Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/5968

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLaiglecia, Juan Ignacio-
dc.contributor.authorEstrada, Vanina-
dc.contributor.authorVidal, Rebeca-
dc.contributor.authorFlorencio, Francisco J.-
dc.contributor.authorGuerrero, Miguel G.-
dc.contributor.authorDíaz, María Soledad-
dc.date.accessioned2020-09-21T16:27:51Z-
dc.date.available2020-09-21T16:27:51Z-
dc.date.issued2013-02-
dc.identifier.urihttp://rid.unrn.edu.ar/handle/20.500.12049/5968-
dc.language.isoen_USes_ES
dc.relation.ispartofAssociazione Italiana Di Ingegneria Chimicaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.titleDynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol productiones_ES
dc.typeObjeto de conferenciaes_ES
dc.rights.licenseCreative Commons Attribution 4.0 International (CC BY 4.0)-
dc.description.filiationLaiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentinaes_ES
dc.description.filiationEstrada, Vanina. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentinaes_ES
dc.description.filiationVidal, Rebeca. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. Españaes_ES
dc.description.filiationFlorencio, Francisco J. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. Españaes_ES
dc.description.filiationGuerrero, Miguel G. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. Españaes_ES
dc.description.filiationDíaz, María Soledad. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentinaes_ES
dc.subject.keywordDynamic Optimizationes_ES
dc.subject.keywordEthanol Productiones_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.subject.materiaIngeniería, Ciencia y Tecnologíaes_ES
dc.origin.lugarDesarrolloUniversidad Nacional del Sures_ES
dc.description.resumenWe present a Dynamic Flux Balance Analysis approach to study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 obtained by Vidal. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis under the control of the gene PetE promoter. The model includes two major components: (a) a dynamic model with mass balances for biomass, ethanol, nitrate, phosphate, internal nitrogen and phosphorus [2] , and (b) a steady state genome-scale metabolic Lineal Programming (LP) model of 466 metabolites and 495 metabolic reactions. The biomass equation includes limiting functions for light, temperature and nutrients, kinetics of growth inhibition by ethanol toxicity and the decrease in the available light by biomass concentration increase. For the intracellular representation, we have modified the metabolic model developed by Yoshikawa et al. [3] in order to include the reactions catalyzed by 2-OGDC and SSADH, as it has been recently shown that they close the TCA cycle. We formulate a dynamic optimization problem for ethanol production maximization subject to mass balance equations and the intracellular LP model. The problem is solved in GAMS through a simultaneous optimization approach. The model was validated with data obtained in experiments performed over 73 hours for mutant and wild type strains of Synechocystis in batch liquid cultures. Numerical results provide useful insights on ethanol production by the genetic modified strain within the context of genomic-scale cyanobacterial metabolism.es_ES
dc.type.subtypeResumenes_ES
Aparece en las colecciones: Objetos de conferencia

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
LAIGLECIA_2013_SCPPE_China.pdf36,06 kBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons