Por favor, use este identificador para citar o enlazar este ítem:
http://rid.unrn.edu.ar/handle/20.500.12049/7402
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Haag, Maurício Barcelos | - |
dc.contributor.author | Moncinhatto, Thiago Ribas | - |
dc.contributor.author | Sommer, Carlos Augusto | - |
dc.contributor.author | Savian, Jairo Fransciso | - |
dc.contributor.author | Caselli, Alberto Tomás | - |
dc.contributor.author | Ferreira da Trindade, Ricardo Iván | - |
dc.contributor.author | Hartmann, Gelvam André | - |
dc.contributor.author | Poletti, Wilbor | - |
dc.date.accessioned | 2021-07-30T12:14:35Z | - |
dc.date.available | 2021-07-30T12:14:35Z | - |
dc.date.issued | 2020 | - |
dc.identifier.other | https://meetingorganizer.copernicus.org/EGU2020/EGU2020-2704.html | es_ES |
dc.identifier.uri | http://rid.unrn.edu.ar/handle/20.500.12049/7402 | - |
dc.language.iso | en | es_ES |
dc.relation.uri | https://www.egu2020.eu/ | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | - |
dc.title | Source area and emplacement conditions of Riscos Bayos Ignimbrites, Caviahue-Copahue Volcanic Complex (Argentina) | es_ES |
dc.type | Objeto de conferencia | es_ES |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | - |
dc.description.filiation | Haag, Maurício. Universidade Federal do Rio Grande do Sul. Brasil. | es_ES |
dc.description.filiation | Moncinhatto, Thiago. Universidade de São Paulo. Brasil. | es_ES |
dc.description.filiation | Sommer, Carlos. Universidade Federal do Rio Grande do Sul. Brasil. | es_ES |
dc.description.filiation | Savian, Jairo. Universidade Federal do Rio Grande do Sul. Brasil. | es_ES |
dc.description.filiation | Caselli, Alberto. Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina. | es_ES |
dc.description.filiation | Trindade, Ricardo. Universidade de São Paulo. Brasil. | es_ES |
dc.description.filiation | Hartmann, Gelvam. Universidade Estadual de Campinas. Argentina. | es_ES |
dc.description.filiation | Poletti, Wilbor. Universidade Federal dos Vales do Jequitinhonha e Mucuri. Brasil. | es_ES |
dc.subject.keyword | Source Area | es_ES |
dc.subject.keyword | Caviahue-Copahue Volcanic Complex | es_ES |
dc.subject.keyword | Riscos Bayos Ignimbrites | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.subject.materia | Ciencias Exactas y Naturales | es_ES |
dc.origin.lugarDesarrollo | Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. | es_ES |
dc.description.resumen | The Caviahue-Copahue Volcanic Complex (CCVC, Argentina) composes one of the most active volcanic centers in the Southern Volcanic Zone (SVZ) of the Andes, characterized by the presence of voluminous explosive and effusive deposits. Despite its young age (< 5 Ma), CVCC deposits were strongly affected by two glaciations, leading to the removal of a considerable volume of the original deposits, requiring alternative techniques for the reconstruction of this volcanic center. The Riscos Bayos Ignimbrites (RBI) consist of a sequence of non-welded ignimbrites, located approximately 15 km southeast of the CVCC. This unit is commonly associated with the putative collapse of Caviahue caldera (15 x 20 km, 1 km deep) during the Pleistocene, although the source area and emplacement conditions of RBI still poorly constrained. In this work, we combine fieldwork, anisotropy of magnetic susceptibility (AMS, 23 sites) and rheological analyses (17 samples) in order to trace RBI source region and constrain its emplacement conditions, addressing its relevance to CVCC evolution. Rheological parameters, including viscosity, glass transition temperature, and liquidus temperatures were obtained using numerical models available from the literature, while AMS samples were measured using a Kappabridge MFK1-A (Agico) and the data processed using Anisoft5 (Agico). The magnetic mineralogy was characterized using several experiments, including isothermal remanet magnetization, thermomagnetic curves, hysteresis loops, first-order reversal curves and scanning electron microscopy. Our data indicate liquidus temperatures ranging from 969 to 1100 oC, glass transition temperatures from 653 to 721 oC, and viscosity (at liquidus temperature) from 3.4 to 7.3 log Pa.s. The absence of welding features in the samples implies RBI emplacement at temperatures below the glass transition temperature, suggesting a fast and effective cooling of the pyroclasts before their settling. The low crystal content of the samples suggests eruption temperatures close to the calculated liquidus temperature of the melt. AMS directional analyses indicate a consistent transport sense to SSE (Az of approximately 100o), implying the southern rim of the CVCC as the main source region of RBI. Magnetic experiments show primary, multi-domain, high curie temperature (580 oC) titanomagnetites as the main carriers of the AMS signal. Most ellipsoids display oblate to triaxial geometry, with a low degree of anisotropy (< 5%) and magnetic susceptibility (1.0 x 10-2 SI). The low welding degree of RBI units and its geographic distribution outside the Caviahue depression contributes to the Caviahue caldera hypothesis in the region, suggesting its emplacement as an ‘extra-caldera’ pyroclastic unit. | es_ES |
dc.identifier.doi | https://doi.org/10.5194/egusphere-egu2020-2704 | - |
dc.relation.journalTitle | EGU General Assembly 2020 | es_ES |
dc.type.subtype | Resumen | es_ES |
Aparece en las colecciones: | Objetos de conferencia |
Archivos en este ítem:
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2020 Hagg et al EGU2020-2704-print.pdf | 292,94 kB | Adobe PDF | Visualizar/Abrir |
Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons