Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/11553

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMiguel, Fabio Maximiliano-
dc.contributor.authorFrutos, Mariano-
dc.contributor.authorMéndez, Máximo-
dc.contributor.authorTohmé, Fernando-
dc.contributor.authorGonzález, Begoña-
dc.date.accessioned2024-04-25T14:46:33Z-
dc.date.available2024-04-25T14:46:33Z-
dc.date.issued2024-04-19-
dc.identifier.citationMiguel, F.M.; Frutos, M.; Méndez, M.; Tohmé, F.; González, B. Comparison of MOEAs in an Optimization-Decision Methodology for a Joint Order Batching and Picking System. Mathematics 2024, 12, 1246. https://doi.org/10.3390/math12081246es_ES
dc.identifier.issn2227-7390es_ES
dc.identifier.otherhttps://www.mdpi.com/2227-7390/12/8/1246es_ES
dc.identifier.urihttp://rid.unrn.edu.ar/handle/20.500.12049/11553-
dc.description.abstractThis paper investigates the performance of a two-stage multi-criteria decision-making procedure for order scheduling problems. These problems are represented by a novel nonlinear mixed integer program. Hybridizations of three Multi-Objective Evolutionary Algorithms (MOEAs) based on dominance relations are studied and compared to solve small, medium, and large instances of the joint order batching and picking problem in storage systems with multiple blocks of two and three dimensions. The performance of these methods is compared using a set of well-known metrics and running an extensive battery of simulations based on a methodology widely used in the literature. The main contributions of this paper are (1) the hybridization of MOEAs to deal efficiently with the combination of orders in one or several picking tours, scheduling them for each picker, and (2) a multi-criteria approach to scheduling multiple picking teams for each wave of orders. Based on the experimental results obtained, it can be stated that, in environments with a large number of different items and orders with high variability in volume, the proposed approach can significantly reduce operating costs while allowing the decision-maker to anticipate the positioning of orders in the dispatch area.es_ES
dc.format.extent1246es_ES
dc.language.isoenes_ES
dc.publisherMDPIes_ES
dc.relation.urihttps://www.mdpi.com/2227-7390/12/8/1246es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/-
dc.titleComparison of MOEAs in an Optimization-Decision Methodology for a Joint Order Batching and Picking Systemes_ES
dc.typeArticuloes_ES
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)-
dc.description.filiationMiguel, Fabio Maximiliano. Universidad Nacional de Río Negro. CONICET. Sede Alto Valle y Valle Medio. Río Negro, Argentinaes_ES
dc.description.filiationFrutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería. IIESS UNS-CONICET. Buenos Aires, Argentinaes_ES
dc.description.filiationMéndez, Mariano. Universidad de Las Palmas de Gran Canaria. SIANI. Las Palmas de Gran Canaria, Spaines_ES
dc.description.filiationTohmé, Fernando. Universidad Nacional del Sur. Departamento de Economía. INMABB UNS-CONICET. Buenos Aires, Argentinaes_ES
dc.description.filiationGonzález, Begoña. Universidad de Las Palmas de Gran Canaria. SIANI. Las Palmas de Gran Canaria, Spaines_ES
dc.subject.keywordmultiple criteria decision-makinges_ES
dc.subject.keywordmulti-objective evolutionary algorithmses_ES
dc.subject.keywordorder batchingproblemes_ES
dc.subject.keywordorder picking problemes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.subject.materiaMatemática Aplicadaes_ES
dc.subject.materiaGestión y Administraciónes_ES
dc.subject.materiaIngenierías, Ciencia y Teconologías (general)es_ES
dc.origin.lugarDesarrolloSede Alto Valle y Valle Medio, Universidad Nacional de Río Negroes_ES
dc.relation.journalissue12es_ES
dc.description.reviewtruees_ES
dc.description.resumenThis paper investigates the performance of a two-stage multi-criteria decision-making procedure for order scheduling problems. These problems are represented by a novel nonlinear mixed integer program. Hybridizations of three Multi-Objective Evolutionary Algorithms (MOEAs) based on dominance relations are studied and compared to solve small, medium, and large instances of the joint order batching and picking problem in storage systems with multiple blocks of two and three dimensions. The performance of these methods is compared using a set of well-known metrics and running an extensive battery of simulations based on a methodology widely used in the literature. The main contributions of this paper are (1) the hybridization of MOEAs to deal efficiently with the combination of orders in one or several picking tours, scheduling them for each picker, and (2) a multi-criteria approach to scheduling multiple picking teams for each wave of orders. Based on the experimental results obtained, it can be stated that, in environments with a large number of different items and orders with high variability in volume, the proposed approach can significantly reduce operating costs while allowing the decision-maker to anticipate the positioning of orders in the dispatch area.es_ES
dc.relation.journalTitleMathematicses_ES
Aparece en las colecciones: Artículos

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
Miguel_F_2024_MOEAS.pdfMiguel et al. 2024 Comparison of MOEAs in an Optimization-Decision Methodology for a Joint Order Batching and Picking System616,44 kBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons