Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/11366

Título: Pollination supply models from a local to global scale
Autor(es): Giménez-García, Angel
Allen-Perkins, Alfonso
Bartomeus, Ignasi
Balbi, Stefano
Knapp, Jessica L.
Hevia, Violeta
Woodcock, Ben A.
Smagghe, Guy
Miñarro, Marcos
Eeraerts, Maxime
Colville, Jonathan F.
Hipólito, Juliana
Cavigliasso, Pablo
Nates-Parra, Guiomar
Herrera, José M.
Cusser, Sarah
Simmons, Benno I.
Wolters, Volkmar
Jha, Shalene
Freitas, Breno M.
Horgan, Finbarr G.
Artz, Derek R.
Sidhu, C. Sheena
Otieno, Mark
Boreux, Virginie
Biddinger, David J.
Klein, Alexandra-Maria
Joshi, Neelendra K.
Stewart, Rebecca I. A.
Albrecht, Matthias
Nicholson, Charlie C.
O'Reilly, Alison D.
Crowder, David W.
Burns, Katherine L. W.
Nabaes Jodar, Diego N.
Garibaldi, Lucas Alejandro
Sutter, Louis
Dupont, Yoko L.
Dalsgaard, Bo
da Encarnação Coutinho, Jeferson Gabriel
Lázaro, Amparo
Andersson, Georg K. S.
Raine, Nigel E.
Krishnan, Smitha
Dainese, Matteo
van der Werf, Wopke
Smith, Henrik G.
Magrach, Ainhoa
Fecha de publicación: 4-oct-2023
Editorial: EEF
Citación: Giménez-García, A., Allen-Perkins, A., Bartomeus, I., Balbi, S., Knapp, J. L., Hevia, V., ... & Magrach, A. (2023). Pollination supply models from a local to global scale. Web Ecology, 23(2), 99-129.
Revista: Web Ecology
Abstract: Ecological intensification has been embraced with great interest by the academic sector but is still rarely taken up by farmers because monitoring the state of different ecological functions is not straightforward. Modelling tools can represent a more accessible alternative of measuring ecological functions, which could help promote their use amongst farmers and other decision-makers. In the case of crop pollination, modelling has traditionally followed either a mechanistic or a data-driven approach. Mechanistic models simulate the habitat preferences and foraging behaviour of pollinators, while data-driven models associate georeferenced variables with real observations. Here, we test these two approaches to predict pollination supply and validate these predictions using data from a newly released global dataset on pollinator visitation rates to different crops. We use one of the most extensively used models for the mechanistic approach, while for the data-driven approach, we select from among a comprehensive set of state-of-the-art machine-learning models. Moreover, we explore a mixed approach, where data-derived inputs, rather than expert assessment, inform the mechanistic model. We find that, at a global scale, machine-learning models work best, offering a rank correlation coefficient between predictions and observations of pollinator visitation rates of 0.56. In turn, the mechanistic model works moderately well at a global scale for wild bees other than bumblebees. Biomes characterized by temperate or Mediterranean forests show a better agreement between mechanistic model predictions and observations, probably due to more comprehensive ecological knowledge and therefore better parameterization of input variables for these biomes. This study highlights the challenges of transferring input variables across multiple biomes, as expected given the different composition of species in different biomes. Our results provide clear guidance on which pollination supply models perform best at different spatial scales – the first step towards bridging the stakeholder–academia gap in modelling ecosystem service delivery under ecological intensification.
Resumen: -
URI: http://rid.unrn.edu.ar/handle/20.500.12049/11366
Identificador DOI: https://doi.org/10.5194/we-23-99-2023
ISSN: 1399-1183
Otros enlaces: https://we.copernicus.org/articles/23/99/2023/
Aparece en las colecciones: Artículos

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
we-23-99-2023.pdf5,45 MBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons