
Part B, Volume 2, Chapter 5: 
Microbially Induced Sedimentary Structures (MISS)

Nora Noffke, Hugo Beraldi-Campesi, Flavia Callefo, 
Noelia Carmona, Diana G. Cuadrado, Keyron 

Hickman-Lewis, Martin Homann, Ria Mitchell, 
Nathan Sheldon, Frances Westall, and Shuhai Xiao

2022

Lawrence, Kansas, USA
ISSN 2153-4012

paleo.ku.edu/treatiseonline

TREATISE
ONLINE

Number 162





Microbially Induced Sedimentary Structures 1

INTRODUCTION
To date, microbialites include five groups: 

stromatolites, thrombolites, leiolites, and 
dendrolites. All these microbialites occur 
in carbonate or silica lithologies. However, 
research during the past 25 years has defined 
an additional group of microbialites that 
occurs predominantly in clastic deposits. 
These structures are called microbially 
induced sedimentary structures, commonly 
simply abbreviated to MISS. As outlined in 
this chapter, the morphologies of MISS do 
not resemble those of precipitated microbial-
ites due to the much different formation and 
different location of these structural groups. 
The genesis of the main types of MISS 
has been elucidated in studies in modern 
environments. The results were key for the 
search of such structures in the fossil record. 
Systematic exploration from youngest to 
oldest stratigraphic successions has given 
rise to a data set that allows identification 
of MISS in respective paleoenvironments. 
MISS are biosignatures helpful to under-
standing aspects of prokaryote evolution and 
the search for life on other planets.

This chapter first briefly focuses on the 
microbial communities that cause the struc-

tures, then discusses MISS formation, which 
is intimately related to the immediate setting. 
Next, the processes of their preservation is 
examined, and, finally, the chapter arrives at 
the classification of MISS. 

BIOFILMS AND MICROBIAL 
MATS

Modern sedimentology recognizes that 
benthic microbiota are (and have always 
been) part of every sediment and that micro-
bial activities may substantively contribute to 
sediment formation and lithification (Fig. 1).

In close-up view, sedimentary deposits are 
widely colonized by a great variety of benthic 
microorganisms. Most of these microbes 
organize into aggregates called biofilms, 
which are attached to a surface. Biofilms are 
probably the most common organization 
of life, developing everywhere in nature 
provided that water molecules and a surface 
are present (Stoodley & others, 2002; 
Neu, 1994; Gerbersdorf & others, 2008; 
Stal, van Gemerden, & Krumbein, 1985; 
Ramsing, Ferris, & Ward, 2000; Franks & 
Stolz, 2009; Gerbersdorf & Wieprecht, 
2015; Espinoza-Ortiz & Gerlach, 2021). 
Biofilms include both microbial cells and 
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their extracellular polymeric substances 
(EPS); (e.g., Decho, 1990, 1994). EPS are 
cohesive mucilages comprised of complex 
polysaccharide biomolecules that provide a 
suitable microenvironment for the micro-
organisms, buffering against rapid environ-
mental changes, such as desiccation, sudden 
salinity changes, and other environmental 
stressors (Decho, 1994; Flemming, Neu, 
& Wozniak, 2007; Westall & Rince 1994; 
Westall & others, 2000). These mucilages 
serve to anchor cells on their substrate or 
enable the motion of cells within the struc-
ture of the biofilm. Biofilms are therefore 
assemblages of cells working interdepen-
dently with each other with the ultimate 
aim of effective resource exploration. In 
a biofilm community, cells are arranged 
in certain positions relative to one other, 
allowing collaborative nutrient harvesting 
and consumption (Decho, 1994). Biofilm 
research, especially in the medical sciences, 
reveals a complex pattern of communication 
between cells. Such communication takes 
place between different groups of prokary-
otes and even some eukaryotes. Quorum 
sensing between members of the biofilm 
ensures targeted action of the commu-
nity (Waters & Bassler, 2005; Decho, 
Norman, & Visscher, 2010; Decho, & 
Gutierrez, 2017). 

In marine settings, biofilms may merely 
envelope a sedimentary grain (Fig. 2.1); 
however, at suitable natural sites, they may 
develop into large, macroscopically visible 
layers. Such large-scale organic layers are 
termed microbial mats (Fig. 2.2–2.3).

In sedimentology, classical and well-
studied examples of microbial mats include 
so-called algal mats in tidal settings, predom-
inantly those constructed by cyanobacteria 
(Black, 1933; Hardie & Garrett, 1977; 
Horodyski, Bloeser, & Vonder Haar, 
1977; Krumbein, 1983; Gerdes, Krumbein, 
& Reineck, 1985; Cohen & Rosenberg, 
1989; Gerdes & Krumbein, 1987; Reineck 
& others, 1990; Ginsburg, 1991; van 
Gemerden, 1993; Stal & Caumette, 1994; 
Taher & others, 1994; Reid & others, 1995; 
Stolz, 2000; Pearl, Pinkney, & Steppe, 
2000; Gerdes, Krumbein, & Noffke, 2000; 
Vasconcelos  & others, 2006; Taher, 
2014). However, there are many types of 
microbial mats in a great array of environ-
ments including the deep-water marine (e.g. 
Gallardo, 1977; Heijs, Sinninghe Damste, 
& Forney, 2005; Gallardo & Espinoza, 
2007). Despite their impressive sizes—some-
times many square kilometers—microbial 
mats are still nothing more than biofilms.

A look at the vertical organization of a 
microbial mat reveals that it is comprised of 

classical understanding of
‘sediment’

modern understanding of
‘sediment’

sedimentary rock includes
lithified biofilm

Figure 1

Fig. 1. Biofilms in classic and modern sedimentology. Modern sedimentology understands sediment not as a mere 
assemblage of mineral grains. Rather, biofilms colonize particles of sediment as long as water molecules are present. 

In situ lithification of the biofilm adds to cementation during diagenesis.
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a stack of horizontal layers, each of which 
is dominated by a microbial community 
different to that of the layer above or below 
(Fig. 3). This arrangement into layered 
communities has been investigated with 
the example of the multicolored sand flat 
(microbial mats in tidal flats) in great detail 
(Stal, van Gemerden, & Krumbein,1985; 
Visscher & Stolz, 2005). The metabolic 
activities of the community of each layer 
interlock with the metabolic activities of 
the communities in the layers directly above 
and below. This interlocking arrangement 

results in a complex interactive system best 
described as a cooperative of microbial 
groups. It functions as what could be called 
a “disassembly line” that harvests energy 
from the environment and transforms it 
through many steps first into organic matter 
and then into mineral substances (Stal, van 
Gemerden, & Krumbein,1985; Des Marais 
& Canfield, 1994; Visscher & Stolz, 2005; 
Dupraz & others, 2009; Blumenberg, Thiel, 
& Reitner, 2015) (Fig. 3). 

In modern tidal flats, the top layer of 
microbial mats comprises photoautotrophic 

biofilm
enveloping grain

endobenthic
microbial mat

epibenthic
microbial mat

a) b) c)

Fig. 2. The three endmembers of microbenthos type in an aquatic setting. A biofilm (1) is a microscopic coating 
around individual mineral grains. A microbial mat (2–3) is a macroscopic biofilm covering wide areas of sedimen-
tary surfaces, sometimes square kilometers. Microbial mats can be separated into endobenthic mats, which occur 
within the uppermost layers of sediment (2), and epibenthic mats (3), which grow on top of the sediment surface. 

Sizes of grains, ~0.2 mm.

Fig. 3. The microbial energy disassembly line of a microbial mat (left) and the resulting formation of minerals 
(right). Left: The primary producers in the top of the mat harvest solar energy via photosynthesis and transform 
it into organic matter. This organic matter serves as the energy source for various heterotrophic microbial groups 
in deeper parts of the mat. In situ precipitation of minerals is a consequence of this metabolic disassembly line. 
Right: Dependent on the chemical composition of water in sediment, typical minerals crystallize, replacing the 
original organic matter. In many fossil microbially induced sedimentary st, the cell walls of filaments still include 
some of the original carbon, and chamosite and illite may form. Pyrite, goethite, and hematite may have replaced 
the ancient trichomes, whereas silica and calcite may have replaced fossil extracellular polymeric substances (EPS).

1 2 3
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cyanobacteria that, as primary producers, 
harvest sunlight and store this energy as 
biomass. The layer immediately beneath the 
cyanobacteria includes chemoorganotrophic 
microbes that gain energy by disintegrating 
the complex biomolecules of the primary 
producers into inorganic compounds. 
Further beneath, in the third layer, these 
inorganic compounds are further disas-
sembled by chemolithotrophic microbes. 
At the base of this stack of layers, small 
molecules such as methane and ions are 
released, for example by methanogenic 
bacteria or archaea (Kinsman-Costello & 
others, 2017). The finally released cations 
and anions at the base of the disassembly line 
immediately react with chemical compounds 
suspended in the surrounding water and 
sediment (Schultze-Lam & others, 1996). 
The results of these reactions can be nucle-
ation points for mineral precipitates. Because 
the first mineral precipitates still include 
water molecules, they are commonly amor-
phous. In carbonate regimens, early crystal-
line dolomite or calcite may form, typically 
directly nucleating in the EPS (van Lith & 
others, 2002; Sánchez-Román & others, 
2008; Dupraz & others, 2009). Later, 
during diagenesis, larger-scale crystallinity 
develops. Such processes lead to the replace-
ment of organic matter by inorganic mineral 
substances and ultimately to the preserva-
tion of microbial mats (Ferris, Beveridge, 
& Fyfe, 1986; Ferris, Fyfe, & Beveridge, 
1987, 1988; Schultze-Lam & others, 1996; 
Konhauser & Riding, 2012). Impressions 
of mat textures, as known from carbonate 
microbialites, have to our knowledge not 
been observed in siliciclastic material. In 
summary, the cooperative action of this 
microbial disassembly line transforms and 
transfers the original amount of solar energy, 
via several steps, first into organic matter and 
then into chemical compounds (Schultze-
Lam & others, 1996). The microbes work as 
a cooperative until almost all of the original 
energy is used up.

The dif ference between MISS and 
carbonate/silica microbialites, such as 

stromatolites, is that in the latter rapid 
and ubiquitous in situ lithification of EPS 
takes place (Dupraz & others, 2009). The 
EPS constitute organic matrix, providing 
a template for nucleation of carbonate 
minerals (Dupraz & others, 2009). In MISS, 
such EPS lithification plays only a minor role 
in structure formation (Noffke & Awramik, 
2013). Here, in situ replacement of filaments 
happens very quickly (Schieber & others, 
2007; Noffke, 2010; Gomes & others, 
2020).

FORMATION OF MISS AND 
MAIN MORPHOTYPES

In general, three main types sedimen-
tary systems are distinguished: 1) clastic, 
2) clastic-evaporitic, and 3) carbonatic 
(Warren,  1999). Clastic deposits are 
comprised of mineral grains, bioclasts, and 
lithoclasts. Such deposits are governed by 
physical sedimentary dynamics (erosion and 
deposition). Dynamic events are interrupted 
by a time period of quiescence called latency. 
Clastic-evaporitic settings are likewise char-
acterized by such physical sedimentary 
dynamics but, in addition, also by evaporite 
mineral crystallization. Carbonate sedi-
ments are subject to both physical dynamics 
and evaporite mineral formation but are 
dominated by carbonate precipitation. The 
term sediment, however, cannot be under-
stood as substrate merely comprised of 
particles that by diagenetic processes turn 
into a cement-stabilized sedimentary rock. 
The hydraulic activities are reflected by the 
wealth of sedimentary structures that are 
well familiar to sedimentologists (Petti-
john & Potter, 1964). In order to survive, 
macro- and microbenthos must be able to 
actively respond to sedimentary dynamics. 

Clearly, given the small scales relevant to 
the microbial world, any instability of the 
substrate affects microbenthos significantly. 
In a high-energy setting, strong waves and 
currents may erode and rip off microbial 
mats from their substrate, forming meter-
scale roll-ups (Cuadrado & others, 2015; 
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Maisano, Cuadrado, & Gómez, 2019). 
In arid, terrestrial settings, roll-ups form 
through desiccation of a mat. In a low-
energy environment, fine particles may 
continuously fall out of suspension and 
bury the microbenthos, potentially altering 
the physico-chemical properties of the sedi-
ment or blocking essential sunlight from 
reaching the bottom. In the face of such 
challenges, microbes ensure the survival of 
the biofilm community by active upward 
motion and escape from burial (Bebout & 
Garcia-Pichel, 1995; Paterson & Black, 

2000; Shepard & others, 2005; Shepard 
& Sumner, 2010; Cuadrado, Carmona, 
& Bournod, 2011; Risgaard-Petersen & 
others, 2015). That means that microbes 
respond differently to erosion than to depo-
sition, which results in lessened erosion rates 
and increased depositional rates. In fact, 
the microbial activities generate moderate 
dynamic sedimentary conditions more suit-
able for microbial colonization of deposits 
(Noffke, Knoll, & Grotzinger, 2002; 
Noffke, 2010). The microbenthos, thus, 
establishes what we’ve termed a “window of 

E D

c)

b)a)

endobenthicbiofilm-type

Figure 5

BT

G

BS

B

E DDE

epibenthic

E D

Fig. 4. Overview of the microbial modification of physical sedimentary dynamics. Microbial mats and biofilms influ-
ence physical sediment dynamics in such a fashion that the microbenthos constructs its own dynamically suitable 
habitat, the optimal dynamic window for mat development (see Noffke, Knoll, & Grotzinger, 2002). 1, Physical 
sediment dynamics without microbial influence: E, erosion; D, deposition; dot at the crossing point, latency (time 
of no erosion or deposition). 2, Physical sediment dynamics affected by microbial influence. The rhombus represents 
microbial activities: G, growth; BT, baffling and trapping; BS, biostabilization; B, binding. Microbial activities create 
the window of optimal dynamic conditions biostabilization (BS) acts against erosion, while baffling and trapping 
(BT) increases the rate of deposition, especially of grains of the silt- to fine-sand fraction. Growth (G) and binding 
(B) rise the sedimentary surface. 3, The presence of small biofilms would not affect ripple morphologies (photo, 
left). However, where endobenthic microbial mats establish, biostabilization counteracting erosion (E) and baffling 
and trapping fostering deposition (D) sets in, and in consequence, the latency (black horizontal line separating E 
and D and representing time periods of dynamic quietness) increases. Endobenthic microbial mats modify physi-
cal sediment dynamics moderately and therefore their erosional remnants and pockets (photo, middle) appear as 
somewhat projecting surface morphologies. Epibenthic microbial mats affect erosion and deposition significantly 

and in consequence their erosional remnants and pockets are larger structures (photo, right).

1 2

3
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optimal dynamic conditions” for biofilms 
and microbial mats to form and thrive (Fig. 
4). The modification of sediment dynamics 
by the microbenthos is explained in detail in 
the following section.

Physical sedimentary dynamics include 
erosion, deposition, and latencies. Defor-
mation plays a role once the sediment is 
deposited. Erosion differs from deposi-
tion in its physical sediment dynamics. 
Microbial activities differ from each other 
as well. Microbial growth is not the same as 
biostabilization, and both are distinct from 
baffling and trapping. Furthermore, binding 
also differs from the three other activities. 
Biostabilization is the response to erosion; 
baffling and trapping is the response to 
deposition; and growth (cell replication and 
EPS-production) or binding (organizing a 
mat fabrics by movement, not growth) is a 
response to latencies. 

The microbiotic-physical interactions 
produce sedimentary structures (MISS) 

that, due to the different nature of their 
formational processes, differ morphologi-
cally from the physical sedimentary struc-
tures (sensu Pettijohn & Potter, 1964) 
generated by purely physical dynamics.  
The following section takes a closer look 
at growth, binding, biostabilization, and 
baffling-trapping.

GROWTH

Sediment affected neither by erosion 
nor by deposition provides a most suitable 
substrate for a biofilm or microbial mat 
to grow. This moment (or time period) of 
quiescence is called latency. Growth is herein 
understood as the increase of biomass, both 
through cell replication and the production 
of EPS and the establishment of a fully func-
tioning biofilm community best suited for its 
specific environmental locale. With contin-
uous growth of a biofilm or microbial mat, 
its vertical thickness increases. A microbial 
mat covering a bumpy sedimentary surface 

Fig. 5. Examples of microbially induced sedimentary structures formed by growth. A ripple valley is filled-in with 
layers of sediment (light) alternating with (dark) microbial mat laminae. 1, Thin section of sample from 3.48 Ga 
Dresser Formation, Pilbara, Western Australia, scale bar, 0.1 cm. 2, A scenario similar to (1) is visible in this vertical 

section through a modern sediment sample, Paso Seco coastal area, Argentina, scale bar, 0.5 cm.

growth

1

2



Microbially Induced Sedimentary Structures 7

will—if the growth remains undisturbed—
eventually smoothen this uneven surface 
relief. Thus, surface becomes level, or planar 
(Fig. 5). In this context, laminated leveling 
structures may form (Noffke & others, 
2001; Noffke, 2010; Liu & Zhang, 2017).

In microscopic close-up of a growing 
microbial mat, the biomass surrounding a 
mineral grain increases in thickness over 
time. The developing biomass forces grains 
upward and away from each other until the 
original grain-grain contact is lost (Fig. 6.2). 
Such individual grains in the mat matrix 
may be observed, especially in thin sections 
of epibenthic microbial mats. Typically, the 
grains rotate to a position with their long-
axes parallel to the sedimentary surface, 
termed oriented grain (see Noffke & others, 
1997) (Fig. 6.3). 

BIOSTABILIZATION 

Biostabilization includes three types of 
processes. It may be a response to 1) erosion 
by horizontally directed water currents, but 
also to 2) intra-sedimentary gas pressure, or 
to 3) mechanical stress leading to ductile 
deformation. Species diversity, EPS structure 
and adhesiveness, salinity, light conditions, 
and other factors play a role in the effective-
ness of biostabilization (Yallop & others, 
1994; Paterson, 1997; Amos & others, 
2004; Consalevy & others, 2004; Friend 
& others, 2008; Taher & Abdel-Motelib, 
2014; Gerbersdorf & Wieprecht, 2015; 
Dick, Grim, & Klatt, 2018).

Biostabilization type 1 is the response of 
benthic microbiota to erosive forces by a 
horizontally directed water current passing 
the mat surface (Fig. 6). The smooth, EPS-
rich surface of epibenthic microbial mats 
induces a predominantly laminar flow across 
its surface (BS A in Fig. 6.1). Such laminar 
flow generally has a far less eroding effect 
than turbulent flow because of absence of 
the vertical component of motion (Stoodley 
& others, 2005; Noffke, 2010; Tice & 
others, 2011; Hagadorn & McDowell, 
2012). Endobenthic microbial mats develop 
within the upper millimeters of a sedi-

mentary surface such that, in microscopic 
close-up, individual mineral grains project 
upward from the surface (BS B in Fig. 6.2). 
The surface is rough. Thus, passing water 
currents have a turbulent character with a 
higher erosive effect. In local areas, where 
hydrodynamic reworking constantly exceeds 
mat stability, only limited biofilms can 
develop. They cover water-suspended grains, 
sometimes holding a few grains together. 
Constant water motion keeps such biofilm-
grain-aggregates in suspension for a longer 
time than sterile mineral grains (BS C in Fig. 
6.3). The reason for this prolonged suspen-
sion is that biofilm-grain aggregates have 
comparatively larger diameters and lower 
specific densities than individual sterile 
grains. It appears that one advantage of this 
microbially induced suspension mechanism 

Fig. 6. Biostabilization type 1 by microbial mats and 
biofilms. Biostabilization BS A (1) is observed in epi-
benthic microbial mats sealing the sedimentary surface; 
biostabilization BS B (2) is observed in endobenthic mi-
crobial mats that form organic networks within the up-
per layers of the sedimentary deposits; biostabilization 
BS C (3) is observed in microbial-sediment aggregates.

BS A

BS B

BS C

Figure 8

1

2

3
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is to prohibit the lethal burial of microbes 
by light-blocking sediment (Noffke, 2010). 
This type of biostabilization may also give 
rise to microsequences (Noffke & others, 
1997). Microsequences are vertical succes-
sions of graded sediments layers covered by 
a microbial mat on the top of each bed. As 
soon as quiet conditions establish, the mat 
can develop. Each layer is preserved due to 
the biostabilization effect of the mat, which 
exceeds the erosion.

Biostabilization type 2 is the sealing of 
sediment by EPS that prohibit gas exchange 
between deposits and water or the atmo-
sphere. Consequently, gases (O2, CO2, CH4, 
H2S, and others), which accumulate in 
the pore space of clastic deposits beneath 
microbial mats cannot escape. Consequently, 
gas pressure in the sediment may cause 
millimeter-scale pores visible in vertical 
section through mat-sealed sediment. Such 
sedimentary textures are termed sponge pore 

sand (Tebbutt, Conley, & Boyd, 1965; 
Noffke & others, 1996; Kinsman-Costello 
& others, 2017) (Fig. 7). 

Gas domes are local centimeter-scale 
upheavals associated with biostabilization 
type 2, which locally form as a result of gas 
accumulations immediately beneath a micro-
bial mat (Noffke & others, 1996; Wilmeth 
& others, 2014) (Fig. 8). Commonly, sponge 
pore fabrics and gas domes occur together.

Biostabilization type 3 involves the reac-
tion of mat-stabilized sediment in ductile 
fashion. This biostabilization is typical in 
areas of vertically oriented water motion, 
e.g. where oscillating groundwater affects 
the sedimentary surface. A desiccating, 
microbial-mat-bound sand layer contracts, 
curls up, and loses contact with the sediment 
beneath (Gerdes, Klenke, & Noffke, 2000). 
Unconsolidated, loose sand in the absence of 
biology would react to desiccation simply by 
dispersing into individual grains. However, 

Fig. 7. Examples of microbially induced sedimentary structures caused by biostabilization. 1, Sponge pore structure 
in modern sand flats, Paso Seco, Argentina (a), with accompanying drawing (b), scale bar, 1 cm. 2, Sponge pore struc-
ture in the Rio Negro Formation (Miocene–Pliocene), Argentina, with accompanying drawing (b), scale bar, 1 cm. 

. .. . .
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if a microbial mat holds grains in place, the 
sediment does not disperse. Rather, the mat-
bound sediment layer has deformation prop-
erties similar to clay (ductile deformation). 
Deformation of mats may also result from 
mechanical dislocation of a microbial mat 
through transport and lateral shear (Pflüger 
& Gresse, 1996; Simonson & Carney, 
1999; Tice & Lowe, 2004). MISS such as 
roll-ups or over-flips are good examples of 
this (Fig. 9) 

In semi-arid climate zones, where signif-
icant seasonal changes affect sediments 
such that the degree of moisture switches 
periodically between dry and moist, MISS 
such as polygonal oscillation cracks form. 
The periodic shrinking and expanding of 
microbial mat polygons causes their edges 

to increasingly budge (Noffke, Gerdes, & 
Klenke, 2003). Additionally, the effects of 
gas pressure are thought to play a role in this 
process, since seasonally occurring gas domes 
are frequently associated with polygonal 
oscillation cracks.

BAFFLING AND TRAPPING

Microorganisms respond to deposition 
by baffling and trapping (Black, 1933), 
which are two different processes (Fig. 10). 
Baffling is the response of the microbenthos 
to sedimentation (Noffke, 1997; Gerdes, 
Krumbein, & Noffke, 2000; Schieber, 
2004). In laboratory experiments, filaments 
of cyanobacteria are shown to orientate verti-
cally and move upward in accordance with 
sedimentation rate (Gerdes, Krumbein, & 

Fig. 8. Examples of microbially induced sedimentary structures caused by biostabilization (a), with accompanying 
drawings (b). 1, gas dome in top view, Paso Seco, Argentina; scale bar, 2 cm. 2, The cross-section view through a 
gas dome reveals a hollow cavern beneath the dome, scale bar, 5 cm. 3, Gas domes in situ preserved in the 2.8 Ga 

Pongola Supergroup, South Africa; scale bar, 5 cm.
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Fig. 9. Examples of microbially induced sedimentary structures caused by biostabilization. 1a, Large-scale roll-up 
preserved in the 2.8 Ga Pongola Supergroup, South Africa, scale bar, 5 cm. 1b, drawing, yellow arrow shows direc-
tion of roll-up. 2a, Modern example of an overflip (roll-up, still connected to the parent mat), Paso Seco, Argentina, 
scale bar, 5 cm. 2b, Color-coded drawing showing direction of roll up. 3, Modern microbial mat chips on the tidal 
flats of Portsmouth Island, North Carolina, USA. Note that chip (a) is turned top-down, whereas chip (b) is turned 
top-up, scale bar, 2.5 cm; 4, Top-down (a) and top-down (b) oriented mat chips preserved in the 3.48 Ga Dresser 

Formation, Pilbara, Western Australia, scale bar, 2.5 cm.

Reineck, 1991). Such vertical movement 
of cyanobacteria (and other photoautotro-
phic microorganisms) is called phototaxis; 
it allows the organisms to position them-
selves in optimal light conditions. Baffling 
caused the fall-out of grains of small sizes 
which, under the same hydraulic condi-
tions but without microbial presence, would 
remain in suspension. Essentially, microbial 
baffling increases the rate of deposition of 
finer-grained material relative to that under 
ambient hydraulic conditions. This baffling-
induced fall-out of suspended particles may 
clear the water column from fine particles that 

would otherwise cloud the water, hindering 
the penetration of light and thus impairing 
photosynthetic processes (Noffke, 2010).

Trapping commonly refers to the adhe-
sive effect of sticky extracellular polymeric 
substances (EPS) from microbial mats on 
ambient particles (Gehling & Droser, 
2009). Mineral particles (commonly of silt 
size) and other lithic fragments are baffled 
and trapped, and therefore adher to mat 
surfaces. Baffling and trapping may be a 
function of the length of filament protru-
sion above the mat or sediment surface, 
grain size and availability, grain weight, 
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frequency and constancy of current trans-
port, as well as the angle of incline of the 
mat (Frantz, Petryshyn, & Corsetti, 
2015 for stromatolites; Suarez-Gonzalez 
& others, 2019). The stickiness or adhesive-
ness of EPS, which appears to differ between 
microbial groups, may also play a role in 
grain trapping (Kawaguchi & Decho, 2000; 
Tice & others, 2011). Adhesiveness may 
also be controlled by electrolyte concentra-
tion or salinity in the ambient environment 
(Spears & others, 2008). Sometimes, heavy 
mineral grains and redox-sensitive metals 
can be found preferentially enriched in mat 
layers (Gerdes, Krumbein, & Noffke, 2000; 
Taher & Soliman, 2015; Tice, Quezergue, 
& Pope, 2017; Rico, Sheldon, & Kinsman-
Costello, 2020).

If a biofilm is to function effectively in 
harvesting energy, each microorganism must 
place itself into the most suitable position 
with respect to the other members of the 
community (Stolz, 2000; Franks & Stolz, 
2009). The coordinated arrangement of 
filaments into a biofilm or mat fabrics is 
not possible if the substrate is constantly 
being reworked. Therefore, as soon as water 
motion settles down, microbes start to form 
a biofilm or mat network by actively moving 
through the sediment. 

BINDING

The arrangement of a consortium of 
microbes into a biofilm or microbial mat 

is referred to as binding. Examples of active 
movement by cyanobacteria have been shown 
in lab experiments (Bebout & García-
Pichel, 1995; Shepard & Sumner, 2010; 
Biddanda & others, 2015) and observed in 
nature (Walter, 1976, Dech, Norman, & 
Visscher, 2010). Ancient products of binding 
are described in Flannery and Walter 
(2011). In contrast to biomass increase 
(which is largely dependent on nutrient 
supply, the dynamics of nutrient diffusion 
through the biofilm, and light availability), 
binding is controlled only by sedimentary 
parameters (Shepard & Summer, 2010). No 
biomass accumulation is involved. Binding 
causes structures, such as reticulate patterns 
comprised of centimeter- to millimeter-scale 
ridges and tufts, which may cover large areas 
of microbial mats (Gerdes, Krumbein, & 
Noffke, 2000; Shepard & Sumner, 2010) 
(Fig. 11).

Field observations of modern mats show 
that such patterns may withstand high 
energy events (Cuadrado & Pan, 2018). 
Sinoidal structures are features caused by 
biofilms covering ripple mark troughs as seen 
in cross sections through buried sediment 
(Cuadrado, 2020) (Fig. 12). Fossil exam-
ples of such features are also known from 
the Dresser Formation, Pilbara, Western 
Australia (Noffke & others, 2013).

Field studies monitoring the formation of 
MISS in modern tidal flats have shown that 
some MISS form due to an overlap between 

Fig. 10. Baffling and trapping. Left: gentle currents cross an epibenthic microbial mat. Right: When finer-grained 
sediment is introduced to the system, filaments orientate perpendicularly and promote deposition of the finer grains. 

The finer-grained sediment forms distinct layers in the deposits (see close-up view on the far right).
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all of the above-mentioned microbial activities. 
Good examples of MISS with complex forma-
tional histories are multidirectional ripple 
marks (Noffke, 1998; Hagadorn, Pflüger, 
& Bottjer, 1999) and erosional remnants 
and pockets (Reineck, 1979; Noffke, 1999; 
Noffke & Krumbein, 1999; Schieber, 2007a; 
Noffke, Hagadorn, & Bartlett, 2019) 
(Fig. 13).

Highly abundant in the depositional 
record are wrinkle structures (Hagadorn 
& Bottjer, 1997; Noffke, 2010; Chu & 
others, 2015; Homann, 2019) (Fig. 14), 
and several studies have investigated their 
formation. Wrinkle structures induced by 

microbes are crinkled surfaces commonly 
found on the upper bedding planes of fine-
grained sandstone beds. They are composed 
of crests and grooves with irregular direc-
tions, with crests generally ranging between 
0.1 to 2 mm in height, and a crest-to-crest 
distance of 0.1 mm to 2 cm. Patterns of 
crests and valleys vary from specimen to 
specimen (Fig. 14).

Elephant-skin textures—textured organic 
surfaces (TOS)—are very common (Fig. 
14.4) and well preserved in Ediacaran sand-
stones (Gehling, 1999; Gehling & Droser, 
2009; Bottjer & Hagadorn, 2007). Fossil 
impressions have been described as wrinkled 

Fig. 11. Examples of microbially induced sedimentary structures caused by binding (a), with accompanying drawings 
(b). 1, Reticulate pattern covering the surface of a modern microbial mat, Paso Seco, Argentina, scale bar, 1 cm. 2, 
Reticulate pattern on the surface of a fossil microbial mat from the 3.48 Ga Dresser Formation, Pilbara, Western 
Australia, scale bar, 1 cm. 3, Tufts preserved in the 3.48 Ga Dresser Formation, Pilbara, Western Australia, scale 

bar, 0.1 mm. 4, Tufts overgrown by microbial mat laminae, Paso Seco, Argentina, scale bar, 1 mm.
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surfaces by Fedonkin (1992). Elephant 
skin textures are commonly associated with 
fossils of the Ediacara biota and may have 
influenced their preservation, according to 
the iconic death-mask-model (Gehling, 
1999; Gehling & Droser, 2009). In both 
the modern environment and the lab, such 
reticulate structures and tufts on sedimen-
tary surfaces result from migrating trichomes 
(Shepard & Sumner, 2010, Cuadrado 
& Pan, 2018). The gliding motility and 
tangling behavior of filaments leads to the 
formation of tufts resembling centimeter-
scale needles on the mat surfaces (Gerdes, 
2007; Strader & others, 2009; Sim & 
others, 2012).

Shearing off a microbial mat from its 
surface by passing bottom currents (Thomas 
& others, 2013) may cause irregularly crin-
kled surfaces. A microbial mat layer may be 
arranged into irregular tissue-like folds (Fig. 
15.2) and the rapid preservation of such 
microbial mat fabrics produces crinkled mat 
surfaces, which sometimes have tears in the 
originally tissue-like material (fossil examples 
in Noffke, 2000, Noffke & others, 2008).

In lab experiments, wrinkle structures 
(Fig. 15.3) have been shown to form at 
the sediment-water interface by microbial-

mineral aggregates moving back and forth 
with wave motion creating a Kinneyia-like 
pattern (Mariotti & others, 2014). Due to 
the original fossil Kinneyi Walcott, 1914 
probably being abiotic, the name Ruga-
lichnus matthewii was suggested for such 
Kinneyiya-like wrinkle structures, although 
the trace fossil character of MISS is debat-
able (Stimson & others, 2017).

Finally, if a microbial mat is suddenly 
buried by a substantial amount of sediment, 
the squeezing out of mat-bound water can 
cause lateral grooves to form in the mat 
(Pflüger, 1999) (Fig. 15.4). Two main 
types of such wrinkle structures exist: trans-
parent, in which any proceeding (physical) 
sedimentary structure, such as ripple marks, 
remain still visible underneath the wrinkles, 
and non-transparent, in which proceeding 
surface morphologies are covered completely 
by wrinkles and are therefore invisible. These 
two main types reflect endobenthic (trans-
parent) and epibenthic (non-transparent) 
microbial mats (Noffke, 2000). In situ 
preservation of microbial mats occurs in 
several steps (Noffke, Knoll, & Grotz-
inger, 2002). It requires a pause in sedi-
mentation, during which the mat develops 
and fine-grained material falls out, draping 

Fig. 12. Example of microbially induced sedimentary structures caused by binding (a), with accompanying draw-
ings (b). 1, Biofilms (black) overgrow ripple valleys, 3.48 Ga Dresser Formation, Pilbara, Western Australia. Such 
structures are called sinoidal structures, scale bar, 2 cm. 2, Similar example for a sinoidal structure in a modern 

sediment, with mat layers appearing light in color, Paso Seco, Argentina, scale bars, 1 cm. 
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Fig. 13. Examples of microbially induced sedimentary structures produced by the interaction of all microbial 
activities. 1, Multidirectional ripple marks in the 2.8 Ga Pongola Supergroup, South Africa (a) and in the modern 
sandflat of Bahia Blanca Estuary, Argentina (b), scale bars, 30 cm. 2, Erosional pocket showing ripple marks in the 
Cretaceous Dakota Sandstone, USA (a), and in a tidal flat, Paso Seco, Argentina (b), scale bars, 10 cm. 3, Rippled 
surface covered by minute fossil biofilm in the 3.48 Ga Dresser Formation (a) and in the modern Paso Seco,  

Argentina (b), scale bars, 10 cm.

the mat surface and becoming incorporated 
into the mat fabrics. Subsequently deposited 
sediment must not be able to erode the mat 
during placement for in situ preservation 
to occur (Noffke, Knoll, & Grotzinger, 
2002).

It is important to understand that there are 
different ways to arrive at wrinkled patterns 
in clastic sediment and that such structures 
are not always biologically induced patterns 
(Hagadorn & Bottjer, 1997; Hagadorn, 
Pflüger, & Bottjer, 1999; Noffke, 2010; 
see details in Davies & others, 2016). 
Nonbiological mechanisms of formation 

include, for example, the imprinting of a 
surface by foam (foam marks), by rapid 
water motion in very shallow water depths 
(millimeter ripple marks), or through the 
deformation of semi-consolidated material 
by slumping or by ball and pillows formation 
on the lower bedding plane. Abiotic wrinkle 
structures may also be caused by tectonic 
crinkling or biased diagenetic processes 
(Hagadorn & Bottjer, 1999).

One last important aspect to consider, if 
sediment (at least on Earth) always includes 
biofilms, the question may arise as to whether 
purely physical sedimentary structures truly 

interaction
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tions of structure-modification in response 
to seasons being typical. While this study 
worked well for a local tidal flat with a simple 
biofilm catena, any conclusion for general 
sedimentology or even the sedimentology of 
other planets is unwarranted. 

PRESERVATION OF MISS
In thin sections through fossil microbially 

induced sedimentary structures (MISS), the 
different components of an ancient microbial 
mat texture may be visible. Mat textures are 
fossilized by different minerals depending on 
the ancient water chemistry providing anions 
and ions that nucleate into first precipitates. 

1) Illite or chamosite, pyrite or goethite, 
and limonite may line the original trichomes 
of the microbes (Schieber, 1986, 1989, 
1999; Pflüger & Gresse, 1996; Hagadorn 
& Bottjer, 1997, 1999; Logan & others, 
1999; Noffke, 2000; Noffke, Hazen, & 
Nhleko, 2003; Westall & others, 2006; 
Noffke, Beukes, & others, 2006; Noffke, 

exist. Would the presence of biofilms in all 
deposits not mean that physical sedimen-
tary structures in a natural environment 
are actually always microbiotic-physical 
structures? In answering this question, even 
where biofilms may smother surfaces, they 
commonly are of too little mechanistic impact 
to affect a structural representation. However, 
microbially induced sedimentary structures 
(MISS) exist, and so the question may be 
asked, where is the boundary between phys-
ical sedimentary structures and MISS? This 
question was approached by examining a tidal 
flat (Noffke & Krumbein, 1999). The study 
developed a modification index (MOD-I) 
that describes the degree of microbial influ-
ence on tidal surface morphologies (erosional 
remnants and pockets). A MOD-I of 0 would 
describe sedimentary surface morphologies 
that show no influence by microbenthos, a 
MOD-I of 1 describes maximal influence. 
The boundary between microbially induced 
or not would be any value >0, with fluctua-

Fig. 14. Biogenic wrinkle structures. 1, One of the oldest wrinkle structure known in the fossil record is preserved 
in the 3.48 Ga Dresser Formation, Pilbara, Western Australiam scale bar, 5 cm. 2, Kinneyia-like wrinkle structure, 
2.8 Ga Pongola Supergroup, South Africa, scale bar, 10 cm. 3, A round piece of microbial mat became detached 
from its sandy substrate and crinkled. The cause may have been a current crossing the microbial mat in fall, when 
mats in this area start to compose; Portsmouth Island, North Carolina, USA, scale bar, 10 cm. 4, Elephant skin 

texture, Tonian, circa 750 Ma, Qingshuijiangh Formation, South China, scale bar, 1 cm.
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Fig. 15. Various causes and types of microbially induced wrinkle structures. A planar microbial mat is shown in 
the center of this figure. Variations are shown from 1 to 4. 1, filamentous microbes form tufts and reticulate pat-
terns in response to environmental stresses causing textured organic surfaces (TOS); 2, a coherent epibenthic mat 
is affected by a strong current dislocating the mat and folding it into irregular crinkles resembling folds in a table-
cloth, tearing may also occur; 3, mineral-biofilm-aggregates moved by waves give rise to Kinneyia-like structures. 
4, Kinneyia-like structures are caused by jetting water squeezed out of the underlying microbial mat layer when 

buried by new deposits.

preservation of organic carbonaceous matter, 
as evidenced by the fossilization processes of 
Burgess Shale macrofossils (Briggs, 2003, 
Gaines, Briggs, & Zhao, 2008). However, 
cellular organic matter may also be protected 
against oxygenation by EPS, which reduces 
gas exchange between sediment and atmo-
sphere or water significantly.

3) EPS is frequently recorded as silica 
(Westall & others, 2001, 2011; Noffke 
& others, 2013). In modern hot springs 
and also in peritidal sedimentary rocks 
formed in the silica-rich Archean oceans, 
rapidly precipitating silica produces an 
almost impermeable preservational time 
capsule, resilient even to low-grade meta-
morphism (Trewin, 1996; Kah & Knoll, 
1996; Manning-Berg & others, 2019; 
Hickman-Lewis, Westall, & Cavalazzi, 
2019; Hickman-Lewis & others, 2019; 
Hickman-Lewis & others, 2020). The 
embedding of silica in mat textures has been 

Eriksson, & others, 2006; Noffke & others, 
2013 ;  Heubeck  & others, 2016). The 
formation of clay coats in sandy estuarine 
and tidal environments can occur as a result 
of clay-EPS complexes developing along 
hydroxylated biofilm-clay interfaces or 
between biofilm proteins and the neutral 
siloxane surface in quartz sands (Duteil & 
others, 2020; Worden & others, 2020). 
Such precipitative clay mineral coatings 
can develop on microbial biomass surfaces 
within days as a result of metal ion binding 
(e.g. Fe, Al), which reduces the nucleation 
energy of aluminosilicates (Ferris, Fyfe, & 
Beveridge, 1987; Laflamme & others, 2011; 
Newman & others, 2016a, 2016b).

2) Cell walls may still include fragments 
of the original carbonaceous materials. The 
organic carbon remains provide opportunity 
for organic carbon isotope measurements and 
Raman and infra-red spectroscopic character-
ization. Anoxic conditions promote the in situ 
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demonstrated in modern hot spring micro-
bial mats and in lab experiments (Taher 
& Abdel-Motelib, 2015; Johannessen, 
McLoughlin, & Vullum, 2018). Silicifica-
tion may be microbially mediated within 
EPS even when silica concentrations within 
aqueous media are below supersaturation 
(Kah & Knoll, 1996; Manning-Berg & 
Kah, 2017; Moore & others, 2020). Calcite 
formation in EPS has also been studied in 
great detail in lab experiments and natural 
settings by Dupraz & others (2009) and 
Decho (2010).

In most if not all cases of exceptional 
preservation of microbial mat textures, lith-
ification must have occurred very quickly. In 
thin sections, fossil MISS may reveal upright 
tufts (filament bundles) preserved in situ 
(Kah & Knoll, 1996; Noffke, 2000; Cao, 
Yuan, & Xiao, 2001; Homann & others, 
2018; Hickman-Lewis & others, 2018; 
Hickman-Lewis, Westall, & Cavalazzi, 
2019; Hickman-Lewis & others, 2019).

Textures preserved in MISS are essential 
for determining biogenicity. The example of 
wrinkle structures is quite frequently debated 
with respect to their biogenicity. In order 
to distinguish microbially induced wrinkle 
structures from abiotic wrinkle structures, 
thin sections should be examined to reveal 
the presence or absence of fossil micro-
scopic textures. If a wrinkle structure-bearing 
specimen is too valuable to be destroyed by 
thin section analysis, X-ray micro Computed 
Tomography (X-ray CT) can be used to 
nondestructively resolve 3D morphologies 
using density contrasts between the different 
materials constituting the internal build-up 
of such structures (Fig. 16). The primary 
density contrast comes from the presence 
of laminated organic matter on top of and 
inside the rock bed. A number of views of a 
sample with tufts (Fig. 16) is quite revealing 
(Sheldon, 2012). Surface mapping (Fig. 
16.2) indicates consistent tuft-peak height, 
which is verified by the 2D- and 3D-segmen-
tation of internal organic-rich laminations 
(Fig. 16.3). Thus, it can be shown that the 
example consists of more than just a single 

Fig. 16. X-ray CT scans of a microbially induced 
sedimentary structure sample. 1, Kinneyia-like wrinkle 
structure on sandstone slab. 2, X-ray CT scan of top 
surface exhibiting Kinneyia structure; the correspond-
ing thickness map shows the morphology of the surface 
peaks. 3, 2D side-on views of the Kinneyia slab, where 
black microbial-like laminations are visible beneath 
the surface. Each lamination has been individually 
segmented to highlight the wavy morphology, which 
correlated with the peaked surface texture. All im-
ages collected with the Advanced Imaging of Materials 
(AIM) Facility at Swansea University, UK, and rendered 

using ORS Dragonfly software.

microbial mat on the bedding plane surface 
but rather a series of microbial mats. Each 
microbial mat may exhibit tufts or evidence 
of deformation by loading pressure. 

CLASSIFICATION OF MISS 
AND MIST

Conforming to the nomenclature of 
stromatolites, thrombolites, dendrolites, 
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and leiolites, the overall group of microbially 
induced sedimentary structures (MISS)
constitute the fifth group of microbialites 
(Riding, 2011; Noffke & Awramik, 2013; 
Gr e y  & Aw r a m i k,  2020) .  The main 
characteristics of MISS that differ from 
other microbialites are: 1) structure-forming 
biofilms or microbial mats occur on top 
or within clastic deposits; 2) only minor 
to negligible mineral precipitation may 
occur and is predominantly caused by the 
biological degradation of organic matter 
of deceased primary producers and EPS; 
and 3) as a consequence, the structures are 
predominantly planar and have, in contrast 
to most of the other microbialites, low 
morphological relief.

MISS are divided into five classes, each 
of which includes individual structures 
(Fig. 17, see p. 20–21). These classes are 
named according to the dominant micro-
bial activity that governs the formation of 
the structures within the respective class: 
class 1, structures caused by growth; class 2, 
structures caused by biostabilization; class 
3, structures caused by baffling and trap-
ping; class 4, structures caused by binding 
(formerly, Noffke & others, 2001, ascribed 
this class to imprinting); and class 5, struc-
tures caused by the interference of all above-
mentioned microbial activities (Fig. 17, in 
center dashed-line diamond). Each structure 
within each class is named according to its 
morphological appearance. This enables the 
surveying geologist to identify a structure 
even without any knowledge or prejudgment 
of its genesis. To date, 18 main MISS struc-
tures have been distinguished and no transi-
tions seem to exist between them (Noffke & 
others, 1996, 2001; Noffke, 2010).

MISS include, in thin-section view, a 
wealth of microscopic microbially induced 
sedimentary textures (MIST) that witness 
the former presence of the MISS-producing 
biofilms or microbial mats (Fig. 17). Textures 
are divided into five classes according to their 
genesis: class 1, textures caused by microbial-
physical interaction; class 2, textures caused 
by entombment of carbon; class 3, textures 

caused by mineralization of organic matter; 
class 4, textures caused by microbial-chem-
ical interaction; and class 5, textures that 
rise from the combination of all the four 
processes. Following the classification of 
MISS, each MIST within each class is named 
according to its morphological appearance 
and pattern of chemical signals. Eleven 
MIST textures are suggested herein (Fig. 
17), but future discussions and contributions 
will certainly add to this catalogue.

Schieber (2004) suggested different 
groups of mat structures, each categorized 
according to a leading process: 1) mat 
growth (comprising binding, baffling and 
trapping); 2) metabolism (encompassing 
mineral precipitation); 3) physical destruc-
tion (encompassing dehydration, erosion 
and transport); and 4) mat decay (gas devel-
opment) and diagenesis (organic matter 
destruction and mineral precipitation). 
However, processes that the specific groups 
cannot be clearly distinguished from each 
other. For example, (2) metabolism encom-
passing mineralization overlaps with diagen-
esis and mineral formation, listed under (4). 

Following the broad definition proposed 
by Burne and Moore (1987, p. 241–242) 
that microbialites are “organosedimentary 
deposits that have accreted as a result of a 
benthic microbial community trapping and 
binding detrital sediment and/or forming 
the locus of mineral precipitation,” Riding 
(2011) and Grey and Awramik (2020) clas-
sified MISS in the broad category of micro-
bialites. Overall, MISS constitute the fifth 
category of microbialites—bedding modified 
by microbial mats and biofilms—in Petti-
john and Potter’s (1964) classification of 
primary sedimentary structures (Noffke & 
others, 2001).

MISS IN THE COURSE OF 
EARTH HISTORY

Microbially induced sedimentary struc-
tures (MISS) and microbially induced sedi-
mentary textures (MIST) are known in 
clastic rocks of all Earth ages. Specimen occur 
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in one of the oldest non-metamorphosed 
sedimentary rock successions, the 3.48 Ga 
old Dresser Formation in Western Australia 
(Buick & Dunlop, 1990; Noffke & others, 
2013). Marine stratigraphic successions with 
Archean MISS once formed by photoauto-
trophic mats include the 2.9 Ga old Pongola 
Supergroup and the Witwatersrand Super-
group (Beukes & Lowe, 1989; Noffke, 
Beukes, & others, 2006; Noffke, Eriksson 
& others, 2006; 2008; Tice, 2009). Fossil 
microbial mats and biofilms are also wide-
spread in carbonaceous cherts and sandstones 
of the Paleoarchean Barberton Greenstone 
Belt in South Africa (see Hickman-Lewis 
& others, 2018 and Homann, 2019 for a 
review). There, they occur in the 3.472 Ga 
Middle Marker horizon (Hickman-Lewis 
& others, 2018); the 3.45 Ga Hooggenoeg 
Formation cherts (Walsh, 1992; Hickman-
Lewis & others, 2020); the 3.416 Ga Buck 
Reef Chert (Walsh & Lowe, 1999; Tice 
& Lowe, 2004, 2006; Tice, 2009; Tice & 
others, 2011; Greco & others, 2018); the 
3.334 Ga Footbridge Chert (Hickman-Lewis 
& others, 2020); the 3.33 Ga Josefsdal Chert 
(Westall & others, 2001, 2006, 2011, 
2015); the 3.26 Ga Mendon Formation 
(Byerly, Lower, & Walsh, 1986; Trower & 
Lowe, 2016); and sandstones of the 3.22 Ga 
Moodies Group (Noffke & others, 2006a; 
Heubeck, 2009, Homann & others, 2015, 
2016, 2018). In these deposits, wavy-crinkly 
laminations have been interpreted as fossil 
microbial mats based on their laminated 
structure, sediment trapping and cohe-
sive behavior, carbonaceous and carbon 
isotopic composition, and the occurrence 
of eroded and in places rolled-up mat frag-
ments. Wrinkle structures occur but are 
quite rare. Most fossil mats occur either in 
carbonaceous banded cherts or interbedded 
with volcaniclastic sand- and siltstones and 
quartz-rich sandstones. The nearly in situ 
preservation of the delicate carbonaceous 
mat laminae in the Barberton Greenstone 
Belt show textures such as mat-laminae-
bound small grains and oriented grains. 
Phototactic behavior may be recorded by 

an increase of mat thickness toward crests 
in undulating laminae (Tice & Lowe, 2004; 
Noffke, Gerdes, & Klenke 2003; Homann 
& others, 2015; Hickman-Lewis & others, 
2016, 2018). 

Trace and rare earth element data from 
mat-bearing horizons in cherts up to 3.47 
Ga also show strong influences from conti-
nental weathering in the form of light rare 
earth element enrichment, chondritic to 
sub-chondritic Y/Ho ratios and negligible La 
and Y anomalies, and it is therefore evident 
that microbial life inhabited semi-restricted 
epicontinental basins by this time ~1.09 Ga 
Mesoproterozoic Copper Harbor Conglom-
erate (Elmore, 1983; Fedorchuk, 2014). 
Sheldon (2012) reported 1.1 Ga terrestrial 
MISS from low-energy fluvial floodplain 
paleoenvironments preserved in siliciclastic 
deposits from North America.

Late Neoproterozoic seafloors were widely 
overgrown by significant microbial mats 
(Schieber, 1986; Awramik, 1991; Hagadorn 
& Bottjer, 1997; Hagadorn, Pflüger, 
& Bottjer, 1999; Bottjer, Hagador, & 
Dornbos, 2000). Neoproterozoic textured 
organic surfaces (TOS) record relationships 
between the Ediacara biota, the earliest 
macroscopic, multicellular organisms, and 
contemporaneous microbial mats (Gehling 
& Droser, 2009; Callow & Brasier, 2009; 
Laflamme & others, 2011; Darroch & 
others, 2012; Tarhan, Droser, & Gehling, 
2015; Dunn, Liu, & Donogue, 2018). 
The extraordinary preservation of this soft-
bodied biota suggests the extensive presence 
of microbial mats during this period of time 
(e.g., Hagadorn & Bottjer, 1999; Gehling, 
1999; Seilacher, 1999; Liu & others, 2011; 
Tarhan, Droser, & Gehling, 2015; Menon 
& others, 2016; Liu & Dunn, 2020). Terres-
trial MISS arising from microbes inter-
acting with aeolian processes are known from 
the Neoproterozoic Venkatpur Sandstone 
(Basilici & others, 2020).

Phanerozoic occurrences are known from 
the Cambrian (Buatois & Mángano, 2003; 
Seilacher, Buatois, & Mangano, 2005; 
Mata & Bottjer, 2013; Buatois & others, 
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2014; Liu & Zhang, 2017; Bayet-Goll & 
Daraei, 2020); the Ordovician (Gerdes, 
Klenke, & Noffke, 2000; Noffke, 2000; 
Buatois & others, 2009; Hints & others, 
2014; the Silurian (Hillier & Morrissey, 
2010; Calner & Eriksson, 2012); the Devo-
nian (Draganits & Noffke, 2004; Gail-
lard & Racheboeuf, 2006); the Carbonif-
erous (Mángano & others, 2002; Buatois 
& others, 2013; Callefo & others, 2019); 
the Permian (Webb & Spence, 2008); the 
Triassic (Pruss, Fraiser, & Bottjer, 2004; 
Pruss, Corsetti, & Bottjer, 2005; Pruss 
& others, 2006; Mata & Bottjer, 2009; 
Feng & others, 2019; Wignall & others, 
2020); the Jurassic (Porada, Ghergut, & 
Bouougri, 2008; Peterffy, Calner, & Vajda 
2016); the Cretaceous (Gerdes, Krumbein, & 
Noffke, 2000; Schieber 2007a; Fernández 
& Pazos, 2014; Noffke, Hagadorn, & 

Bartlett, 2019); the Neogene (Carmona & 
others, 2012); and the Quaternary (Kilias & 
others, 2020).
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