Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/5969

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLaiglecia, Juan Ignacio-
dc.contributor.authorLopez Negrete, Rodrigo-
dc.contributor.authorDíaz, María Soledad-
dc.contributor.authorBiegler, Lorentz-
dc.date.accessioned2020-09-21T16:33:52Z-
dc.date.available2020-09-21T16:33:52Z-
dc.date.issued2012-01-
dc.identifier.urihttp://focapo.cheme.cmu.edu/2012/proceedings/data/start.htm-
dc.identifier.urihttp://rid.unrn.edu.ar/handle/20.500.12049/5969-
dc.language.isoen_USes_ES
dc.relation.ispartofFOCAPO 2012/ CPC VIII Foundations on Computer Aided Process Operationses_ES
dc.relation.urihttp://focapo.cheme.cmu.edu/2012/proceedings/data/start.htmes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.titleA simultaneous dynamic optimization approach for natural gas processing plantses_ES
dc.typeObjeto de conferenciaes_ES
dc.rights.licenseCreative Commons Attribution 4.0 International (CC BY 4.0)-
dc.description.filiationLaiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentinaes_ES
dc.description.filiationLopez Negrete, Rodrigo. Department of Chemical Engineering, Carnegie Mellon University Pittsburgh. Pensilvania.es_ES
dc.description.filiationDíaz, María Soleda. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentinaes_ES
dc.description.filiationBiegler, Lorentz. Department of Chemical Engineering, Carnegie Mellon University Pittsburgh. Pensilvania.es_ES
dc.subject.keywordSimultaneous Dynamic Optimizationes_ES
dc.subject.keywordHeat Exchanger With Phase Changees_ES
dc.subject.keywordNatural Gas Plantes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.subject.materiaIngeniería, Ciencia y Tecnologíaes_ES
dc.origin.lugarDesarrolloUniversidad Nacional del Sures_ES
dc.description.resumenIn this work we address dynamic optimization of natural gas processing plants through the use first principle models and full discretization of both control and state variables. The optimization problem includes rigorous models for cryogenic countercurrent heat exchangers with partial phase change, separation tanks, distillation columns and turboexpanders. Thermodynamic predictions are made with a cubic equation of state. The partial differential algebraic equation system is transformed into ordinary differential-algebraic equations (DAEs) by applying the method of Lines for the spatial coordinate in cryogenic heat exchangers. The resulting optimization problem is formulated and solved by applying orthogonal collocation on finite elements, and the large-scale Nonlinear Programming (NLP) problem is olved with a Newton-based Interior Point method. The objective is to switch between operating modes to minimize the offset between current ethane recovery and a set point value. Numerical results provide temporal and spatial profiles of controlled and manipulated variables, while fulfilling specific path constraints associated to ethane extraction processes. In particular, the tight integration between process units as well as path constraints has been efficiently handled with low computational time.es_ES
dc.type.subtypeDocumento de ponenciaes_ES
Aparece en las colecciones: Objetos de conferencia

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
FOCAPO 2012 - Laiglecia, Negrete, Díaz y Biegler.pdf790,91 kBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons