Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/2869

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMaffione, Nicolás Pablo-
dc.contributor.authorDarriba, Luciano A.-
dc.contributor.authorCincotta, Pablo M.-
dc.contributor.authorGiordano, Claudia M.-
dc.date.accessioned2019-08-20T11:33:42Z-
dc.date.available2019-08-20T11:33:42Z-
dc.date.issued2012-12-14-
dc.identifier.citationMaffione, Nicolas P., Darriba, Luciano A., Cincotta, Pablo M. & Giordano, Claudia M. (2012). Chaos detection tools: application to a self-consistent triaxial model. Oxford University. Monthly Notices of the Royal Astronomical Society; 429; 3; pp. 2700-2717es_ES
dc.identifier.issn0035-8711es_ES
dc.identifier.urihttp://arxiv.org/abs/1212.3175-
dc.identifier.urihttp://mnras.oxfordjournals.org/content/429/3/2700.abstract-
dc.identifier.urihttp://hdl.handle.net/11336/3411-
dc.identifier.urihttps://rid.unrn.edu.ar/jspui/handle/20.500.12049/2869-
dc.format.extentp. 2700-2717es_ES
dc.format.mediumimpresoes_ES
dc.format.mediumdigitales_ES
dc.language.isoeses_ES
dc.titleChaos detection toolses_ES
dc.title.alternativeApplication to a self-consistent triaxial modeles_ES
dc.typeArticuloes_ES
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-sa/4.0/es_ES
dc.description.filiationFil: Maffione, Nicolas P. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata; Argentinaes_ES
dc.description.filiationFil: Maffione, Nicolas P. Instituto de Astrofísica de La Plata; Argentina.es_ES
dc.description.filiationFil: Maffione, Nicolas P. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentinaes_ES
dc.description.filiationFil: Darriba, Luciano A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata; Argentinaes_ES
dc.description.filiationFil: Darriba, Luciano A. Instituto de Astrofísica de La Plata; Argentina.es_ES
dc.description.filiationFil: Darriba, Luciano A. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentinaes_ES
dc.description.filiationFil: Cincotta, Pablo M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata; Argentinaes_ES
dc.description.filiationFil: Cincotta, Pablo M. Instituto de Astrofísica de La Plata; Argentina.es_ES
dc.description.filiationFil: Cincotta, Pablo M. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentinaes_ES
dc.description.filiationFil: Giordano, Claudia M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata; Argentinaes_ES
dc.description.filiationFil: Giordano, Claudia M. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentinaes_ES
dc.description.filiationFil: Giordano, Claudia M. Instituto de Astrofísica de La Plata; Argentina.es_ES
dc.subject.keywordMethodses_ES
dc.subject.keywordNumericales_ES
dc.subject.keywordGalaxieses_ES
dc.subject.keywordkinematicses_ES
dc.subject.keywordDynamicses_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.subject.materiaAstronomíaes_ES
dc.origin.lugarDesarrolloOxford Universityes_ES
dc.relation.journalissue429es_ES
dc.description.reviewtruees_ES
dc.description.resumenTogether with the variational indicators of chaos, the spectral analysis methods have also achieved great popularity in the field of chaos detection. The former are based on the concept of local exponential divergence. The latter are based on the numerical analysis of some particular quantities of a single orbit, e.g. its frequency. In spite of having totally different conceptual bases, they are used for the very same goals such as, for instance, separating the chaotic and the regular component. In fact, we show herein that the variational indicators serve to distinguish both components of a Hamiltonian system in a more reliable fashion than a spectral analysis method does. We study two start spaces for different energy levels of a self? consistent triaxial stellar dynamical model by means of some selected variational indicators and a spectral analysis method. In order to select the appropriate tools for this paper, we extend previous studies where we make a comparison of several variational indicators on different scenarios. Herein, we compare the Average Power Law Exponent (APLE) and an alternative quantity given by the Mean Exponential Growth factor of Neary Orbits (MEGNO): the MEGNO? Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE). The spectral analysis method selected for the investigation is the Frequency Modified Fourier Transform (FMFT). Besides a comparative study of the APLE, the Fast Lyapunov Indicator (FLI), the Orthogonal Fast Lyapunov Indicator (OFLI) and the MEGNO/SElLCE, we show that the SElLCE could be an appropriate alternative to the MEGNO when studying large samples of initial conditions. The SElLCE separates the chaotic and the regular components reliably and identifies the different levels of chaoticity. We show that the FMFT is not as reliable as the SElLCE to describe clearly the chaotic domains in the experiments. We use the latter indicator as the main variational indicator to analyse the phase space portraits of the model under study.es_ES
dc.identifier.doihttp://dx.doi.org/10.1093/mnras/sts539-
dc.relation.journalTitleMonthly Notices of the Royal Astronomical Societyes_ES
Aparece en las colecciones: Artículos

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
Chaos Detection tools.pdf953,17 kBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899