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A B S T R A C T   

Sustainable management of native species is essential in regions where forest is continually decreasing, such as 
South America. A first step for sustainable management is to develop models of productivity and site quality, 
which are usually related to the height of dominant trees. The aim of this study was to model the height (h) of 
dominant trees of southern South American conifer Austrocedrus chilensis based on climate, topography and soil 
predictors, and tree age using a mixed-effect modeling approach under a multi-model inference framework. Tree 
data (h and age) were collected in 43 plots placed throughout the natural distribution range of A. chilensis in 
northern Patagonia (Argentina). Soil characterization was carried out in 32 out of 43 plots. Our results indicate 
that dominant trees are taller in cooler and wetter sites with more soil carbon and lower soil acidity. The model 
predicted h with ≈3 m (19 %) error and explained about 85 % of variability in h (conditional R2 

= 0.84). When 
considering only climate variables, the explained variance was reduced by 7 % although the loss of predictive 
capability was not substantial (3.1 m prediction error). This study provides the first regional statistical model 
predicting productivity indicators in A. chilensis. With this model, site quality can be classified just using a few 
climatic variables available from satellite-based geospatial information and then improved by including edaphic 
information (soil carbon, pH). The model could have usefulness beyond forestry, for example to foresee climate 
change effects on ecosystem services associated to forest productivity.   

1. Introduction 

Forests play a key role in mitigating climate change and providing 
ecosystem services for human well-being (FAO and UNEP, 2020). Forest 
capacity to continue providing ecosystem services depends on sustain
able management practices –both under current and forecasted climate 
scenarios. Traditionally, however, landowners prioritize timber pro
duction over other forest services such as carbon sequestration, water 
provision and biodiversity conservation. Given the exponential increase 
in human population, thus increasing demand on goods and services 
from forests, the paradigm of sustainable forestry is getting remarkable 
attention for forest policy and management (O’Hara, 2016). Sustainable 
forest of native species may offer an appealing productive alternative 

(Donoso and Soto, 2010; Promis, 2020) and congruent with the con
servation of ecosystem services, the restriction in the use of exotic spe
cies, and the production of high-quality timber (Pro Silva, 2012). 
However, its adoption by landowners and government agencies is pre
vented when the base knowledge to support the management of native 
species is not available (Davis et al., 2012). 

Knowledge of inherent site productivity is essential for developing 
sustainable forestry (Bontemps and Bouriaud, 2014). Productivity de
pends on complex biotic, climatic, topographic, and edaphic in
teractions, which are summarized in the concept of ‘site’ (Skovsgaard 
and Vanclay, 2013). The quality of a site is species-specific (each species 
has an optimal environment) and defines its potential for plant biomass 
production (Assmann, 1970); when environmental conditions are more 

* Corresponding author. 
E-mail address: foddi@unrn.edu.are (F.J. Oddi).  

Contents lists available at ScienceDirect 

Forest Ecology and Management 

journal homepage: www.elsevier.com/locate/foreco 

https://doi.org/10.1016/j.foreco.2022.120525 
Received 26 May 2022; Received in revised form 30 August 2022; Accepted 5 September 2022   

mailto:foddi@unrn.edu.are
www.sciencedirect.com/science/journal/03781127
https://www.elsevier.com/locate/foreco
https://doi.org/10.1016/j.foreco.2022.120525
https://doi.org/10.1016/j.foreco.2022.120525
https://doi.org/10.1016/j.foreco.2022.120525
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2022.120525&domain=pdf


Forest Ecology and Management 524 (2022) 120525

2

favorable for a given species, that is, when site quality improves, pro
ductivity increases –according to Skovsgaard and Vanclay (2008) site 
productivity is a quantitative estimate of site quality. Classifying and 
mapping sites according to their quality (that is, categorizing site pro
ductivity in quality levels) contributes to developing forest policy stra
tegies at regional and national scales (Bontemps and Bouriaud, 2014). 

Forest productivity is often difficult to define and measure, thus 
proxies are usually used (Burkart and Tomé, 2012). Sites are frequently 

classified by top height at a reference age (referred as base age), which is 
a widely used site quality index. This index is based on the idea that 
forest productivity correlates with the height of dominant trees (top 
height) (Skovsgaard and Vanclay, 2008). However, in sites where the 
species to be afforested is not present, environmental variables 
–including climate, topography and soil properties– must be used 
(Weiskittel et al., 2011). Modeling vegetation-based indicators of site 
productivity (e.g., top height) according to site physical characteristics 

Fig. 1. Study area and sampling plots. Dots show sampling plots. Brown and yellow filling indicate plots where climate-topography or climate-topography and soil 
variables were measured, respectively. Top left inserted map shows the natural distribution of Austrocedrus chilensis (Argentina). 
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allow assessing quality of sites for forestry development (Aertsen et al., 
2010). 

Austrocedrus chilensis (D.Don) Pic. Serm. et Bizzarri is a tree species 
native to northern Andean Patagonia with high economical value (Goya 
et al., 2004). Its wood is weather-resistant and one of the most traded in 
the region (Letourneau et al., 2005); traded-wood typically comes from 
dead trees that suffered from “mal del ciprés”, a Phytophthora-caused 
disease (Loguercio et al., 2005). A. chilensis forests also provide several 
non-timber resources (Ladio, 2005). Despite the economic value of this 
species (Goldenberg et al., 2018), its management is still incipient 
(Loguercio et al., 2018). Usually forestry is combined with livestock 
raising, which harms both natural recruitment of saplings and wood 
quality (Loguercio et al., 2005). In healthy stands, simple management 
schemes based on site quality are suggested for promoting tree growth 
and improving bole characteristics (Loguercio et al., 2018). Regarding 
environmental conditions affecting productivity, previous studies have 
described that the growth of A. chilensis shows a regional pattern 
increasing with precipitation, and that it also responds favourably to 
wetter local conditions (Dezzotti and Sancholuz, 1991 Veblen et al., 
2005). Locally, other studies (Marcotti et al., 2021; Mundo et al., 2010) 
have found that A. chilensis growth is strongly affected by water deficit, 
mediated by temperature and soil water content. Although water 
availability has been established as one of the main drivers of A. chilensis 
growth, site productivity models have yet to be developed for this spe
cies. The lack of productivity models become ever more relevant when 
considering that the current Argentinian regulatory framework pro
motes native species plantations thus commercial plantations of 
A. chilensis are expected to be established in the near future (Aparicio 
and Pastorino, 2020), even outside its natural range (Oddi et al., 2021). 

The aim of our study was to model the height of A. chilensis dominant 
trees from climate, topography and soil properties in northern Patago
nia. Considering that A. chilensis stand height is an indicator of its site 
quality (Dezzotti and Sancholuz, 1991), we expect that (once dis
counting the effect of age) top height to increase as environmental 
conditions favor soil moisture availability. From an applied perspective, 
we expect that our modeling approach of site productivity of A. chilensis 
will contribute with regional classification of site quality, serving as a 
tool for forest planning. 

2. Materials and methods 

2.1. The species 

The species Austrocedrus chilensis (known as ‘ciprés de la cordillera’ 
or ‘Chilean cedar’) is a long-lived (can live more than 500 years) slow- 
growing perennial conifer (Cupressaceae) native to Argentina and 
Chile (Aparicio and Pastorino, 2020). Although it grows on both sides of 
the southern Andes, ~75 percent of their natural distribution occurs on 
the eastern side, in Argentina (Serra et al., 2015). There, the latitudinal 
range of the distribution of A. chilensis extends from 37◦07′S to 43◦44′S 
covering about 260.000 ha (Pastorino et al., 2006; Pastorino et al. 
2015). Longitudinally, it occupies a narrow strip of 60–80 km width. 
This species thrives under a wide range of environments and individuals 
are highly variable in shape and size (Veblen et al., 2005): conical- 
shaped taller than 35 m trees are observed under wetter conditions 
(Aparicio and Pastorino, 2020) while multi-stemmed 3 m tall in
dividuals are frequent towards dry conditions (Castor et al., 1996 and 
references therein). The eastern marginal populations are the most 
genetically diverse although genetic variability has a rather latitudinal 
spatial arrangement (Pastorino et al. 2015). The origin, dynamics and 
age structures of A. chilensis stands are related to disturbances (mainly 
fire) and vary with site conditions (Dezzotti and Sancholuz, 1991; Serra 
et al., 2015; Veblen et al., 2005, 1995; Veblen and Lorenz, 1987; Villalba 
and Veblen, 1997). 

2.2. Study area 

The region of northern Patagonia includes the Argentine provinces of 
Neuquén, Río Negro, and Chubut (Fig. 1). Geomorphologic processes 
formed the southern Andes and shaped environmentally heterogeneous 
landscapes (Matteucci, 2012). Westerlies carry humid air masses from 
the Pacific Ocean that are lifted and cooled as they cross the north
–south-oriented Andes Mountains, generating cyclonic precipitations 
(Paruelo et al., 1998). Most precipitation falls on the western slopes of 
the Andes in Chile and, eastward, precipitation decreases from more 
than 2000 mm yr− 1 to less than 500 mm yr− 1 in ~ 100 km (Bianchi 
et al., 2016). Forest types change according to this steep west-to-east 
precipitation gradient, topography and edaphic characteristics (Dez
zotti and Sancholuz, 1991; La Manna, 2005; Veblen and Lorenz, 1987). 
Through the gradient, mixed forests, pure and dense forests, pure and 
sparse forests, and marginal woodlands are observed (Dezzotti and 
Sancholuz, 1991; Serra et al., 2015). Rainfalls occur concentrated in the 
winter months (Paruelo et al., 1998) and combined with dry summers 
result in a Mediterranean type-climate (Kottek et al., 2006). The Andisol 
soil order dominates the soils on the wetter portion of the gradient, 
whereas Mollisols and Alfisols characterize the soils eastward (Mazzar
ino et al., 1998). 

2.3. Data collection 

A stratified sampling was applied on the Argentine side of the 
A. chilensis distribution and 46 plots were selected (Fig. 1). To encom
pass the widest possible range of environmental conditions, the strati
fication was based on maps of annual precipitation (Cordon et al., 1993) 
and vegetation (Gowda et al., 2010), which were superimposed on a 
digital elevation model (ASTER GDEM Validation Team, 2011). The 
selected plots (Fig. 1) covered from Lake Filo Hua Hum (40◦30′7.02′′S, 
71◦17′5.94′′W, Neuquén) at north to Lago Puelo (42◦ 6′1.26′′S, 
71◦36′22.02′′W, Chubut) at south, mostly covering the western edge of 
Patagonia region (Argentina), where pure and mixed cypress forests 
occur. In Argentina, most of A. chilensis forests are not managed, elim
inating a potential confounding factor for site productivity evaluation 
(Skovsgaard and Vanclay, 2008). 

In the spring of 2012, circular plots were defined in the field 
recording with GPS the geographical coordinates of its centre. Stands 
dominated by A. chilensis with uniform spatial distribution and 
approximately uniform diameter were selected. Plots included at least 
10 adult individuals (variable-radius plots) and were placed in sites 
where trees were free of suppression/liberation signals (for instance, 
evidence of fire —charred bark, scar at tree base etc.—, windthrow 
—tree fall—, or pest). In each plot, diameter at breast height of all trees 
of diameter > 8 cm (DBH) was measured with a dendrometric tape. 
Trees were counted and A. chilensis density was determined. The height 
of the three largest DBH individuals (assumed as dominant trees) was 
measured (Häglof HEC-MD electronic clinometer) and their wood cores 
extracted at 0.4 m height for age determination by counting the rings. 
The sampled cores (138 = 46 plots × 3 dominant trees per plot) were 
prepared in holders, which allowed their surfaces to be cut and the 
broken cores to be assembled. When core centres were not reached 
(seven samples), age was estimated as proposed by Duncan (1989); the 
number of missing rings was calculated as the missing radius divided by 
the average width of the last three rings. This formula is not valid for 
rings with irregular shapes so that visual estimation was used when 
necessary. Finally, age was estimated for 93 out of 138 cores as 45 of 
these could not be properly prepared for reading and were discarded 
from analysis (three plots were not considered because all their tree 
cores were discarded). 

2.4. Climatic, topography and soil variables 

The climatic variables assessed were average annual precipitation 
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and average summer temperature. Average annual precipitation 
(thereafter annual precipitation) data were obtained from interpolating 
the isohyets published in (Cordon et al., 1993) with the IDRISI software 
(interpolation module contour –INTERCONN; Eastman, 2009). We 
extracted average monthly data (March 2000 - September 2012), in ◦C, 
from “Land surface temperature and emissivity MOD11A2′′ (ORNL 
DAAC, 2011). This MODIS product provided temperature data with an 
approximate frequency of two-data every 8 days for a 1-km2 area. 
Average summer temperature (thereafter summer temperature) was 
calculated as the average 2000–2012 of the average (Dec - Feb) months. 
By using MODIS series (contemporary data), it is assumed that the 
spatial trends of temperature have not changed since stand establish
ment (i.e., the warmest/coolest sites today were also the warmest/ 
coolest sites hundred years ago). 

Topography was characterized according to slope (%), elevation (m. 
a.s.l.) and aspect. Slope was measured in the field by using an electronic 
inclinometer (Häglof HEC-MD), whereas elevation and aspect were 
derived from the earth’s surface “ASTER Global Digital Elevation 
Model” (ASTER GDEM validation team 2011). Aspect was expressed on 
a 360◦ scale (north = 0◦, south = 180◦, east = 90◦, west = 270◦) and 
cosine-transformed into northing, a linear variable expressed in radians 
where 1 indicates north, − 1 indicates south, and 0 is equal to east and 
west. 

Composite soil samples (n = 3) were taken at 0–20 cm depth in 32 
out of the 43 sampling plots with available cores. Samples were 
randomly selected within plots avoiding points near the border and 
thick roots in order to represent the average conditions of the soil among 
A. chilensis trees. The soil samples were air dried and sieved (2 mm). The 
percentage of soil organic matter (SOM) and their main fractions: par
ticulate and mineral associated organic matter (POM and MAOM, 
respectively) were determined by sieving (53 μm) (Cambardella and 
Elliott, 1992) and ignition (550 ◦C for 5 h) (Mirsky et al., 2008). Briefly, 
25 g of soil were stirred for 30 min in a dispersant solution of 5 % sodium 
hexametaphosphate [5 g L (NaPO3) 6], and then passed through a 53 µm 
sieve. The material that remained on the sieve was used to determine the 
POM and that which passed through the sieve, the MAOM. Both frac
tions were collected in beakers and placed in an oven at 50 ◦C, until the 
moisture content was eliminated. The resulting dry material was then 
collected and placed in a muffle at 550 ◦C for 8 h. The POM and MAOM 
was obtained by subtracting the weight of the sample after and before 
ignition. SOM was calculated as POM plus MAOM and the corresponding 

percentages were calculated as those fractions divided by sample dry 
weight × 100. In addition, soil samples material was used to determine 
the pH (1:2.5 in water), electrical conductivity [c.e. (dSm− 1) saturated 
paste], nitrogen content (N, Kjeldahl) (Bremner, 1960), phosphorus 
content (P, Olsen) and the granulometric composition. The granulo
metric composition of the soil samples was determined using the Rob
inson pipette method (Pansu and Gautheyrou, 2006). 

2.5. Data analysis 

2.5.1. Data handling and modeling approach 
Individual relationships between top height and the remaining 

sampled variables were explored graphically, and the Spearman corre
lation (sp) was estimated (Table 1). The use of top height as an indicator 
of productivity assumes that (top height) is not affected by stand density 
(Skovsgaard and Vanclay, 2008). No graphical association was observed 
between height and density (expressed either in absolute terms –trees 
per hectare– or as a Reineke index) and this conclusion was supported by 
the Spearman correlation, which was near to zero (ŝp = 0.01; Table 1). 
Environmental predictors were centered at the mean to reduce collin
earity, which was evaluated by calculating pairwise Pearson correla
tions (Table A1) and the variance inflation factor (VIF). In the case of the 
age, for more generality it was centered at 90 years (sampling mean =
93.8 years). This age is close to the cutting cycle of the species suggested 
in the literature (Aparicio and Pastorino, 2020; Goya et al., 2004). Top 
height was modeled by fitting a linear mixed-effects model with climate, 
topographic and soil predictors, plus age, which accounted for the lack 
of independence imposed by the hierarchical sampling design, i.e., trees 
nested within plots, plots nested within localities. To deal with the 
inherently nonlinear relationship between age and height, age was base 
2 log-transformed; log transformation over x accounts for a decreasing- 
with-age growth rate and base 2 simplifies the meaning of the parameter 
(top height increment when doubling age). To avoid negative numbers 
(as a result of centering age at 90) that prevent using logarithms, the 
variable finally included in the model was log2(age) – log2(90). 

2.5.2. Multi-model inference 
The initial fixed components of the model [Eq. (A.1) Appendices] 

were: age (at the tree-level), annual precipitation (Pp), summer temperature 
(Ts), elevation (elev), slope, northing (expN), MAOM fraction (maom), 
POM:MAOM ratio (pmr), soil nitrogen content (N), soil phosphorus content 

Table 1 
Sampling variables recorded at different levels, type of indicator that they represent, and punctual estimate (s) and 95% confidence interval (CI) of the Spearman’s 
correlation coefficient of height to all the quantitative variables.  

Variable Level Variable Unit Sampling summary statistics Spearman correlation 

Mean Min. Max. Std. deviation Coef. Var. sp 95 % CI 

stand structure tree height (response) meter 17.6 8.0 36.2  5.4  0.31  – – 
age year 93.8 44 246  50.4  0.54  0.60 0.44; 0.72 

plot A. chilensis density tree ha− 1 1887 97 5305  1313.6  0.70  0.01 − 0.20; 0.22 
soil plot soil organic matter (SOM) % 17.3 3.7 36.2  7.0  0.40  0.26 0.02; 0.49 

particulate organic matter (POM) % 9.9 1.0 30.9  5.4  0.54  0.07 − 0.17; 0.31 
Mineral-associated organic matter (MAOM) % 12.4 2.2 26.4  5.2  0.42  0.26 0.02; 0.44 
POM:MAOM ratio  2.25 0.18 9.6  1.5  0.67  0.16 − 0.08; 0.39 
phosphorus content p.p.m. 10.8 3.0 29.6  5.7  0.53  0.30 0.06; 0.51 
nitrogen content % 0.3 0.1 0.7  0.1  0.33  0.21 − 0.04; 0.42 
electrical conductivity dS m− 1 0.16 0.03 0.44  0.08  0.50  0.41 0.17; 0.62 
pH  6.2 5.3 7.2  0.45  0.07  0.08 − 0.12; 0.26 
pH NaF  8.7 7.2 10.6  1.2  0.14  − 0.03 − 0.24; 0.19 
sand content % 63.2 37.5 83.9  11.1  0.18  − 0.28 − 0.48; − 0.07 
silt content % 20.7 1.5 46.7  12.1  0.58  0.10 − 0.14; 0.33 
clay content % 14.9 19.2 45.3  10.9  0.73  0.26 0.03; 0.44 

topography plot elevation m.a.s.l. 792.3 212.0 991.0  197.9  0.25  − 0.30 − 0.48; − 0.10 
slope % 12.4 2.0 39.0  9.5  0.77  − 0.25 − 0.45; − 0.02 
northing – 0.59 0 1  0.29  0.49  − 0.28 − 0.47; − 0.06 
easting – 0.44 0 1  0.28  0.64  − 0.15 − 0.34; 0.07 

climate plot annual precipitation mm yr.-1 1455 500 2333  378.9  0.26  0.13 − 0.08; 0.33 
average summer temperature ◦C 14.0 12.3 18.6  1.2  0.08  − 0.31 − 0.49; − 0.12  
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(P), sand content (sand), pH, and electrical conductivity (ec), all as pre
dictors at the plot-level (Table 1). Selected two-way interactions based 
on ecological relevance were also included (Pp:Ts, Pp:expN, Ts:maom, Pp: 
maom, Pp:sand). The model was fitted by restricted maximum likelihood 
and included random effects for the intercept at the plot level (the fit was 
not improved by including random effects at the locality level). We 
performed a graphical inspection of the models to evaluate their ade
quacy by plotting: i) standardized residuals against fitted values and the 
predictive variables, ii) a quantile–quantile distribution of standardized 
residuals and, iii) a variogram of standardized residuals on latitude and 
longitude to evaluate spatial correlation (Zuur et al., 2009). 

Fixed effects were evaluated by multi-model inference of the com
plete model re-estimated by maximum likelihood. All the possible 
combinations of fixed effects were fitted (in total 35,072 models 
including the null model, i.e., the model with the same random structure 
but no fixed effects) using 32 plots and 69 trees. The analysis was per
formed with the ‘Akaike Information Criterion’ with correction for small 
sample sizes (AICc) as a parsimony indicator (Burnham et al., 2011). For 
each model (m), the difference in AICc (Δm) with respect to the AICc of 
the best-ranked model (i.e., that with minimum AICc) was computed as 
well as its ‘Akaike weights’ (wm), that is, its relative likelihood 
normalized over that of all models of the set. Those models with Δm < 2 
were considered to have similar evidence support and were ranked as 
the set of the best models. The relative importance (ri) of each fixed- 
effect predictor (p) was evaluated by summing wm over all models. 
Predictors with ri > 0.6 were considered as importantly related to 
A. chilensis top height (Cinar et al., 2021). 

2.5.3. Goodness-of-fit and predictive capability 
Both the marginal and conditional R2 [sensu Nakagawa and Schiel

zeth (2013)] were used as goodness-of-fit metrics (how well the models 
fit to data). These marginal and conditional R2 represent the proportion 
of variance explained by the fixed effects, and by the fixed and random 
effects combined (i.e., the entire model), respectively (Nakagawa and 
Schielzeth, 2013). To evaluate the predictive capability (how well the 
models predict new data), cross-validation procedures were applied 
(Yang and Huang, 2014). The dataset used to fit the models (32 plots, 69 
trees) was partitioned according to plots into five disjoint subsets (≈20 
% of the data per subset). The models were repeatedly trained on four 
subsets and prediction metrics in the remaining subset were obtained, in 
such a way that each subset was used as a test set once (K-fold cross- 
validation). Then, each metric was averaged over the five iterations. 
The metrics used to quantify the predictive capability were the mean 
absolute error [mae; Eq. (A.2) Appendices] and the mean absolute 
percent error [mape; Eq. (A.2) Appendices] (Yang and Huang, 2014). 

Regional maps of site quality require predictive models of produc
tivity based on spatial layers at that scale, and climate/topography in
formation is available from remotely sensed data. Although remarkable 
progress in mapping edaphic characteristics at global scale has been 
made recently (Hengl et al., 2017; Poggio et al., 2021), they entail time- 
consuming field and lab procedures that require high-level technical 
expertise. Therefore, it would be particularly useful to evaluate models 
that include only climate and/or topographic variables. Hence, the 
performance of the models that included only climate and/or topo
graphic variables was compared with that of the best-ranked model. In 
addition, those plots where soil variables were not collected (11 plots, 
24 trees) were used as an independent validation dataset to test the 
predictive capability (mae and mape) of the best climate/topography 
models. Finally, a climate/topography model was selected to predict the 
height of dominant trees over the region at an age base of 90 years. 

All the analyses were performed with R 4.0.3 (R Core Team, 2020). 
The lme() function of the nlme package (Pinheiro et al., 2020) was used 
to fit the models. The dredge(), subset.model.selection() and importance 
() functions of the MuMin package (Barton, 2020) were used in the 
multi-model analysis. The fold() function of the groupdata2 package 
(Olsen, 2021) and the cross_validate() function of the cvms package Ta
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(Olsen and Zachariae, 2021) were used for cross-validation procedures. 
Maps were created using QGIS version 3.10 (QGIS Development Team 
2019). 

3. Results 

3.1. Model fitting and multi-model inference 

The height of dominant trees of A. chilensis ranged from 8 m to 36 m, 
and the age from 44 to 246 years (Table 1). This variability was mainly 
explained by the age (ri = 1) of the individual trees followed by summer 
temperature (ri = 0.71), annual precipitation (ri = 0.64), and soil MAOM 
content (ri = 0.64) (Table 2). The best-ranked model (Table 3) predicted 
a top height of ≈17 m for A. chilensis trees of 90 years old (Fig. 2a) under 
average environmental conditions, and an increase by 4.6 m per one- 
unit increase in log2 age (i.e., doubling age) in the sampled range from 
40 to 250 years old. According to this model, top height decreased with 
summer temperature at a rate of 1.3 m per ◦C and increased 25 cm each 
percent increment in MAOM. Annual precipitation, the second most 
important environmental predictor, was not selected in the best-ranked 
model but was included in many of the best models (i.e., those with Δm 
< 2; Table 2) and in all cases, the estimate was positive. Interestingly, 
more than half of these models also included a negative interaction 
between annual precipitation and soil sand concentration, suggesting that 
the positive relation of annual precipitation and top height decreased as 
the sand content increased. Soil pH also was included in the best-ranked 
model, as well as in the most of the best models (all of them indicating a 
positive relationship), although their relative importance was lower 
than 0.6 (Table 2). Our modeling approach, applied to the available 
data, suggests that the remaining environmental predictors were not 
importantly related with A. chilensis top height (Table 2). 

When analysing models only with climate and/or topography (plus 
age) predictors, the best-ranked model only included summer tempera
ture. The AICc of this model differed in less than 2.5 units with respect to 
that of the general best-ranked model (Table 2). The AICc of the 

conceptually relevant model including summer temperature interacting 
with annual precipitation increased ≈1 with respect to that of the pre
vious model (Table 2), suggesting they have similar fit. This model 
improves the likelihood respect to that with only summer temperature 
(-175.5 vs − 177.4), at the cost of greater complexity (5 fixed parameters 
vs 3 fixed parameters). These models ranked 24th and 76th, respec
tively, and largely reduced the AICc compared to that of the null model 
(Table 2). 

