Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/12185

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMartinez Von Ellrichshausen, Andrés Santiago-
dc.contributor.authorDreidemie, Carola-
dc.contributor.authorInchaurza, Fernan-
dc.contributor.authorCucurull, Agustín Julian-
dc.contributor.authorBasti, Mariano-
dc.contributor.authorMasciocchi, Maite-
dc.date.accessioned2024-11-07T13:20:51Z-
dc.date.available2024-11-07T13:20:51Z-
dc.date.issued2024-07-05-
dc.identifier.citationMartínez, A.S.; Dreidemie, C; Inchaurza, F.; Cucurull, A.; Basti, M.; Masciochi, M.. Advancing Social Insect Research through the Development of an Automated Yellowjacket Nest-Activity Monitoring Station using Deep Learning. Special Issue: Advances in Insect Biomonitoring for Agriculture and Forestry. Ed.: Jordan Cuff. Royal Entomological Society, UKes_ES
dc.identifier.issn1461-9555es_ES
dc.identifier.issn1461-9563es_ES
dc.identifier.otherhttps://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638es_ES
dc.identifier.urihttp://rid.unrn.edu.ar/handle/20.500.12049/12185-
dc.description.abstractWe describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony. The hardware consists of an illuminated channel and a fixed camera to capture the wasps' activities. An ad-hoc post-processing software was developed to identify the direction of movement and caste of the recorded individuals. Validation results indicate that the model is robust in recognising direction of movement of the wasps and identifying caste. This innovative tool holds immense potential for advancing ecological and behavioural research by providing researchers with rapid and easily accessible data. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns, and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems.es_ES
dc.format.extentp. 1-13es_ES
dc.language.isoenes_ES
dc.publisherRoyal Entomology Societyes_ES
dc.relation.urihttps://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/-
dc.titleAdvancing Social Insect research through the Development of an Automated Yellowjacket Nest-Activity Monitoring Station using Deep Learninges_ES
dc.title.alternativeAutomated Social Wasp Traffic Monitoring Stationes_ES
dc.typeArticuloes_ES
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)-
dc.description.filiationMartinez Von Ellrichshausen, Andrés Santiago. Grupo de Ecología de Poblaciones de Insectos, IFAB, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA - CONICET. Argentina.es_ES
dc.description.filiationDreidemie, Carola. LVCC Laboratorio de Investigacion y Desarrollo en Tecnologías de Visualización, Computación Gráfica y Código Creativo, Universidad Nacional de Rio Negro. Río Negro; Argentina.es_ES
dc.description.filiationInchaurza, Fernan. LVCC Laboratorio de Investigacion y Desarrollo en Tecnologías de Visualización, Computación Gráfica y Código Creativo, Universidad Nacional de Rio Negro. Río Negro; Argentina.es_ES
dc.description.filiationCucurull, Agustín Julian. Universidad Nacional de Rio Negro. Río Negro; Argentina.es_ES
dc.description.filiationBasti, Mariano. Universidad Nacional de Rio Negro. Río Negro; Argentina.es_ES
dc.description.filiationMasciocchi, Maite. Grupo de Ecología de Poblaciones de Insectos, IFAB, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA - CONICET. Río Negro; Argentina.es_ES
dc.subject.keywordAutomatic caste recognitiones_ES
dc.subject.keywordAutomationes_ES
dc.subject.keywordBig dataes_ES
dc.subject.keywordMachine learninges_ES
dc.subject.keywordNeural networkes_ES
dc.subject.keywordPestes_ES
dc.subject.keywordSocial insectses_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.subject.materiaCiencias Agrariases_ES
dc.subject.materiaHumanidadeses_ES
dc.subject.materiaIngeniería, Ciencia y Tecnologíaes_ES
dc.origin.lugarDesarrolloGrupo de Ecología de Poblaciones de Insectos, IFAB, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA - CONICETes_ES
dc.origin.lugarDesarrolloLVCC Laboratorio de Investigacion y Desarrollo en Tecnologías de Visualización, Computación Gráfica y Código Creativo, Universidad Nacional de Rio Negro.es_ES
dc.relation.journalissueSpecial Issue "Advances in Insect Biomonitoring for Agriculture and Forestry"- Ed: Jordan Cuffes_ES
dc.description.reviewtruees_ES
dc.description.resumenThe development a monitoring tool to facilitate detailed studies of incoming and outgoing individuals of social insect colonies. We designed hardware that can be positioned at the entrance of wasp nests, which is equipped with a camera and integrated with automated recognition capabilities, records the movement (entry or exit) of each individual in the colony and then identifies the caste of the individual (worker, drone, or gyne) and the direction of movement (inward or outward respective of the nest). The development of this equipment involved creating a support structure to record wasp movement throughout the season. We also developed post-processing software, trained through deep learning, intended to detect worker, drones, and gyne individual movements, under the assumption that morphological differences between castes could be used to identify them.es_ES
dc.identifier.handlehttp://hdl.handle.net/20.500.12123/18525-
dc.relation.journalTitleAgricultural and Forest Entomologyes_ES
Aparece en las colecciones: Artículos

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
Martinezetal.-2024-Advancingsocialinsectresearchthroughthedevel.pdfArtículo publicado en Agricultural and Forest Entomology, Julio 5, 20243,29 MBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons