Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/3647

Título: Best approximation, unitary groups and orbits of compact self-adjoint operators
Autor(es): Bottazzi, Tamara Paula
Varela, Alejandro
Fecha de publicación: ago-2018
Es parte de: Congreso internacional de matematicos (ICM 2018)
Resumen: Sea H un espacio de Hilbert separable, D(B(H)) el conjunto de operadores lineales y acotados diagonales respecto de una base prefijada de H, y K(H) el ideal bilátero de los operadores compactos. Estudiamos el siguiente sub grupo de operadores unitarios: U k,d = {u ∈ U(H) : ∃ D ∈ D (B (H)) ah such that u − e^ D ∈ K(H)} con el objeto de obtener una descripción concreta de las curvas cortas en la órbitas de unitarios Fredholm O b = {e ^K be^ {−K} : K ∈ K(H) ah } de un operador compacto Hermitiano b con multiplicidad espectral 1. Para ello, consideramos la distancia rectificable en O b dada por el ínfimo de las longitudes de arco en la métrica Finsler, la cual se define en el espacio cociente K(H)^ah /D(K(H)^ah ), donde el supraíndice indica "anti-Hermitiano" y D(K(H)^ah ) es el subconjunto de operadores compactos minimales anti- Hermitianos. Luego, para cada c ∈ O b y cada vector x en el espacio tangente T (O b ) c existe una levantada minimal Z 0 ∈ B(H) ^ah, no necesariamente compacta, tal que γ(t) = e^{tZ 0} c e^{−tZ 0} es una curva corta en O b para algún intervalo. Exhibimos algunos ejemplos que satisfacen lo anterior, los cuales nos motivaron a estudiar el grupo U k,d mancionado anteriormente.
URI: https://rid.unrn.edu.ar/jspui/handle/20.500.12049/3647
Aparece en las colecciones: Objetos de conferencia

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
poster vertical.pdf338,35 kBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899