we explore how α(r)
changes for different values of M and Rd. Specifically, for the
continuous thin purple line, M has been divided by two and in
order to keep the angular momentum rate fixed, Rd has been
increased by four. The thick and thin, dashed green and blue
dotted lines use the same scheme as the thick and thin purple
lines except that the green dashed lines show α(r) when the

angular momentum loss rate from Granada et al. (2013) is
divided by 3, and the blue dotted lines by 10. We chose to
explore these smaller values for the angular momentum loss
rates because recently smaller values have been suggested in
the literature. For example, Rímulo et al. (2018) obtained that
the angular momentum rates obtained from Be stellar models
seem to be overestimated within an order of magnitude.
Alternatively, when considering a fixed value of angular
momentum loss rate and density structure, larger values of M
predict outer radii that are too small (smaller than r∼ 100 R0)
and large radial velocities that are not observed, so we do not
consider such values.
Figure 6 shows that α decreases significantly within the first

r∼ 5 to 7 R0 but then remains approximately constant at larger
radii. This demonstrates that for stable late-type stars there may
be significant changes in α near the star where key observables
such as polarization, continuum emission, and spectral lines are
formed.

5. Discussion

Typical values of α considered for Be star disks fall in the
range from 0.1–1.0 (for example, see Lee et al. 1991; Jones
et al. 2008; Okazaki 2001). Recently, values of constant α
through detailed modeling have been determined for particular
Be stars. Carciofi et al. (2012) determined a value of
α= 1.0± 0.2 for the disk of Be star, 28 CMa (ω Cma), by
modeling the V-band excess during an episode of disk
dissipation. Escolano et al. (2015), using spectroscopy analysis
and a 2.5D disk oscillation model, found α= 0.8 for the Be
star, ζ Tau. Ghoreyshi & Carciofi (2017) were able to model
the growth and dissipation phases with a constant α for the disk
that varied with dissipation and growth cycles for ω CMa. They
obtained values of α consistent with traditional values in the
literature between 0.1 and 1.0. Interestingly, but perhaps not
surprisingly, they found greater values of α for buildup phases
compared to dissipation suggesting that for some stars the
buildup is faster and perhaps more episodic than the dissipation
phase. More recently, Rímulo et al. (2018) determined values
of α for a set of 54 Be stars in the SMC using a semiautomatic
pipeline to model their light curves. They obtained average
values of α during buildup and dissipation of 0.63 and 0.26,
respectively, for the set. It is important to note that their
program stars were biased toward early types. Recently, as
reported by Rímulo et al. (2018), Ghoreyshi & Carciofi (2017)
revisited the value of α determined for ω CMa and obtained a
smaller value of 0.21± 0.05. Rímulo et al. (2018) explain that
details of disk development over time must be considered to
determine α due to a phenomena called the mass reservoir
effect or the accumulation effect. Basically the length of time
and the amount of material ejected into the disk ultimately
affects the dissipation since some disks may accumulate a
reservoir of material at large radial distances from the central
star during the buildup phase or multiple buildup phases. In the
case of a binary system the disk mass may build up inside the
orbit of the secondary (see Panoglou et al. 2016; Cyr et al. 2017
for additional discussion). Potentially this effect may have led
to an overestimate of α in some of the earlier work. Basically,
when ejection of material into the disk stops or is reduced, if a
large reservoir of material has built up, then it takes longer to
empty the disk or requires a larger α. In a follow-up paper,
Ghoreyshi & Carciofi (2018) analyzed the disk system for ω
CMa and found much smaller values than the work of Carciofi

Figure 6. α vs. radial distance in the innermost 20 R0. The continuous purple
lines correspond to the standard angular momentum loss rate from Granada
et al. (2013), the green dashed lines to the standard value divided by 3, and the
blue dotted lines to one-tenth of the standard value. The thick lines consider the
mass loss rate, M , as computed using Equation (15) from Krtička et al. (2011).
The thin lines have M divided by two with a corresponding increase in Rd

of four.
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et al. (2012) by taking the history of the disk into account.
Ghoreyshi & Carciofi (2018) obtained α of 0.20± 0.03,
0.13± 0.01, and 0.21± 0.05 for three dissipation phases for ω
CMa indicating that α also varies with time. More recently,
Ghoreyshi et al. (2021) applied a radially variable α to fit the
equivalent width of the Hα line for ω CMa and found a range
of α between 0.25 and 0.35. In this work, a very large disk was
assumed and the fact that any oblation from stellar radiation
was not included means that these values are upper limits. This
hints at the importance of the radial extent of the disk to obtain
a correct value of α.

Marr et al. (2021) studied the complete loss of the disk for
the early Be star, 66 Ophiuchi. They find a value of α of 0.4 in
combination with an isothermal disk temperature of 60% of the
stellar effective temperature. These authors experimented with
a variable disk temperature and variable α but found the
constant values were the best fit. Also, the outer bounds of the
disk were examined and the best-fit models had a radial extent
of 115 R* for the Hα emitting region. Interestingly, comparing
to the formula of Krtička et al. (2011) for the outer disk radius
adopted in this work (see Section 2), an outer disk radius of
125 R* is predicted, which is in remarkably good agreement.

We emphasize that in the discussions above, the studies are
focused on early-type Be stars undergoing disk formation and
dissipation events. Also many of these systems are quite
variable likely due to nonconstant mass injection into the disk
and in the case of 66 Oph, exhibit extreme variability since the
star completely lost its disk.

In this study we focus on stable, late-type Be stars perhaps
indicating that there has been a constant mass ejection rate from
the star into the disk corresponding to a constant supply of
angular momentum. In fact, for 1 Del the Hα emission has
remained virtually unchanged for decades as noted previously.

From the disk angular momentum loss rates from Geneva
models and the typical assumption of a constant α throughout
the disk, we find that in the range of masses corresponding to
late Be star (3–5 Me) and for typical densities and isothermal
temperatures, the values of α around 0.3. When exploring the
radially varying α for the isothermal model with n= 3.5, we
recover the previous situation finding that α varies smoothly in
the Hα line forming region.

For a more realistic case including a self-consistent disk
temperature, for the disk model that best fits the observations of
the star 1 Del, the distribution of α seems to be quite
nonconstant, in particular in the innermost part of the disk. But
we note, as shown in Figure 6 that for smaller values of angular
momentum loss, the change in α is much less significant.

Finally, it is interesting to compare our results for the density
distribution for 1 Del with Figure 13 in Vieira et al. (2017)
where they classify disks based on the value of n and ( rlog o) as
dissipating, steady state, or forming. Our results for the density
distribution for 1 Del would place this system as dissipating
using their scheme. Clearly, this is not the case for 1 Del. As
mentioned previously, 1 Del has been observed to be very
stable over periods of decades. We note that the study of Vieira
et al. (2017) favored early-type stars with Teff> 14,000 K and
they also considered isothermal disks. Late-type Be stars have
cooler disks and seem to approach critical rotation more easily
than early types. The central star is therefore strongly gravity
darkened with cool equatorial regions and hotter poles. The

resulting disk structure is strongly nonisothermal with cool
regions along the equatorial plane. However, the hot stellar
polar regions keep the upper and mid disk ionized with radial
distance producing the emission. This would, in turn, result in
fairly constant density with radial distance producing the small
values of n that we find for this very stable system.
Interestingly, Granada et al. (2018) found a clear trend with
spectral type for the allowed limits for n and ρ0 in Be stars:
larger base densities are allowed for smaller n for earlier
spectral types, indicating that earlier spectral types can have
more massive disks.
Martin et al. (2019) also studied the values of α using the

same prescription used here, but focused mainly on accretion
disks. They find that, for fully ionized disks, values for α are in
the range of 0.2–0.3 and note that α is smaller (in some cases
by orders of magnitude) when the disks are not fully ionized.
They hypothesize that this gives support for MRI as a driving
mechanism in viscous accretion disks. We also consider MRI
as a driving mechanism (see Section 3.5) and interestingly find
that for the models with the power-law density exponent n< 3,
i.e., density distributions that fall more slowly with distance
from the central star, we obtain estimates for α that are an order
of magnitude smaller. We also obtain values of the magnetic
field consistently less than 10 G for all the models considered,
which potentially could explain the lack of detection of
magnetic fields in Be stars. Martin et al. (2019) also discuss Be
star disks and the fact that in these systems α seems to have
higher values than in accretion disks, which is consistent with
our findings, but they note that this trend needs more study.
Martin et al. (2019) also explain that once the flow becomes
transonic the driving mechanism must change. We note that Be
stars have outflow speeds that are typically much less than the
sound speed (Bjorkman & Carciofi 2005), which can provide
clues to the driving mechanism in these systems.
In summary, in the present article, we find that assuming

isothermal disks for late Be stars with constant α, mass
dependent density at the base (ρ0) as derived by Vieira et al.
(2017), and angular momentum loss rates from Granada et al.
(2013), leads to values of α close to 0.3. These values are
between the values found during formation and dissipation
phases by Rímulo et al. (2018). Interestingly, however, for the
disk structure derived from Hα and SED fitting for the late-type
Be star 1 Del, we find that there seems to be a significant radial
variation in α near the central star within approximately five
stellar radii for typical values of angular momentum loss rates
considered in the literature. If, however, the angular momentum
loss rates are overestimated as has been suggested in the
literature (see Rímulo et al. 2018), the value of α with radial
distance could become much more constant for the systems
studied here.
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