3.2. Goodness-of-fit and predictive capability 

Although there were differences between models with and without 
soil predictors in terms of variance explained, the predictive capacity did 
not substantially decrease when only climatic and/or topographic var
iables (plus age) were considered. The fixed factors of the best-ranked 
model explained 58 % of the total variability of A. chilensis top height, 
reaching 84 % when random effects were considered (marginal and 
conditional R2, respectively; Table 4). On average, in this model the 
difference between the predicted and observed (mae) for the height of 
dominant trees was 3.07 m, or 18.8 % if the difference is expressed in 

Table 3 
Estimated parameters (CI 95% in square brackets) for the best-ranked 
model (Table 2). Predictors include units and they are termed as in Eq. 
(A.1) Appendices. The estimated value for σplot is 2.78 and for σ is 2.12.  

Predictor Estimate [CI 95 %] 

intercept (m) 17.642 [16.496, 18.788] 
age (yr.) 4.586 [2.943, 6.230] 
summer temperature (◦C) − 1.303 [-2.099, − 0.506] 
maom (%) 0.254 [0.027, 0.480] 
pH 2.274 [-0.413, 4.961]  

Fig. 2. A. chilensis top height predicted from the best-ranked model (Table 2). Top height predictions generated varying a) age, b) summer temperature, c) MAOM 
fraction, and holding the remaining predictors at the mean (dotted lines in the left-side plot highlight top height predicted at age 90). 

Table 4 
Performance (goodness-of-fit and predictive capability) of the best-ranked 
model (overall fit) and that of best models only including climate and/or 
topography predictors (proposed for top height mapping; the two best-ranked 
climate/topography models ranked 24th and 76th overall, Table 2). Metrics of 
predictive capability (mae: mean error absolute; mape: mean absolute percent 
error) were assessed on the dataset used in the fit (K-fold cross-validation; n =
69) and an independent validation dataset in the case of climate/topography 
models was also used (n = 24). All models include age as a predictor (Ts: summer 
temperature; maom: MAOM fraction; pH = soil pH; Pp: annual precipitation).   

Overall 
(soil þ climate 
þ topography) 

Mapping 
(climate þ
topography) 

1st-ranked 24th- 
ranked 

76th- 
ranked 

Goodness-of-fit fixed 
component 

Ts + maom + pH Ts Ts × Pp 

R2 marginal 0.581 0.458 0.514 
R2 

conditional 
0.839 0.832 0.833 

predictive capability 
K-fold cross- 
validation 

mae (m) 3.07 3.18 3.12 
mape (%) 18.8 20.1 18.9 

predictive capability 
independent 
validation dataset 

mae (m) – 3.86 3.43 
mape (%) – 22.5 20.1  
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relative terms (mape). 
The marginal and conditional R2 of the best-ranked climate/topog

raphy model, i.e., the model with only summer temperature as environ
mental predictor, were 46 % and 83 %, respectively (Table 4). When 
including summer temperature interacting with annual precipitation, these 
R2 were 51 % and 83 %, respectively (Table 4). This model predicted top 
height with an error of 3.12 m (mape = 18.9 %), whereas the best-ranked 
climate/topography model (only summer temperature) increased this 
error to 3.18 m (mape = 19.6 %) (Table 4). Nevertheless, when we 
validated these models using the independent dataset (Fig. 3), the pre
diction error of the simplest model was 3.46 m (mape = 20.1 %) and that 
of the interaction model was 3.86 m (mape = 22.5 %) (Table 4). Since 
the performance of the climate/topography models (fit and predictive 
capability, the latter on the validation dataset), we selected the simplest 
one (summer temperature) to illustrate as top height could be predicted at 
age 90 over the study area (Fig. 4). 

4. Discussion 

A. chilensis top height was related to both climate and soil variables, 
supporting the background knowledge about this species, which in
dicates that its productivity is associated with moister conditions and 
soil water availability (Loguercio et al., 2018; Pastorino et al., 2015). 
Our analysis also showed that top height, thus productivity, decreases 
with summer temperature, which is directly related to evapotranspira
tion and water stress. Previous studies have indicated that A. chilensis 
growth declines as water loss by evapotranspiration predominates over 
precipitation inputs (Mundo et al., 2010). As found by tree-ring analysis, 
A. chilensis radial increment was negatively correlated with spring/ 
summer temperatures (Landesmann et al., 2015; Roig and Villalba, 
2008), a pattern also observed in other high-latitude forest regions such 
as North American Pacific Northwest (Case and Peterson, 2005). In the 
case of A. chilensis, stomatal control is the main physiological mecha
nism to avoid water stress (Gyenge et al., 2005) with consequent 
negative effects on tree growth (Marcotti et al., 2021; Pastorino et al., 
2015). Thereby, top height increased with precipitation indicating that 
sites receiving higher water input would be favourable for A. chilensis 
growth. Overall, within the distribution range of the species, sites with 
greater water retention (as indicated by sand content –negative effect– 
and MAOM) and soil fertility (given by MAOM) (Grigal and Vance, 
2000) were associated with better conditions for A. chilensis growth. The 
fact that the positive effect of precipitation may decrease with sand 
content suggests that even if rainfall was not limiting for growth, water 

may be lost by deep percolation before being used by trees (Tu et al., 
2021). Indeed, dominant trees were taller in sites with greater content of 
soil organic matter associated to clay (MAOM) –a variable highly related 
with soil organic matter content (Pearson correlation = 0.91; Table A1). 
Soil organic matter is related to soil fertility and water retention 
(Wander, 2004). 

Soil pH also appeared as a relatively important variable related with 
A. chilensis top height indicating that the height of A. chilensis dominant 
trees decreased towards soil acidity. The range of soil pH that we found 
(from 5.3 to 7.2) covered that usually observed in A. chilensis forests 
(Buamscha et al., 1998; La Manna, 2005; Mazzarino and Gobbi, 2005). 
Near-neutral pH soils are expected to be more productive than acid soils 
because the availability of nutrients for plant growth is reduced by soil 
acidity (Hong et al., 2018). Furthermore, A. chilensis produces alkaline 
leaf-litter (Mazzarino and Gobbi, 2005), thus forests that are more 
productive (more leaf-litter) may tend to increase soil pH. Importantly, 
soil nitrogen content, one of the most important nutrients related with 
plant growth and frequently the most-limiting nutrient in temperate 
forests (McLauchlan et al., 2017), was not related with A. chilensis top 
height. A. chilensis uses this nutrient efficiently and has a high capacity 
to conserve it irrespective of site characteristics (Buamscha et al., 1998), 
which may explain its low relation with A. chilensis top height. 

Age indicates the elapsed time since tree establishment so that esti
mates of its effect are required in models evaluating temporal trends of 
stand structural characteristics. To address the inherently nonlinear age- 
height relationship (Hall and Bailey, 2001) we applied a log- 
transformation on age, finding that the observed pattern was well 
described (Figure A1). The best-ranked model indicated that the height 
of a dominant tree increases by about 5 m when age is doubled (e.g., 
from 45 to 90 yr., from 90 to 180 yr.). This model predicted an incre
ment close to 11 m throughout the range of sampling age (from ≈45 yr. 
to ≈250 yr.) (Fig. 2a), resulting in a mean annual increment (MAI) of 
≈0.06 m. Evaluating age classes similar to the one analysed in our study, 
Dezzotti and Sancholuz (1991) reported a range of slopes (from 0.02 m 
yr.-1 to 0.8 m yr.-1) that includes the MAI derived from our best-ranked 
model. These authors also indicated that slopes decreased with class age 
(steeper slopes on younger stands). Our sampling gathered two groups of 
ages, which ranged from ≈45 to ≈100 yr. and from ≈150 to ≈250 yr. 
(Fig. 2a). The sampling distribution is reflecting an age structure shaped 
by the disturbance regime: post-fire stands (younger group) and 
remnant stands –unaffected by fire– (older group) serving as seed 
sources for the former (Landesmann et al., 2015). When the best-ranked 
model is derivative at 70 yr. and 200 yr., (ages representing both age 

Fig. 3. Predictive capability of two best-ranked climate/topography models (proposed for top height mapping, Table 3) assessed using an independent validation 
dataset. The one-to-one line is included on each plot to observe the model prediction errors (i.e., observed heights –points– minus predicted heights –line–). 
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groups) slopes decreases from ≈0.1 m yr.-1 to ≈0.03 m yr.-1, respectively 
(Fig. A.2 Appendices). Nevertheless. it would be worth to note that we 
did not develop temporal series, which could be considered as a limi
tation from a methodological perspective (Burkart and Tomé, 2012). In 
addition, the range of top heights predicted by the best-ranked climate- 
topography models at age 90 (among-plot variation around the inter
cept) covers that informed in other works at similar ages (Caselli, 2020; 

Goya et al., 2004; Loguercio et al., 2018). Because predictors were 
centered, the estimate for the intercept (≈17 m) indicates top height at 
the base age under average environmental conditions. 

Developing regional site quality maps requires productivity models 
based on geographic information layers available at that scale. The 
increasing availability of remote sensed data makes satellite-based 
environmental information accessible. Climatic and topographic layers 

Fig. 4. Prediction map of A. chilensis top height at age 90 over the sampling area (darker green indicates better sites). Top height was predicted at the plot level 
running on each cell the simplest of the best-ranked climate/topography models, which only includes age (it was standardized at 90 years) and summer temperature as 
fixed predictors (Table 2). 
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can be easily obtained from global and regional data sources (e.g., 
(ASTER GDEM Validation Team, 2011; Bianchi et al., 2016; Farr et al., 
2007; Fick and Hijmans, 2017; Hijmans et al., 2005), and global maps of 
soil properties have been generated recently (Hengl et al., 2017; Poggio 
et al., 2021). Although homogeneity in stand conditions is often 
assumed to simplify forest productivity modeling (Schlatter and Gerd
ing, 2014), soil heterogeneity introduces spatial variability at finer- 
scales (Skovsgaard and Vanclay, 2013). In particular, the area of natu
ral distribution of A. chilensis is characterized by a high edaphic het
erogeneity (La Manna, 2005). On the other hand, unlike climate and 
topography variables, soil properties are laborious to measure in the 
field and require high-level technical expertise (Wander, 2004). Our 
data suggest that soil properties are as important as climatic variables in 
explaining top height (Table 2) although the loss of predictive capacity 
is not substantial if they are not included in the model (Table 4). 
Therefore, assuming that top height is a good indicator of A. chilensis 
productivity, simple climate models may serve as a rough guide to 
classify zones according to site quality (e.g., using only temperature as 
showed in Fig. 4). When required, the coarse regional classification 
could be improved at the operational scale by combining available soil 
maps with field-measured data (organic matter, pH, texture). This hi
erarchy between climate and soil matches that suggested in the litera
ture for site classification factors (Schlatter and Gerding, 2014) as the 
basis of forest planning (from control-cut by area or volume scheduling 
to the setting of new areas for plantation). Considering the expected 
fluctuations in the climate of the Patagonian region in the next decades 
(Penalba and Rivera, 2016), and that A. chilensis is suggested to be 
affected by these climactic fluctuations (Marcotti, 2019), our model 
might be used to foresee climate change effects on forest productivity 
(Sharma et al., 2015). Importantly, our study did not include aspects of 
genetic variability, which affects spatial variability in the size of trees 
and may confound site effects (Skovsgaard and Vanclay, 2013). The area 
where the lowest top height are predicted (Fig. 4) matches the eastern 
marginal populations of A. chilensis although our model do not generate 
the longitudinal pattern of genetic variability described for this species 
(see Fig. 2 in Pastorino et al. 2015). This could be suggesting that a 
considerable part of the genetic variability of this species was included 
within the error components of our statistical model. 

In short, this study provides a set of environmental indicators of 
productivity useful for mapping A. chilensis site quality at different levels 
of detail (regional, forest, stand, management unit) depending on the 
specific forestry objective (Skovsgaard and Vanclay, 2013). Considering 
the current legal framework of Argentina promotes native species 
plantations, it contributes to design new A. chilensis plantations in 
northern Patagonia and, hence, to address future timber and ecosystem 
services demands. Moreover, the model has potential usefulness beyond 
forestry. From a methodological point of view, by applying a multi- 
model framework, our work shows an approach that, contrary to its 
increasingly adoption in ecology, is not commonly used in modeling 
forest site productivity (Aertsen et al., 2010). 

5. Conclusions 

Our multi-modeling approach, which accounts for the effects of 
environmental factors on A. chilensis top height (a vegetation-based in
dicator of productivity), is intended as a first step toward regional 
cartography of site quality in northern Patagonia. Top height of 
A. chilensis was explained by both climate and soil properties; dominant 
trees were taller in cooler and wetter sites, and where soil retains more 
water, stores more carbon, and has lower acidity. When including only 
climate variables, the explained variance was reduced although the loss 
of predictive capability was not substantial. We suggest that site quality 
for A. chilensis can be roughly classified from a few climatic (for example 
by using only summer temperature) variables available in satellite-based 
geospatial information. Then, if required, the initial classification could 
be improved by adding soil information. Being the first regional Ta
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statistical model predicting productivity of A. chilensis, it becomes a 

valuable tool for the sustainable management of this native species. 
Interestingly, our model has potential usefulness beyond forestry, for 
instance, to evaluate climate change effects on ecosystem services 
related to forest productivity. 
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Fig. A1. Graphical assessment of model fit for top height of A.chilensis. The panel shows the observed height in dominant trees versis fitted values for three different 
models. The first plot (left-side) corresponds to the best-ranked model (overall fit, that is, considering soil, climate conditions, and topography as predictors). The 
second (centre) and third (right-side) plots correspond to the best models obtained when soil was excluded from the models (these models ranked 24th and 76th 
overall, respectively; Table 2). All models included the age of A. chilensis dominant trees as predictor. 

Fig. A2. A. chilensis growth rate inferred from the best-ranked model (Table 3). 
Solid line in the upper-plot shows A. chilensis top height predicted from the best- 
ranked model along age when the remaining predictors (summer temperature, 
MAOM,and soil pH) are keep at the mean value. Points show the observed data. 
Solid line in the bottom-plot shows the growth rate obtained as the derivative of 
top height respect to age. Vertical dotted lines at 70 and 200 on x-axis highlight 
ages representing the two age classes sampled. 
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Appendix 

Appendices - equations 

Linear mixed-effects model 

hij ∼ N
(
μi; σ2)

indep (A1)  

μi = β0j + β1 × agei  

β0j ∼ N
(

μβ0j
; σ2

β0

)

μβ0j
= α0 + α1 × Ppj + α2 × Tsj + α3 × elevj + α4 × slopej + α5 × expNj+

α6 × maomj + α7 × pmrj + α8 × Nj + α8 × Pj + α9 × sandj + α10 × pHj + α11 × ecj + α12 × Ppj × Tsj + α13 × Ppj × expNj+

α14 × Tsj × maomj + α15 × Ppj × maomj + α16Ppj × sandj 

where hij is the height of the ith dominant tree in the jth plot. Variance inflation factor (VIF) values for predictors: age = 2.7; Pp = 9.8; Ts = 9.6; 
maom = 8.2; pmr = 2.4; N = 3.7; P = 4.2; sand = 3.2; pH = 3.2; ec = 6.7; Ts:maom = 5.7; Pp:maom = 8.8; Pp:sand = 4.3. 

Metrics of prediction capability 

mae =
1

NT

∑p

j=1

∑q

i=1

⃒
⃒hij − ĥij

⃒
⃒ (A2)  

mape =
1

NT
∑p

j=1

∑q

i=1

⃒
⃒hij − ĥij

⃒
⃒

/

hij × 100 (A3) 

where hij and ĥij are the heights observed and predicted for the ith dominant tree of the jth plot, respectively; p is the number of plots in a testing 
subset; q is the number of dominant trees in the jth plot; NT is the total number of dominant tress in all plots in the testing subset being evaluated. 
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Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263. https://doi. 
org/10.1127/0941-2948/2006/0130. 

La Manna, L., 2005. Caracterización de los suelos bajo bosque de Austrocedrus chilensis a 
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