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Motivation

� Some economic and social time series have a ”noisy”structure.

� Symbolic time series analysis is a useful technique to reduce

the dimension of the realization space of the series.

� We wonder if causality relationship is a property that remains

invariable after the data is transformed to a symbolic

expression.

� Exercises: simulation and observational data.
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Symbolic Time Series Analysis in

Economics



Symbolic Aggregate Approximation (SAX) (Lin et. al., 2007)

� SAX allows a time series of arbitrary length n to be reduced

to a string of arbitrary length w < n

� The alphabet size is also an arbitrary integer a > 2.

� Steps:

1. Data transformation for dimensionality reduction: Piecewise

Aggregate Approximation (PPA)

2. Symbolize the PPA representation into a discrete string

3



SAX: dimensionality reduction via PAA

� A time series C of length n can be represented by a vector

C̄ = c̄1, . . . , c̄w . in a w -dimensional space.

The ith element of C̄ is calculated by

c̄i =
w

n

n
w
i∑

j= n
w
(i−1)+1

cj
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SAX: discretization

1. Consider a normalization of the time series

2. Identify the breakpoints: a sorted list of numbers

B = β1, . . . , β|d |−1 such that the area under a N(0, 1)

Gaussian curve from βi to βi+1 equals 1
|d | .

3. Define the alphabet of symbols. Let αi denote the ith element

of the alphabet. i.e. | d |= 3, d = {α1 = a, α2 = b, α3 = c}.
4. Map PAA approximation C̄ to a word Ĉ = ĉ1, . . . , ĉw as

follows: ĉi = αj , iif βj−1 ≤ c̄i < βj .

Lin et. al. 2007 5



Markov-switching Models (MSwM)



Markov-switching models: A two state Markov chain

� MSwM allows to characterize how a non-stationary series

transitions between different regimes, drawing the probability

distribution of the switches between those regimes.

� Under the MSwM, a regime is the equivalent of a symbol in

STSA.
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Markov-switching models: definitions

Let be a system with a finite number of states 1, . . . ,N, such that

any period t ∈ N the distribution of possible instations of the state

variable st satisfies the following condition:

P {st = j |st−1 = i , st−2 = k, . . .} = P {st = j |st−1 = i} = pij

with pi1 + pi2 + · · ·+ piN = 1.

Each pij represents the probability of the transition from state i to

state j .
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Markov-switching models: transition matrix and steady state of

the system.

P =


p11 p21 · · · pN1

p12 p22 · · · pN2
...

... · · ·
...

p1N p2N · · · pNN


� P be the transition matrix

� the steady state of the system is understood as an

N-components vector π = (π1, . . . , πN) such that each πi is

the long-term probability of finding the system at state i .

�

∑N
i πi = 1, then π satisfies Pπ = π.

� If λ1 = 1 is the first eigenvalue of P, as indicating that π is its

associated eigenvector.
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Markov-switching models: A two state Markov chain

1 2

p12

p21

p22

p11
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Markov-switching models: A three state Markov chain

1 2

3

p12

p21

p23

p32p13

p31

p22p11

p33

10



Markov-switching models: time series system

� Time series: {yt}t≥0, yt ∈ Y . Ft : distributions over Y at t.

� Transitions between regimes:

For 1, . . . ,N regimes,

yt − µs∗t = ϕ
(
yt−1 − µs∗t−1

)
+ εs

where µs∗t ∈ Y corresponds to the state s∗t ∈ {1, . . . ,N}.

� If s∗t = j and s∗t−1 = i , at t − 1, µi is followed in t by µj , with

µi ̸= µj .

� The transition from µs∗t−1
to µs∗t , corresponding to transition

from state j to state i has probability pij .

� ϕ is a function that embodies the combined action of P and,

for each state i and period t, the conditional distribution

Ft(y |i). 11



Causality analysis with time series

data



Transfer Entropy

� Rényi entropy: Hq = 1
1−q log

(
n∑

i=1
pqi

)
Transfer entropy:

TE (X → Y ) = H(Yt | Yt−1:t−p)− H(Yt | Yt−1:t−p,Xt−1:t−p)

Test: TE (X → Y ) = 0
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Granger causality test

Causality: X → Y and Y ↛ X

VAR model:

� Yt = δ +
∑p

j=1 θ11,jYt−j +
∑p

j=1 θ12,jXt−j + uYt

� Xt = η +
∑p

j=1 θ21,jYt−j +
∑p

j=1 θ22,jXt−j + uXt

X ”Granger-cause”Y if:

� E (Yt | Yt−1, . . . ,Yt−p,Xt−1, . . . ,Xt−p) ̸= E (Yt | Yt−1, . . . ,Yt−p),

and

� E (Xt | Xt−1, . . . ,Xt−p,Yt−1, . . . ,Yt−p) = E (Xt | Xt−1, . . . ,Xt−p)

Test: H0 : θ12,j = 0 and H0 : θ21,j = 0
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Exercises with data



Exercise 1: simulated time series

Raw time series: yRt = δ +
∑6

i=1 θiy
R
t−p + ut

Caused time series: yCt = γ + ϕiy
R
t−1 + vt
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Exercise 1: causality between Yraw, Ycau and Yraw2

Without Dictionary (p-values)

Caused

Yraw Ycau Yraw2

Cause TE (q=0.9) Granger TE (q=0.9) Granger TE (q=0.9) Granger

Yraw 0.04 2.20E-16 0.9 0.1441

Ycau 0.3167 0.6127

Yraw2 0.6767 0.9765
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Causal graph: raw series

YRaw YCau

YRaw2

p12
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Exercise 1: causality with transformed Yraw and Ycau

Yraw −→ Ycau? (pvalues)

Yraw Ycau TE (q=0.9) Granger

SAX g D2 0.0533 0.0003148

SAX g D3 0.0533 0.0003148

SAX g D4 0.0533 0.0003148

SAX q D2 0.0133 8.84E-05

SAX q D3 0.5 6.86E-05

SAX q D4 0.5467 6.86E-05

Markov D2 0 0.1

Markov D3 0.36 0.09582

Markov D4 0 0.7512

Ycau −→ Yraw? (pvalues)

Ycau Yraw TE (q=0.9) Granger

SAX g D2 0.02 0.0002007

SAX g D3 0.01 0.0002007

SAX g D4 0.0067 0.0002007

SAX q D2 0.0133 6.89E-05

SAX q D3 0.1267 4.48E-05

SAX q D4 0.1567 4.48E-05

Markov D2 0 6.86E-05

Markov D3 0.8433 0.5768

Markov D4 0 0.5705
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Exercise 1: causality with transformed Yraw and Yraw2

Yraw −→ Yraw2? (pvalues)

Yraw Yraw2 TE (q=0.9) Granger

SAX g D2 0.2933 0.5903

SAX g D3 0.3267 0.5909

SAX g D4 0.3667 0.5908

SAX q D2 0.43 0.8221

SAX q D3 0.4367 0.8284

SAX q D4 0.42 0.8285

Markov D2 0.5 0.05735

Markov D3 0.79 0.4254

Markov D4 0 error

Yraw2 −→ Yraw? (pvalues)

Yraw2 Yraw TE (q=0.9) Granger

SAX g D2 0.6567 0.06775

SAX g D3 0.67 0.06775

SAX g D4 0.6533 0.06775

SAX q D2 0.8467 0.3165

SAX q D3 0.76 0.1967

SAX q D4 0.7967 0.1967

Markov D2 1 0.9491

Markov D3 0.9433 0.4864

Markov D4 0 error

18



Causal graph: symbolic series

YRaw YCau

YRaw2

p12

p21
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Exercise 2: Narratives Data



Narratives about dollar: variables

� Google searches: searches about ”dólar blue”between 2004

and 2019.

� ”Dólar blue”: informal exchange rate between peso and dollar.

� ICC: consumer confidence index, measured by CIF-UTDT.

� Inflation rate (π): variation rate of the consumer price index.
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Without Alphabet (TE)

πICC

p12

p31

p42
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Without Alphabet (Granger)

πICC

p21

p23

p34
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SAX Aphabet=2 (TE)

πICC

p12

p21
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SAX Aphabet=2 (Granger)

πICC

p12
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SAX Aphabet=3 (TE and Granger)

πICC

p14p41
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Markov Aphabet=2 (TE)

πICC

p23
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Markov Aphabet=2 (Granger)

πICC

p12
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Conclusions



� When the causal relationship is clear, causality test performs

as expected with the untransformed data.

� With the data transformed to symbolic series, by the use of

SAX or Markov switching model, the tests fail to detect the

correct causal relation.

� With the observational data, where the causal relations are

less neat, this problem is severe.

� Potential explanation: symbolic transformation distorts the

relations between variables in a way that artificially generates

causality which is mistakenly detected by the test.
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