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Abstract: A critical factor in the logistic management of firms is the degree of efficiency of the 
operations in distribution centers. Of particular interest is the pick-up process, since it is the 
costliest operation, amounting to 50 and up to 75% of the total cost of the activities in storage 
facilities. In this paper we jointly address the order batching problem (OBP) and the order picking 
problem (OPP). The former problem amounts to find optimal batches of goods to be picked up, by 
restructuring incoming orders by either splitting up large orders or combining small orders into 
larger ones that can then be picked in a single picking tour. The OPP, in turn, involves identifying 
optimal sequences of visits to the storage positions in which the goods to be included in each batch 
are stored. We seek to design a plan that minimizes the total operational cost of the pick-up process, 
proportional to the displacement times around the storage area as well as to all the time spent in 
pick-ups and finishing up orders to be punctually delivered. Earliness or tardiness will induce 
inefficiency costs, be it because of the excessive use of space or breaches of contracts with 
customers. Tsai, Liou and Huang in 2008 have generated 2D and 3D instances. In previous works 
we have addressed the 2D ones, achieving very good results. Here we focus on 3D instances (the 
articles are placed at different levels in the storage center), which involve a higher complexity. This 
contributes to improve the performance of the hybrid evolutionary algorithm (HEA) applied in our 
previous works. 
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1. Introduction 

Interest on the operation of warehouses and distribution centers has grown considerably in 
recent years, particularly due to the growing importance of e-commerce and the increasing number 
of deliveries of small size packages [1]. Improving the efficiency of the operational process in 
storing facilities is critical for the overall performance of a firm [2–5]. These processes include all 
the activities carried out in distribution centers, like receiving, transferring, putting away, sorting, 
picking-up, classifying, grouping, accumulating and dispatching orders [6–8]. This requires 
coordinating different technical teams and designing the lay-out of the storage center [9,10]. 

The receiving activities consist in unloading orders from vehicles, carrying them inside the 
depot, updating the inventory databases and inspecting the items to detect eventual inconsistencies 
with the quality, quantity and packaging declared. The putting away tasks amount to moving the 
items from the unloading dock to their assigned place in the storage area, registering their 
corresponding placement. This involves handling the goods, verifying the suitability of the 
placement sites and proceeding to store them until they are requested in an order [11]. The order 
picking process covers the most expensive activities in most warehouses, consisting in picking up the 
right amount of requested goods from the corresponding storage sites and taking them to the 
preparation/dispatch area [3,12,13]. Classifying and grouping the requested and picked up articles 
consists in consolidating the orders of the clients in the modular packages (boxes, pallets, containers, 
etc.) to be dispatched [14,15]. In most cases this involves marking, labeling and grouping  several 
goods into a single unit load. Dispatch is the process of verifying the load units to be transported, 
checking that the orders received are fulfilled, elaborating the documents to accompany them, to 
finally load them on transports. 

Given the high costs in resources and time of the logistics in the storage facilities, leads us to 
focus on the order picking activities. We are particularly interested in the solution of the integral 
batching and pick-up problems, by taking the displacement costs and the earliness and tardiness 
penalties into consideration. We treat this combined problem in a multi-level storage system (with a 
3D positioning of items) solved by applying a hybrid evolutionary algorithms.  

The rest of this paper is organized as follows: Section 2 describes the problem and reviews the 
relevant literature. Section 3 presents the formal model, while Section 4 describes the algorithm 
devoted to solve this question. Section 5 presents datasets with different order characteristics and 3D 
warehouse environments and section 6 discusses the results of computer experiments Finally, section 
7 discusses the results and the prospects for further work. 

2. Problem description and literature review 

To pick up orders fastly and at a minimal cost, three planning problems, involving operations in 
warehouses or distribution centers, have to be addressed. One is the allocation of storage positions for 
the received articles. Another one is batching-up the orders in lots to be collected. Finally, we have the 
problem of scheduling the sequence of pick-ups and delivery displacements to the dispatch area [16]. 
In this paper we focus on the integrated treatment of the two last problems, which are critical for the 
efficiency of the activities in the storage floor. Furthermore, they generate most of the costs associated 
to the operation of the distribution center since they involve activities that are intensive in labor and 
equipment [17–19]. 
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A more precise description of the order picking process is the following. The process starts with 
incoming multiple customer orders. Each order involves requests of different articles made by a 
customer, detailing the amount of each article and the due time at which the order has to be available 
at the dispatch area. The articles must be picked-up from the storage positions at the right time by a 
pick-up team that has to visit them in a sequence [20,21]. Masae et al. [22] review systematically the 
literature on order picker routing policies.  

Small orders may reduce the displacement time, by finishing them in single picking tours. This 
can be taken advantage by order batching procedures that split up larger orders into smaller ones. 
Alternatively, small orders can be combined in a single large order that can then be picked in a single 
picking tour [23]. Figure 1 depicts this process, indicating that it starts and ends at the dispatch area. 

So, the integrated process consists in designing a plan to reduce the cost of selecting, picking-up 
batches of different orders simultaneously, given precise deadlines for the finishing of each one. This cost 
is proportional to the displacement times across the storage floor and the punctuality in finishing the 
requested tasks. Since the final goal is to dispatch the batches, the schedule of pick-ups depends on the 
schedule of deliveries to customers. If the order were finished with delays it would lead to violations of 
the contracts with customers. Penalties and related costs ensue. On the other hand, if the orders are 
finished before the stipulated time the goods may clog the regular flow in the dispatch area, increasing 
the processing time of urgent requests, increasing the total cost of operations. 

 

Figure 1. Pick-up process. 

In more formal terms, this problem integrates two already known NP-Hard problems, the order 
batching problem (OBP) and the order picking problem (OPP). OBP consists in determining how to 
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teams and the time at which each article should be at the dispatch area. OPP in turn consists in 
identifying optimal visit sequences to the storage positions in which the goods of a given batch can 
be found, minimizing the distance covered and the processing time of the batch, visiting each storage 
position only ones. We denote the integrated problem as OBP/OPP.  

De Koster et al. [7] present a thorough literature revision on OBP and OPP. Ho and Tseng [24] 
reviewed the heuristics used to solve OBP. Chen and Wu [14] use a clustering-based approach to 
solve OBP taking into account demand patterns instead of the distance covered in each sequence of 
visits. Henn et al. [15] proposed using heuristics like taboo search and attribute-based hill climbing 
for OBP. Henn and Schmid [25] added the iterated local search heuristic to address OBP. Later on, 
Lam et al. [26] proposed and integer programming model for OBP in which the distance covered by 
each sequence is estimated and the problem is solved using a fuzzy logic-based heuristic.  

Van Gils et al. [27] reviewed and classified the literature on OPP. Petersen [28], De Koster et 
al. [6] as well as Theys et al. [29] presents revisions of the heuristics for OPP. Henn et al. [30] used 
ant colony optimization and iterated local search to solve OPP, while Chen and Lin [31] used a very 
efficient two-stage method. Lu et al. [32] present a routing algorithm for dynamical OPP. 

Tsai et al. [2] used a multiple-GA to solve the integrated OBP/OPP on 2D and 3D item positions. 
The novelty of this work resided in the use of flexible time windows for the delivery of orders, 
allowing a certain degree of earliness and tardiness. Miguel et al. [3], presented an evolutionary 
algorithm hybridized with a local search method to solve the 2D instances in reference [2]. Later on, 
Miguel et al. [4] changed the representation of individuals, improving the results of reference [3].  

In this paper we seek to further test and improve the performance, using experimentation, of the 
algorithm presented in reference [3] applying it on the 3D instances of reference [2].  

The main contributions of this paper are the following: 
i) We addressed the order batching and order picking with a more realistic model, by 

considering a multi-level storage system (with a 3D positioning of items), explicitly incorporating 
the due times of the requests. 

ii) We take into account that the actual procedures in warehouses involve several pick-up teams. 
This has been barely approached in the literature on the processing and routing of pick-ups in 
distribution centers.  

iii) The improvements are obtained by implementing an algorithm that solves the problem in a 
single stage, unlike the more complex algorithm presented in [2], which requires 2 stages. 

iv) The algorithm is tested on sets of orders generated probabilistically using the methodology 
presented in reference [2], showing its robustness. 

The literature has not covered sufficiently the resolution of the integrated problem by dividing 
larger problems into smaller ones to be fulfilled by multiple pick-up teams. While reference [33] 
comes close to this, it does not allow the splitting of orders. This aspect of our work indicates its 
scientific relevance. 

3. Specification of the problem 

We present here a specification of OBP/OPP based on a mathematical programming 
formulation [2]. In this setting we define the decision variables, the objective function as well as the 
constraints that involve delivery deadlines, number of pick-up teams and the operational restrictions 
on the use of the storage facility. 
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3.1. Parameters 

𝒫 denotes the set of different items in storage1. We assume that there are 𝑛𝐴𝑟𝑡 items. Each 
unit of an item has a weight, being the set of those weights 𝒲 ൌ ൛𝓌ଵ, … , 𝓌௣, … , 𝓌௡஺௥௧ൟ. 𝒫௜ is the 
subset of items requested by customer 𝑖. We assume that each customer places a single order or 
request of different articles, with different amounts of them. Thus, the number of customers 𝑛𝐶, 
equals the number of requests 𝑛𝑅𝑒𝑞, being the set of customers/orders ℐ ൌ ሼ1, … , 𝑖, … , 𝑛𝐶ሽ. Each 
request has a specified deadline, with the class of those deadlines being 𝒯 ൌ ሼ𝑡ଵ, … , 𝑡௜, … , 𝑡௡௉௘ௗሽ. 𝒫௥ 
is the set of items in a batch 𝑟. The items in 𝒫௥ can be requested by a single or several customers. 
ℒ ൌ ൛ℓ଴, ℓଵ, … , ℓ௣, … , ℓ௡஺௥௧ൟ represents the set of storage positions of the types of articles plus ℓ଴ 
which indicates the dispatch area. For an item 𝑝 ∈ 𝒫, its storage position ℓ௣ is given by its 
coordinates in the store, ℓ௣ ൌ ൫𝑥௣, 𝑦௣, 𝑧௣൯. ℛ ൌ ሼ1, . . , 𝑟, … , |ℛ|ሽ indicates that set of batches to be 
picked-up. 𝒮௥ ൌ 〈𝑠ଵ, … , 𝑠௨, … , 𝑠|𝒮ೝ|〉 is the sequence of positions to be visited to conform batch 𝑟, 
where 𝑠௨ is the 𝑢 െ 𝑡ℎ position to be visited. 𝑞௜,௣ ∈ 𝑄 denotes the number of units of item 𝑝 
requested by customer 𝑖, with 𝒬௜ ൌ ∑ 𝑞௜,௣௣∈𝒫೔

 being the total number of goods demanded by 𝑖 
while 𝒬௣ ൌ ∑ 𝑞௜,௣௜∈ℐ  denotes the total number of requested units of 𝑝. Finally, 𝒦 ൌ ሼ1, … , |𝒦|ሽ is 
the set of pick-up teams, each one with total weight capacity 𝐶𝑎𝑝.  

We define an undirected graph 𝒢 ൌ ሺ𝒱, 𝒜ሻ, where 𝒱 are the nodes, each one corresponding to 
a storage position of an item 𝑝 ∈ 𝒫, plus two copies (0 and 𝑛 ൅ 1) of the node corresponding to the 
dispatch area. 𝒜, represents the class of edges connecting pairs of nodes of 𝒱. Each 𝑒𝑑𝑔𝑒ሺℎ, 𝑙ሻ ∈
𝒜 has an associated travel time 𝑡௛௟ given by the distance between positions ℎ and 𝑙 over the 
speed of a picking-up team, 𝑣 (i.e., 𝑡௛௟ ൌ 𝐷௛,௟ 𝑣⁄ ) and an operational cost for each unit of time, 𝜍. 
𝑡௣௜௖௞ is the average time to pick a unit of any item, once the team has reached the corresponding 
storage site. 

3.2. Binary flow variables 

𝑥௛௟௞௥ ൌ 1 if ℎ is picked-up right before item in storage position 𝑙 by the pick-up team 𝑘 in 
the sequence corresponding to batch 𝑟 , where ℎ, 𝑙 ∈ 𝒱 , 𝑘 ∈ 𝒦  and 𝑟 ∈ ℛ . This means that 
𝑥௛௟௞௥ ൌ 1 if team 𝑘 has to travel through 𝑒𝑑𝑔𝑒ሺℎ, 𝑙ሻ to form batch 𝑟. 

3.3. Binary index variables 

𝑦௛௞௥ ൌ 1 if 𝑘 picks up item in storage position ℎ for batch 𝑟, where ℎ ∈ 𝒱, 𝑘 ∈ 𝒦 and 𝑟 ∈ ℛ. 

3.4. OBP/OPP model 

min 𝑇𝑂𝐶 : ቈ
∑ ∑ ஽೓,೗൉∑ ∑ ௫೓೗ೖೝೝ∈ℛೖ∈𝒦೗∈𝒱೓∈𝒱

௩
൅ ∑ 𝑞௣ ൉ 𝑡௣௜௖௞௣∈𝒫

௤∈𝒬
቉ ൉ 𝜍 ൅ ∑ ሺ𝛼 ൉ 𝐸௜ ൅ 𝛽 ൉ 𝑇௜ሻ௜∈ℐ        (1) 

s.t. 

∑ ൫𝑞௣ ൉ 𝓌௣൯ ൉ 𝑦௛௞௥௛∈𝒱ೝ
൑ 𝐶𝑎𝑝, ∀𝑘 ∈ 𝒦, 𝑟 ∈ ℛ                    (2) 

                                                              
1 Each item has a different reference code (SKU). So for instance, 200 units of the smartphone EjS22 share the same SKU, which is 

not the same of the smartphone EjS7, another item. 
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∑ 𝑦௛௞௥௥∈ℛ ൌ 1, ∀ℎ ∈ 𝒫, ∀𝑘 ∈ 𝒦                              (3) 

∑ 𝑦௛௞௥௞∈𝒦 ൌ |𝒦|, ∀ℎ ∈ ሼ0, 𝑛 ൅ 1ሽ, 𝑟 ∈ ℛ                        (4) 

∑ 𝑥௛௟௞௥௛∈𝒱 ൌ 𝑦௟௞௥, ∀𝑙 ∈ 𝒱 ∖ ሼ0ሽ, 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ                    (5) 

∑ 𝑥௛௟௞௥௟∈𝒱 ൌ 𝑦௛௞௥, ∀ℎ ∈ 𝒱 ∖ ሼ𝑛 ൅ 1ሽ, 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ                (6) 

∑ ∑ ∑ 𝑞௜,௣ ൉ 𝑦௣௞௥ ௥∈ℛ௞∈𝒦௜∈ℐ ൌ 𝒬௣, ∀𝑝 ∈ 𝒫                       (7) 

∑ ∑ ∑ 𝑞௜,௣ ൉ 𝑦௣௞௥ ௥∈ℛ௞∈𝒦௣∈𝒫 ൌ 𝒬௜, ∀𝑖 ∈ ℐ                        (8) 

𝑥௛௟௞௥ ∈ ሼ0,1ሽ, ∀ℎ, 𝑙 ∈ 𝒱, 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ                          (9) 

𝑦௛௞௥ ∈ ሼ0,1ሽ, ∀ℎ ∈ 𝒱, 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ                           (10) 

The objective function Eq (1) represents the total operational cost of the pick-up process, 
expressed in monetary units, corresponding to the collection of batches, plus penalties for earliness 
and tardiness. The travel times in the first term obtain from the analysis of the lay-out of the 
storage facility.  

With respect to the second term, 𝛼 is the penalty per unit of time for earliness, while 𝛽 is the 
current penalty per unit of time for tardiness. 𝐸௥ is the earliness in making up order 𝑖, while 𝑇௜ is 
tardiness in making up order 𝑖. Formally, 𝐸௜ ൌ 𝑚𝑎𝑥ሼ0, 𝓉௜ െ 𝑐௜ሽ and 𝑇௜ ൌ 𝑚𝑎𝑥ሼ0, 𝑐௜ െ 𝓉௜ሽ, where 
𝑐௜  is the finishing time of order 𝑖 , defined as the time at which all the units of all items 
corresponding to order 𝑖 are picked up and collected to form the order. 

Constraints Eq (2) forbid that the total weight of a batch exceed the capacity of the teams and 
their equipment, 𝒱௥ is the set of storage positions of the items that belong to lot 𝑟 (𝑝 ∈ 𝒫௥). 
Constraints Eq (3) indicate that each storage position cannot be visited more than once for each batch 
𝑟. Constraints Eq (4) ensure that all pick-up teams start and end at the dispatch area. In turn Eqs (5) 
and (6) preserve the flow of pick-up operations. If pick-up team 𝑘 gets item 𝑙 for batch 𝑟, it has to 
have picked up item ℎ or vice versa. Constraints Eq (7) indicate that all the requests of item 𝑝 are 
satisfied, while constraints Eq (8) state that all the requests of customer 𝑖 have to be satisfied. 
Constraints Eqs (9) and (10) restrict the range of values of variables. 

3.5. Lay-out of the distribution center 

Figure 2 shows the lay-out of the distribution center used in our previous analysis of the 
OBP/OPP problem. The bottom left corner corresponds to the access to the dispatch area, where all 
the sequences of pick-up operations start and end. That is, a team leaves the dispatch area following a 
pre-specified sequence, going from a storage position to another, picking-up the items before moving 
on to the next storage position, until all the articles in a batch have been collected. After that, the 
team returns with the articles to the dispatch area. Graphically, we have surrounded with a dashed red 
curve the storage and dispatch areas, where all the actual OBP/OPP operations are carried out. 



5552 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5546–5563. 

x1, y1, z1

x2, y2 ,z2

Back Cross Aisle

P
ic

ki
ng

 A
is

le

P
ic

ki
ng

 A
is

le

P
ic

ki
ng

 A
is

le

l1

l2

lnxn, yn, zn

(0,H,0)

Storage 
Area

Storage 
Area

St
or

ag
e 

A
re

a

St
or

ag
e 

A
re

a

Dispatch Area

Front Cross Aisle

 

Figure 2. Layout of the storage center. 

This configuration agrees with the one presented originally by Tsai et al. [2]. We keep the 
parameters used by them to test and validate our proposed solution method for the OBP/OPP 
problem. More precisely, we assume that there are two lateral racks and two double racks in the 
middle of the storage area. Pick-ups can be carried out along two transversal and three longitudinal 
aisles. The distance traveled from the storage position of item 𝑙 to that of ℎ, i.e., from ℓ௟ to ℓ௛, 
where ℓ௟ ൌ ሺ𝑥௟, 𝑦௟, 𝑧௟ሻ and ℓ௛ ൌ ሺ𝑥௛, 𝑦௛, 𝑧௛ሻ, can be expressed as follows: 

𝐷௟,௛ ൌ ቐ

|𝑥௟ െ 𝑥௛| ൅ |𝑦௟ െ 𝑦௛| ൅ |𝑧௟ െ 𝑧௛|, 𝑖𝑓 𝒜௟ ൌ 𝒜௛                                          

|𝑥௟ െ 𝑥௛| ൅ 𝑚𝑖𝑛ሼ|2𝒴 െ ሺ𝑦௟ െ ℋሻ െ ሺ𝑦௛ െ ℋሻ|; |ሺ𝑦௟ െ ℋሻ െ ሺ𝑦௛ െ ℋሻ|ሽ ൅ |𝑧௟ െ 𝑧௛|, 𝑖𝑓 𝒜௟ ് 𝒜௛

 

In this expression 𝒜௟ and 𝒜௛ denote the aisles along which ℓ௟  and ℓ௛ can be reached, 
respectively. ℋ is the second coordinate of ℓ଴, the start and end of a pick-up sequence. 𝒴 is the 
length of the picking aisles. 
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4. Hybrid evolutionary algorithm (HEA) 

The algorithm applied was introduced in reference [3] to solve the 2D instances presented by 
Tsai et al. [2]. It consists of an evolutionary algorithm [34] that evolves the solutions to the OBP/OPP 
problem hybridized with a constructive method based on the 𝑘 closest neighbors heuristic, to 
improve the sequences using a local search with 𝜆-exchanges. It uses the representation of as 
permutation of integers, usual in the treatment of combinatorial problems. Each chromosome 
consists of two genomes. A simple example shows how this representation works. Consider three 
requests and four items. Table 1 indicates that, for instance, request 1 consists of 2 items (one unit of 
A and two units of C), totaling 3 articles. 

Table 1. Example of an OBP/OPP problem. 

Request  Item  Total 

A B C D 

1 1 0 2 0 3 

2 1 1 2 1 5 

3 0 2 0 2 4 

Total 2 3 4 3 12 

Table 2 shows a representation consisting of two rows, one for items and the other for requests. 
The columns indicate the total number of requested articles (in this case, 12). 

Table 2. Items and corresponding requests. 

Item A A B B B C C C C D D D 

Request to which it belongs 1 2 2 3 3 1 1 2 2 2 3 3 

Table 3 indicates how the information in Table 2 is used to define two genomes. The first 
genome contains the information of the items assigned to batches (we consider three batches in this 
case). So, for instance, one unit of item A in request 1, is assigned to batch 2. On the other hand, 
genome 2 corresponds to the sequence of visits to the storage positions of the items. For instance, in 
batch 2, item A is collected from position 2. Table 4 presents the final chromosome to be evolved. 

Table 3. Genome 1 (Assigned batch) and Genome 2 (Position in the sequence of a batch). 

Item A A B B B C C C C D D D 

Request to which it belongs 1 2 2 3 3 1 1 2 2 2 3 3 

Genome 1 / Assigned batch 2 3 2 3 3 1 1 3 1 1 1 3 

Genome 2 / Position in sequence 2 1 1 3 5 1 3 4 5 4 2 2 
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Table 4. Chromosome (Genome 1 + Genome 2). 

Genome 1 Genome 2 

2 3 2 3 3 1 1 3 1 1 1 3 2 1 1 3 5 1 3 4 5 4 2 2 

Table 5 shows how the chromosome of Table 4 is decoded, indicating the batches and their 
corresponding pick up sequences. 

Table 5. Decoding a chromosome. 

Batch Item (Request) 

1 C (1) D (3) C (1) D (2) C (2) 

2 B (2) A (1)    

3 A (2) D (3) B (3) C (2) B (3) 

We can see that this chromosome is not yet a solution for the problem since, for instance for 
batch 1, this sequence prescribes going from the dispatch area to the position where item C is, pick up 
one unit, then go the position of item D, pick up one unit and return to the position of C to pick up 
another unit. After that the sequence prescribes going back to the position of D and then again back to 
C. This is clearly inefficient, since it could pick up three units of C and then two of D (or the other 
way around) with a lower cost. The evolutionary process ends up discarding chromosomes like that 
of Table 4. 

The main advantage of this type of representation that incorporates specific knowledge about 
the problem is that it allows reaching higher levels of efficiency than Holland’s original binary 
representation [35]. The downside is that it requires using operators adapted to this representation 
instead of general ones [36]. 

The penalty term in the objective function facilitates discarding non-feasible chromosomes. On 
the other hand, the satisfaction of the family of constraints Eqs (2)–(6) is ensured by the 
hybridization of the genetic operators with the closest neighbor heuristic. The constraints given by 
Eqs (7) and (8) are trivially satisfied by the representation. 

The initial population is generated randomly, to ensure a larger variety of alternatives. The process 
terminates according a cost-oriented criterion, which limits the maximal number of iterations.  

We use here the tournament selection approach [37], according to which the individuals that get 
selected are those with the higher scores among k individuals chosen at random from the current 
population. This is repeated until a new population is generated.  

Table 6 presents the pseudo-code of the algorithm, as presented in reference [3]. 

5. Datasets and parameter settings 

Tsai et al. [2] generated instances for OBP/OPP positioning items in two and three dimensions, 
as shown in Table 7. We have previously applied the HEA to find very good solutions to some 2D 
instances (DS0, DS1, DS2 and DS3) [3,4]. Here we address 3D instances (DS4, DS5 and DS6). In 
this, more complex setting, we can test and improve the performance of the algorithm. 
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Table 6. Pseudo-code of the HEA. 

1: Load Input % information of requests, the lay-out of the storage center and parameters of the algorithm. 

2: nBatch ← nBatchMin 

3: while nBatch < nBatchMax 

4:  t ← 0;  

5:  P(t) ← InitPop(input); 

6:  FitP(t) ← EvalPop(P(t)); 

7:  For t ← 1 a MaxNumGen 

8:   Q(t) ← SelecBreeders (P(t), FitP(t)); 

9:   Q(t) ← HybridCrossover(Q(t)); 

10:   Q(t) ← HybridMutation(Q(t)); 

11:   FitQ(t) ← EvalPop(Q(t)); 

12:   P(t) ← SelSurviv(P(t), Q(t), FitP(t), FitQ(t)); 

13:   FitP(t) ← EvalPop(P(t)); 

14:   if TermCond(P(t), FitP(t)) 

15:    break; 

16:  end 

17:  end 

18: nBatch ← nBatch + 1; 

18: end 

Table 7. Instances of the OBP/OPP problem. 

 DS0 DS1 DS2 DS3 DS4 DS5 DS6 

Problem size Small Small Medium Large Small Medium Large 

Number of requests 25 40 80 200 40 100 250 

Number of different items 30 80 160 300 80 200 400 

Lay-out type 2D 2D 2D 2D 3D 3D 3D 

Average total weight (kg.) 18584 13704 37152 158784 12424 54048 295784 

Capacity of pick-up teams (kg.) 7000 10000 10000 20000 10000 10000 50000 

We assume that the number of units of item 𝑝 requested by a customer 𝑖  is uniformly 
distributed between 1 and 10, i.e., 𝑞௜,௣~𝑈ሺ1, … ,10ሻ. In turn, the number of different ítems requested 
by a customer follows a normal distribution, with mean 10 and standard deviation 5, i.e., 
|𝒫௜|~𝑁ሺ10,5ሻ. The deadline for finishing the request of 𝑖 follows a uniform distribution over the 
range of seconds between 10:00 am and 18:00 pm, 𝓉௜~𝑈ሺ36000, … ,64800ሻ. The unit weight of 
each item 𝑝 is uniformly distributed between 8 and 24 kilograms, i.e., 𝓌௣~𝑈ሺ8, … ,24ሻ. With 
respect to the parameters of the pick-up teams, we assume an average travel speed of 𝑣 ൌ 2 𝑚/𝑠, 
an average pick-up time for each unit of 𝑡௣௜௖௞ ൌ 15 seconds, a travel cost per unit of time 𝜍 ൌ
$ 0.05 and a capacity (𝐶𝑎𝑝) that depends on the instance under consideration. 

For the objective function we consider an earliness penalty per unit of time of 𝛼 ൌ 0.5 while 
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the corresponding penalty for tardiness is 𝛽 ൌ 1. 
With respect to the strategy to limit the search space and facilitating the comparison with the 

results of Tsai, Liou and Huang [2], we postulate lower and upper bounds on the number of possible 
batches, |ℛ|௠௜௡  and |ℛ|௠௔௫ , respectively. These bounds are defined as follows: |ℛ|௠௜௡ ൌ
ሺ𝜑ଵ ൉ ∑ 𝓌௣௣∈𝒫 ሻ 𝐶𝑎𝑝⁄  and |ℛ|௠௔௫ ൌ ሺ𝜑ଶ ൉ ∑ 𝓌௣௣∈𝒫 ሻ 𝐶𝑎𝑝⁄ , where 𝜑ଵ and 𝜑ଶ are constants such 
that 𝜑ଶ ൒ 𝜑ଵ. If 𝜑ଵ is too large or 𝜑ଶ is too small, unfeasible sequences may be generated. The 
latter case generates longer pick-up routes and the batches may exceed the capacity of the pick-up 
teams. Similarly, a large 𝜑ଵ would induce a very large number of batches that may generate large 
travel costs. 

Tables 8–10 summarize the information about instances DS4, DS5 and DS6, respectively. Each 
row indicates the items and amounts of them requested by customer 𝑖. The last column shows the 
deadline for finishing the requests. 

Table 8. Inputs for instance DS4. 

Request Items:quantities Deadline

𝒫ଵ (4:2) (5:9) (18:5) (40:4) (55:5) (62:6) (67:5) 17:38:41

𝒫ଶ (1:6) (11:7) (13:1) (16:3) (18:4) (20:2) (58:6) (59:9) (60:5) (64:8) (68:6) (76:3) (77:2) 17:11:44

𝒫ଷ (7:1) (21:10) (27:5) (31:4) (38:7) (41:8) (42:5) (44:4) (46:8) (51:7) (60:7) (78:5) 15:56:12

𝒫ସ (23:4) (35:4) (53:9) (54:8) (62:4) (64:8) (70:7) (80:8) 17:57:13

𝒫ହ (10:2) (33:7) (38:8) (39:1) (41:7) (46:7) (52:7) (53:5) (63:3) (71:10) 15:15:02

𝒫଺ (11:5) (19:3) (44:9) (59:2) (72:7) (80:8) 15:52:38

𝒫଻ (11:10) (18:4) (26:5) (34:4) (37:4) (53:4) (54:4) 14:22:30

... ... ... 

𝒫ଷ଼ (17:10) (34:3) (47:4) (49:3) 14:35:54

𝒫ଷଽ (15:2) (23:10) (31:9) (45:8) (59:9) (66:2) (69:6) (76:6) 15:24:01

𝒫ସ଴ (9:2) (29:1) (37:6) (49:6) (58:3) (74:2) (76:1) 16:36:54

Table 9. Inputs for instance DS5. 

Request Items:quantities Deadline

𝒫ଵ (15:9) (34:6) (107:10) (120:4) (134:7) (178:2) (184:1) (192:6) 15:05:09

𝒫ଶ (1:6) (7:8) (40:7) (62:2) (85:1) (98:10) (121:8) (123:6) 16:10:57

𝒫ଷ (6:1) (19:10) (44:4) (113:9) (115:2) (124:10) (132:5) (160:6) (167:10) (195:5) (198:2) 16:24:33

𝒫ସ (57:6) (78:1) (85:9) (89:1) (94:2) (107:7) (133:3) (143:4) (166:8) (180:9) (199:2) 15:27:07

𝒫ହ (7:10) (21:8) (33:5) (37:1) (50:6) (74:2) (119:4) (171:3) (176:5) 16:42:02

Continued next page
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Request Items:quantities Deadline

𝒫଺ (11:3) (15:4) (34:5) (37:2) (48:2) (69:8) (155:6) (174:9) (176:9) (177:8) (182:9) (188:9) 15:38:01

𝒫଻ (73:1) (145:9) (191:7) (193:6) 15:25:51

... ... ... 

𝒫ଽ଼ (44:1) (57:8) (65:7) (79:5) (121:3) (157:3) (189:7) 14:47:52

𝒫ଽଽ (34:10) (52:5) (120:8) (133:1) (160:2) 15:29:12

𝒫ଵ଴଴ (7:8) (13:6) (28:10) (38:2) (51:8) (86:2) (121:5) (127:3) (183:10) 14:58:35

Table 10. Inputs for instance DS6. 

Request Items:quantities Deadline

𝒫ଵ (10:2) (87:5) (126:7) (172:1) (207:4) (276:4) (314:1) (351:8) (396:7) 14:46:43

𝒫ଶ (54:1) (107:4) (157:3) (255:7) (328:2) 15:31:42

𝒫ଷ (141:5) (152:10) (171:7) (243:7) (306:5) 15:16:38

𝒫ସ (35:1) (68:7) (194:3) (228:6) (313:8) (321:2) (335:4) (359:8) (375:7) (391:6) 14:13:20

𝒫ହ (54:9) (70:9) (85:7) (115:3) (154:6) (280:8) (370:2) (399:4) 15:30:15

𝒫଺ (45:5) (64:4) (111:7) (150:1) (161:6) (166:5) (346:10) 15:26:27

𝒫଻ (84:8) (151:10) (313:9) (353:2) (400:4) 14:06:20

... ... ... 

𝒫ଶସ଼ (43:4) (157:4) (313:10) (362:2) 15:01:47

𝒫ଶସଽ (66:8) (99:10) (114:4) (140:4) (174:9) (178:10) (195:5) (196:3) (292:7) 16:17:18

𝒫ଶହ଴ (26:6) (56:8) (97:4) (106:6) (107:1) (126:4) (186:6) (228:4) (254:3) 17:27:49

A first stage of calibration allows assigning values to other parameters. So, the maximal number 
of iterations is 𝑀𝑎𝑥𝐺𝑒𝑛 ൌ 500, the size of populations is 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ൌ 150, the size of tournaments 
in the selection process is 𝑆𝑖𝑧𝑒𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡 ൌ 2, the parameters in the bounds on the number of 
batches are 𝜑ଵ ൌ 2 and 𝜑ଶ ൌ 4, the probability of crossover is 𝑃𝑟௖௥௢௦௦ ൌ 0.9, the probability of 
mutations is 𝑃𝑟௠௨௧ ൌ 0.15 while the number of individuals in the elite is (5% of the population) 
𝑛𝐸𝑙𝑖𝑡𝑒 ൌ 0.05 ൉ 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, using direct sampling as elite selection rule. 

6. Computational experiment 

In this section we present the results of running our HEA on 3D instances (DS4, DS5 and DS6) 
generated by Tsai et al. [2]. We used a PC with an Intel Core i7 3.00 GHz processor with a 8 GB 
RAM. 100 runs for each instance yielded the results presented in this section. Figures 3–5 depict the 
𝑇𝑂𝐶 when the number of batches ℛ, varies between |ℛ|௠௜௡ and |ℛ|௠௔௫ for each instance. 
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Figure 3. DS4: 𝑇𝑂𝐶 values under different numbers of batches. 

 

Figure 4. DS5: 𝑇𝑂𝐶 values under different numbers of batches. 

 

Figure 5. DS6: 𝑇𝑂𝐶 values under different numbers of batches. 

We can see that the number of batches is optimal when 𝑇𝑂𝐶 reaches its lowest value. In order 
to find more precise optimal values, we penalized the solutions with excess weight, adding an 
additional cost to them.  

Table 11 presents the best solutions obtained by the HEA for instances DS4, DS5 and DS6. We 
compare them to results in reference [2]. The rows indicate some natural measures of performance, 
like the total travel distance in the pick-up plan ሺ𝐷௧௢௧௔௟ሻ, the optimal number of batches, the mean of 
the distribution of distances travelled on batches ሺ𝐷௠௘ௗ), the standard deviation of that distribution 
(𝐷௦௧ௗሻ, the sum of earliness and tardiness ሺ𝐸𝑇௧௜௠௘ሻ and the total operational cost ሺ𝑇𝑂𝐶ሻ. Here 
distances are measured in meters, times in seconds and monetary costs in US dollars. 

Table 12 indicates that HEA yields a better TOC on the different instances. This is, in general 
not the case for the total distance traveled (except for instance DS5). 
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Table 11. Performance of HEA and comparison with a benchmark. 

 Multiple-GA [2] HEA [3] 

 DS4 DS5 DS6 DS4 DS5 DS6 

𝐷௧௢௧௔௟ 948.00 4905.00 17799.00 1036.74 4470.20 19448.89 

𝑛𝐿𝑜𝑡 8.00 15.00 23.00 8.00 14.00 22.00 

𝐷௠௘ௗ 118.50 327.00 773.87 129.59 319.30 884.04 

𝐷௦௧ௗ 8.26 18.96 24.35 11.26 24.55 59.94 

𝐸𝑇௧௜௠௘ 1790.00 6826.00 25500.00 1700.50 6552.96 22440.00 

𝑇𝑂𝐶 1322.20 4431.03 14546.63 1281.58 3672.14 14317.82 

Table 12. Performance ratios. 

 DS4 DS5 DS6 Average 

𝐷௧௢௧௔௟(Multiple-GA)/𝐷௧௢௧௔௟(HEA) 0.914 1.097 0.915 0.976 

𝑇𝑂𝐶(Multiple-GA)/𝑇𝑂𝐶(HEA) 1.032 1.207 1.016 1.085 

Figure 6 presents boxplots indicating the variability, degree of asymmetry and the extreme 
values of the distributions of 𝐷௧௢௧௔௟, 𝐸𝑇௧௜௠௘ and 𝑇𝑂𝐶 obtained with our HEA on instances DS4, 
DS5 and DS6, using the optimal number of batches in each case. 

 
𝐷௧௢௧௔௟ 𝐸𝑇௧௜௠௘ 𝑇𝑂𝐶 

Figure 6. Boxplots: DS4, DS5 y DS6. 

We can see that in the boxplot of instance DS4 for 𝐷௧௢௧௔௟, we have an atypical value close to 
the minimal one for 8 batches, but 50% of the values of the distribution of 𝐷௧௢௧௔௟ is way above that 
value. In the case of 𝐸𝑇௧௜௠௘ the central values are below their corresponding benchmark values. 
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This is also the case for 𝑇𝑂𝐶. In summary, even if HEA does not yield better results in terms of 
𝐷௧௢௧௔௟, the quality of solutions measured by 𝑇𝑂𝐶 and 𝐸𝑇௧௜௠௘ improves over the known results. 

7. Conclusions 

In this paper we addressed an integrated problem that combines the Order Batching Problem 
(OBP) and the Order Picking Problem (OPP) using a hybrid evolutionary algorithm (HEA). This 
algorithm uses a novel representation of the problem using specific knowledge that allows restricting 
the search space. The crossover and mutation operators are hybridized with a heuristic that allows 
finding better routes for the pick-up teams. Tsai et al. [2] generated 2D instances of this problem (in 
which items are stored at the same level) and 3D ones (with items placed at different levels). We 
have previously applied the HEA to 2D instances, with very good results [3,4]. In this paper we have 
addressed the more complex 3D instances. The results, in terms of the objective function, improve 
over those in reference [2], which were obtained using a Multiple-GA. This completes the testing of 
the HEA.  

Future work involves considering this problem but in a multi-objective and cross-dock setting. 
The reach of the problem can be extended, studying the relation between the placement of items in 
the different layouts and the distribution of the last mile. Other aspects should also be considered, in 
particular those impacting on the operational planning of the activities in storage sites, like the 
volume and size of the packages, the relative demands of the different items, their rotation and 
similar considerations. 
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