Por favor, use este identificador para citar o enlazar este ítem:
http://rid.unrn.edu.ar/handle/20.500.12049/8459
Título: | Autonomous real-time science-driven follow-up in the era of LSST |
Autor(es): | Srava, Niharika Milisavljevic, Dan Subrayan, Bhagya Weil, Kathryn Lentner, Geoffrey Linvill, Marie Louise Banovetz, John Reynolds, Jamie D. Wright, Aidan K. Andrews, Michael Markey, Carleen Earnhardt, Allison N. Lee, R. Townsend, Jonathan P Dickinson, Daniel J. Parker, Stephanie Margutti, Raffaella Chornock, Ryan Moriya, Takashi Bersten, Melina Orellana, Mariana Dominga |
Fecha de publicación: | ene-2021 |
Revista: | Bulletin of the AAS |
Resumen: | The deluge of data from time-domain surveys is rendering traditional human-guided data collection and inference techniques impractical. In order to maximize the science potential of surveys and follow-up resources, autonomous systems reacting in real-time to maximize diverse science goals are needed. We designate the class of systems that strategize and coordinate value-driven follow-up in real-time ORACLEs (Object Recommender for Augmentation and Coordinating Liaison Engine) and demonstrate key underlying principles in a prototype ORACLE called Recommender Engine For Intelligent Transient Tracking (REFITT). REFITT is an autonomous real-time decision support and resource allocation system that ingests live alerts from surveys and value-added inputs from data brokers, and using machine-learning based predictive modeling for sparse multi-channel time-series strategizes, optimal follow-up using value-based metrics. We validate the performance of REFITT given simulated core-collapse supernova light-curves from the Rubin Observatory Legacy Survey of Space and Time, and value-added inputs from data brokers. We suggest that ORACLEs like REFITT are an essential component in the broader software infrastructure necessary to support survey science. |
URI: | http://rid.unrn.edu.ar/handle/20.500.12049/8459 |
Otros enlaces: | https://baas.aas.org/pub/2021n1i211p05/release/1 https://ui.adsabs.harvard.edu/abs/2021AAS...23721105S/abstract |
Aparece en las colecciones: | Objetos de conferencia |
Archivos en este ítem:
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Sravan_AAS2021.pdf | Bulletin of the AAS • Vol. 53, Issue 1 (AAS237 abstracts) | 41,28 kB | Adobe PDF | Visualizar/Abrir |
Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons