Por favor, use este identificador para citar o enlazar este ítem:
http://rid.unrn.edu.ar/handle/20.500.12049/10573
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cardoso Schwindt, Virginia | - |
dc.contributor.author | Coletto, Mauricio Miguel | - |
dc.contributor.author | Díaz, Mónica | - |
dc.contributor.author | Ponzoni, Ignacio | - |
dc.date.accessioned | 2023-07-27T16:40:59Z | - |
dc.date.available | 2023-07-27T16:40:59Z | - |
dc.date.issued | 2022-07-02 | - |
dc.identifier.citation | Cardoso Schwindt, V., Coletto, M. M., Diaz, M. F., & Ponzoni, I. (2023). Could QSOR modelling and machine learning techniques be useful to predict wine aroma?. Food and Bioprocess Technology, 16(1), 24-42. | es_ES |
dc.identifier.issn | 2213-7793 | es_ES |
dc.identifier.uri | http://rid.unrn.edu.ar/handle/20.500.12049/10573 | - |
dc.description.abstract | Food informatics is having an increasing impact on the food industry and improving the quality of end products, as well as the efficiency of manufacturing processes. In the case of winemaking, a particular application of interest for food informatics is the sensory analysis of wines. This problem can benefit from the strong development that machine learning has achieved in recent decades. However, these data-driven techniques require accurate and sufficient information to generate models capable of predicting the sensory profile of wines. A review of the sensory analysis and volatile composition of wines is presented in this work, along with significant studies on the use of machine learning models to predict wine-related characteristics such as the antioxidant activity of polyphenols of wine and aroma compounds. In this sense, data from a sensory panel and analytical technology were gathered. This literature review reveals the lack of a homogeneous and sufficiently large database of sensory analysis related to the volatile composition of wines to develop machine learning models. However, among artificial intelligence approaches, the application of quantitative structure-odour relationship (QSOR) models is currently gaining importance. Recent studies show that it would be possible to predict quantitatively the sensory analysis of wines by QSOR models, using general volatile composition information. Therefore, the purpose of this review is to identify key aspects and guidelines for the development of this area. | es_ES |
dc.format.extent | p. 24-42 | es_ES |
dc.language.iso | en | es_ES |
dc.publisher | Srpinger | es_ES |
dc.relation.uri | https://www.springer.com/journal/11947 | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.title | Could QSOR Modelling and Machine Learning Techniques Be Useful to Predict Wine Aroma? | es_ES |
dc.type | Articulo | es_ES |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-ND 4.0) | - |
dc.description.filiation | Cardoso Schwindt, Virginia. Universidad Nacional de Río Negro (UNRN), Centro de Investigación y Transferencia Río Negro (CONICET- UNRN), Villa Regina, Río Negro, Argentina | es_ES |
dc.description.filiation | Coletto, Mauricio Universidad Nacional de Río Negro (UNRN), Centro de Investigación y Transferencia Río Negro (CONICET- UNRN), Villa Regina, Río Negro, Argentina | es_ES |
dc.description.filiation | Díaz, Mónica. Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS) -Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina | es_ES |
dc.description.filiation | Ponzoni, Ignacio. Instituto de Ciencias e Ingeniería de la Computación (ICIC), Universidad Nacional del Sur (UNS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina | es_ES |
dc.subject.keyword | Machine learning | es_ES |
dc.subject.keyword | QSOR | es_ES |
dc.subject.keyword | Volatile composition | es_ES |
dc.subject.keyword | Wine aroma | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.subject.materia | Ciencias Exactas y Naturales | es_ES |
dc.origin.lugarDesarrollo | Universidad Nacional de Río Negro | es_ES |
dc.origin.lugarDesarrollo | Universidad Nacional de Sur | es_ES |
dc.origin.lugarDesarrollo | Centro de Investigación y Transferencia Río Negro | es_ES |
dc.origin.lugarDesarrollo | Planta Piloto de Ingeniería Química (PLAPIQUI) | es_ES |
dc.origin.lugarDesarrollo | Instituto de Ciencias e Ingeniería de la Computación (ICIC) | es_ES |
dc.relation.journalissue | 16 (1) | es_ES |
dc.description.review | true | es_ES |
dc.description.resumen | - | es_ES |
dc.relation.journalTitle | Food and Bioprocess Technology | es_ES |
Aparece en las colecciones: | Artículos |
Archivos en este ítem:
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
s11947-022-02836-x.pdf | 1,2 MB | Adobe PDF | Visualizar/Abrir |
Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons