Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/12185

Título: Advancing Social Insect research through the Development of an Automated Yellowjacket Nest-Activity Monitoring Station using Deep Learning
Otros títulos: Automated Social Wasp Traffic Monitoring Station
Autor(es): Martinez Von Ellrichshausen, Andrés Santiago
Dreidemie, Carola
Inchaurza, Fernan
Cucurull, Agustín Julian
Basti, Mariano
Masciocchi, Maite
Fecha de publicación: 5-jul-2024
Editorial: Royal Entomology Society
Citación: Martínez, A.S.; Dreidemie, C; Inchaurza, F.; Cucurull, A.; Basti, M.; Masciochi, M.. Advancing Social Insect Research through the Development of an Automated Yellowjacket Nest-Activity Monitoring Station using Deep Learning. Special Issue: Advances in Insect Biomonitoring for Agriculture and Forestry. Ed.: Jordan Cuff. Royal Entomological Society, UK
Revista: Agricultural and Forest Entomology
Abstract: We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony. The hardware consists of an illuminated channel and a fixed camera to capture the wasps' activities. An ad-hoc post-processing software was developed to identify the direction of movement and caste of the recorded individuals. Validation results indicate that the model is robust in recognising direction of movement of the wasps and identifying caste. This innovative tool holds immense potential for advancing ecological and behavioural research by providing researchers with rapid and easily accessible data. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns, and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems.
Resumen: The development a monitoring tool to facilitate detailed studies of incoming and outgoing individuals of social insect colonies. We designed hardware that can be positioned at the entrance of wasp nests, which is equipped with a camera and integrated with automated recognition capabilities, records the movement (entry or exit) of each individual in the colony and then identifies the caste of the individual (worker, drone, or gyne) and the direction of movement (inward or outward respective of the nest). The development of this equipment involved creating a support structure to record wasp movement throughout the season. We also developed post-processing software, trained through deep learning, intended to detect worker, drones, and gyne individual movements, under the assumption that morphological differences between castes could be used to identify them.
URI: http://rid.unrn.edu.ar/handle/20.500.12049/12185
ISSN: 1461-9555
1461-9563
Otros enlaces: https://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638
Aparece en las colecciones: Artículos

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
Martinezetal.-2024-Advancingsocialinsectresearchthroughthedevel.pdfArtículo publicado en Agricultural and Forest Entomology, Julio 5, 20243,29 MBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons