Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/2930

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGaribaldi, Lucas Alejandro-
dc.contributor.authorAristimuño, Francisco Javier-
dc.contributor.authorOddi, Facundo José-
dc.contributor.authorTiribelli, Florencia-
dc.date.accessioned2019-08-21T14:19:56Z-
dc.date.available2019-08-21T14:19:56Z-
dc.date.issued2017-12-
dc.identifier.citationGaribaldi, Lucas A., Aristimuño, Francisco J., Oddi, Facundo J. & Tiribelli, Florencia. (2017). Inferencia multimodelo en ciencias sociales y ambientales. Asociación Argentina de Ecología. Ecología Austral; 27; 3; 348-363es_ES
dc.identifier.issn1667-782Xes_ES
dc.identifier.urihttps://doi.org/10.25260/EA.17.27.3.0.513-
dc.identifier.urihttp://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/513-
dc.identifier.urihttp://hdl.handle.net/11336/68161-
dc.identifier.urihttps://rid.unrn.edu.ar/jspui/handle/20.500.12049/2930-
dc.description.abstractProfessionals of the social and environmental sciences must solve problems (answer questions) based on data sampling and analyses. Commonly, all professionals face similar challenges: they need to take decisions on a population (e.g., all the trees of a region), but only have data from a sample (some trees of that region). A key tool in this process is to propose population models for the response variable (tree growth as a function of tree age and climatic conditions) and then use model predictions to take decisions (e.g., when to cut trees according to climatic conditions). In this paper we discuss how to propose, estimate, and select models of a population based on sampling data. We put special emphasis in proposing several alternative models (hypotheses) to solve one problem (e.g., different tree growth functions for age), which must be proposed before data sampling, including a null model (tree growth does not depend on tree age or climatic conditions). Models guide us on how data must be sampled for a valid contrast (growth measurements in trees of different age and under contrasting climates). Then, the Akaike information criterion (AIC) can be employed to sort the most parsimonious models, selecting those with the best goodness of fit (likelihood) and the lowest number of parameters (model complexity). Along the text, we introduce basic notions of multimodel inference and discuss common user mistakes. We provide real examples, and share their data and the analyses code in R, a free and open source software. In addition to be useful to professionals from different sciences, we expect our paper to promote the teaching of multimodel inference in graduate courses.es_ES
dc.format.extentp. 348-363es_ES
dc.format.mediumimpresoes_ES
dc.format.mediumdigitales_ES
dc.language.isoeses_ES
dc.titleInferencia multimodelo en ciencias sociales y ambientaleses_ES
dc.title.alternativeMultimodel inference in social and environmental scienceses_ES
dc.typeArticuloes_ES
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-sa/4.0/es_ES
dc.description.filiationFil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentinaes_ES
dc.description.filiationFil: Garibaldi, Lucas Alejandro. Universidad Nacional de Río Negro; Argentinaes_ES
dc.description.filiationFil: Aristimuño, Francisco J. Universidad Nacional de Río Negro; Argentina.es_ES
dc.description.filiationFil: Aristimuño, Francisco J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentinaes_ES
dc.description.filiationFil: Oddi, Facundo J. Universidad Nacional de Río Negro; Argentina.es_ES
dc.description.filiationFil: Oddi, Facundo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentinaes_ES
dc.description.filiationFil: Tiribelli, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentinaes_ES
dc.description.filiationFil: Tiribelli, Florencia. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche; Argentinaes_ES
dc.description.filiationFil: Tiribelli, Florencia. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentinaes_ES
dc.subject.keywordAICes_ES
dc.subject.keywordAjustees_ES
dc.subject.keywordAkaikees_ES
dc.subject.keywordHipótesises_ES
dc.subject.keywordInferenciaes_ES
dc.subject.keywordModeloes_ES
dc.subject.keywordParsimoniaes_ES
dc.subject.keywordPredicciónes_ES
dc.subject.keywordValor Pes_ES
dc.subject.keywordVerosimilitudes_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.subject.materiaCiencias Socialeses_ES
dc.origin.lugarDesarrolloAsociación Argentina de Ecologíaes_ES
dc.relation.journalissue27es_ES
dc.description.reviewtruees_ES
dc.description.resumenLos profesionales de las ciencias sociales y ambientales debemos resolver problemas (contestar preguntas) a partir de la recolección y el análisis de datos. Habitualmente, todos enfrentamos dificultades similares; queremos tomar decisiones sobre una población (e.g., todos los árboles de una región), pero sólo contamos con información de una muestra (algunos árboles de esa región). Una herramienta fundamental en este proceso es plantear modelos de la población sobre la variable de interés (crecimiento los árboles en función de la edad y las condiciones climáticas) para luego utilizar sus predicciones en la toma de decisiones (turnos de corta de acuerdo a las condiciones climáticas). En esta ayuda didáctica discutimos cómo plantear, estimar y seleccionar modelos de una población a partir de los datos de una muestra. Dedicamos especial énfasis a proponer varios modelos (hipótesis) alternativos ante un mismo problema (e.g., distintas funciones del crecimiento arbóreo con la edad), los cuales son planteados antes de recolectar los datos e incluyen un modelo nulo (el crecimiento arbóreo no depende de la edad ni del clima). Los modelos nos indican cómo se deben recolectar los datos para un contraste válido (e.g., mediciones del crecimiento en árboles de edad distinta y en sitios con clima contrastante). Luego, el criterio de información de Akaike (AIC) permite ordenar los modelos según su parsimonia y seleccionar aquellos que mejor se ajusten a los datos (verosimilitud), y con menor número de parámetros (complejidad). A lo largo del texto introducimos las nociones básicas sobre la inferencia multimodelo y discutimos los errores más comunes en su uso. Proveemos ejemplos reales y hacemos disponibles los datos y los códigos de ejecución en el programa R, de acceso gratuito. Además de ser útil para los profesionales, esperamos que esta ayuda didáctica promueva la enseñanza de la inferencia multimodelo en los cursos de grado.es_ES
dc.relation.journalTitleEcología Australes_ES
Aparece en las colecciones: Artículos

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
Inferencia multimodelo en ciencias sociales y ambientales.pdf3,21 MBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899