Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/6083

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorItovich, Griselda Rut-
dc.contributor.authorGentile, Franco Sebastian-
dc.contributor.authorMoiola, Jorge Luis-
dc.date.accessioned2020-10-05T13:14:27Z-
dc.date.available2020-10-05T13:14:27Z-
dc.date.issued2018-08-01-
dc.identifier.urihttps://icm2018.impa.br/portal/proceedings.html-
dc.identifier.urihttp://rid.unrn.edu.ar/handle/20.500.12049/6083-
dc.language.isoen_USes_ES
dc.relation.ispartofInternational Congress of Mathematicians - ICM2018es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/-
dc.titleDynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency methodes_ES
dc.typeObjeto de conferenciaes_ES
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)-
dc.description.filiationItovich, Griselda Rut. Universidad Nacional de Río Negro. Escuela de Producción, Tecnología y Medio Ambiente. Río Negro. Argentinaes_ES
dc.description.filiationGentile, Franco Sebastian. Universidad Nacional del Sur. Departamento de Matemática. Buenos Aires. Argentina.es_ES
dc.description.filiationGentile, Franco Sebastian. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.es_ES
dc.description.filiationMoiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Buenos Aires. Argentina.es_ES
dc.description.filiationMoiola, Jorge Luis. Instituto de Investigaciones en Ingeniería Eléctrica (IIIE - CONICET). Buenos Aires. Argentina.es_ES
dc.subject.keywordDelay Differential Equationses_ES
dc.subject.keywordStabilityes_ES
dc.subject.keywordBifurcationes_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.subject.materiaCiencias Exactas y Naturaleses_ES
dc.subject.materiaIngeniería, Ciencia y Tecnologíaes_ES
dc.origin.lugarDesarrolloUniversidad Nacional de Río Negroes_ES
dc.origin.lugarDesarrolloUniversidad Nacional del Sures_ES
dc.description.resumenDynamic analysis of a double Hopf 1:2 resonance in a delay differential equation via a frequency-domain method. It is considered a second order differential equation with one delay and a quadratic nonlinearity, which includes three additional parameters. This model exhibits two equilibrium points, whose stability was analyzed completely. Besides, some particular parameter configurations were found where some different resonant double Hopf bifurcations take place, in particular of type 1:2. It is known that in a neighborhood of this singularity, limit cycles with frequency ω or 2ω appear singly but also simultaneously. Moreover, the existence of period doubling bifurcations of cycles is frequent in the described context. Related with harmonic balance methods and dynamic systems control, the frequency domain methodology allows, via the graphical Hopf bifurcation theorem, the detection of Hopf bifurcations and the attainment of approximate expressions for the rising of periodic solutions. Thus, different dynamic features were analyzed in the unfolding of this singularity like: the number of existing limit cycles associated to one or other frequency as well as the cycles stability over the Hopf bifurcations curves. Also, saddle-node, period-doubling and torus (or Neimark-Sacker) bifurcations of cycles were detected and their associated curves were obtained in some parameter plane. These results were established starting from fourth order harmonic balance approximations of the periodic solutions, coming through the selected methodology. Then, one Tchebyschev collocation method is applied to build a finite approximation of the monodromy operator and finally the relevants Floquet multipliers were computed. All the achieved results were checked with those coming from well-known softwares for delay differential equations, showing the local effectiveness of the used method.es_ES
dc.type.subtypeResumenes_ES
Aparece en las colecciones: Objetos de conferencia

Archivos en este ítem:
Archivo Descripción Tamaño Formato  
Itovich_Gentile_Moiola.pdf18,49 kBAdobe PDFVisualizar/Abrir

Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons