



# Desigualdad de Buzano generalizada

Tamara Bottazzi

CONICET-CITECCA-UNRN (Sede Andina-Bariloche)

09-2022

#### Introducción

Sea  $(\mathcal{H}, \langle \cdot, \cdot \rangle)$  un espacio con producto interno sobre  $\mathbb{C}$  ó  $\mathbb{R}$ . La siguiente es la bien conocida desigualdad de Cauchy-Schwarz

$$|\langle x, y \rangle| \le ||x|| ||y||$$
, para todo  $x, y \in \mathcal{H}$  (1)

La igualdad en (1) se alcanza si y sólo si existe  $\alpha \in \mathbb{C}$  (o  $\mathbb{R}$ ) tal que  $x=\alpha y$ .

En 1974, María Luisa Buzano brindó la siguiente extensión de (1)

$$|\langle x, z \rangle \langle z, y \rangle| \le \frac{1}{2} (|\langle x, y \rangle| + ||x|| ||y||) ||z||^2, \tag{2}$$

para cada  $x, y, z \in \mathcal{H}$ . Observar que si z = y se tiene (1).

#### **Preliminares**

- $ightharpoonup (\mathcal{H}, \langle, \rangle)$  es un espacio de Hilbert separable.
- $ightharpoonup \mathcal{B}(\mathcal{H})$  es el espacio de los operadores lineales y acotados de  $\mathcal{H}$ , dotado con la norma usual

$$||T|| = \sup_{\|x\|=1} ||Tx||, \ \forall \ T \in \mathcal{B}(\mathcal{H}).$$

- ▶ I es el operador identidad en  $\mathcal{B}(\mathcal{H})$ .
- ▶ T es un operador positivo,  $T \ge 0$ , si  $\langle Tx, x \rangle \ge 0$  para todo  $x \in \mathcal{H}$ . Denotamos con  $\mathcal{B}(\mathcal{H})^+$  el subconjunto de todos los operadores positivos de  $\mathcal{B}(\mathcal{H})$ .
- ► El rango numérico de *T* es

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1 \},$$

con lo cual el radio numérico se define como

$$\omega(T) = \sup\{|\lambda| : \lambda \in W(T)\}.$$



#### Resumen de los resultados

## Objetivo: Generalizar y refinar la desigualdad de Buzano

- 1. de  $\alpha=2$  a cualquier  $\alpha\in\mathbb{C}-\{0\}$  con una demostración más sencilla que la original, inspirados por Fuji y Kubo en [FK1993], que usaron proyecciones ortogonales y (1).
- 2. Si  $P = z \otimes z$  con  $z \in \mathcal{H}$ , entonces

$$\langle Px, y \rangle = \langle x, z \rangle \langle z, y \rangle$$

para todo  $x,y\in\mathcal{H}$ . La idea es generalizar a otros operadores P y ver cuáles podrían cumplir dicha desigualdad.

Importancia de la desigualdad: Aplicaciones para acotar y estimar el radio numérico de un operador/matriz.

En particular, cuando  $T = x \otimes y$ , tenemos que

$$|\left\langle Tz,z\right\rangle |=|\left\langle x,z\right\rangle \left\langle z,y\right\rangle |\leq \frac{1}{2}\big(|\left\langle x,y\right\rangle |+\|x\|\|y\|\big)\|z\|^2,$$

tomando supremo entre todos los  $z \in \mathcal{H}$ ,  $\|z\| = 1$ , queda

$$\omega(T) \leq \frac{1}{2}(|\langle x, y \rangle| + ||x|| ||y||).$$

La igualdad de Buzano se alcanza para un z determinado, según [FK1993], con lo cual se deduce que

$$\omega(T) = \frac{1}{2}(|\langle x, y \rangle| + ||x|| ||y||),$$

# $\frac{1}{\alpha}$ -Desigualdad de Buzano

#### Proposición

Sean  $x, y, z \in \mathcal{H}$  con ||z|| = 1 y  $\alpha \in \mathbb{C}$ , entonces

$$|\alpha\langle x, z\rangle\langle z, y\rangle - \langle x, y\rangle| \le \max\{1, |\alpha - 1|\} ||x|| ||y||.$$
 (3)

**Demo:** Usar el operador  $T = \alpha(z \otimes z)$  y  $u \in \mathcal{H}$  con ||u|| = 1:

$$||Tu - u||^2 = (|\alpha - 1|^2 - 1)|\langle z, u \rangle|^2 + ||u||^2 \le \max\{1, |\alpha - 1|^2\}||u||^2.$$

Por lo tanto  $\|T - I\| \le \max\{1, |\alpha - 1|\}$  y

$$\begin{aligned} |\alpha\langle x,z\rangle\langle z,y\rangle - \langle x,y\rangle| &= |\langle (T-I)x,y\rangle| \\ &\leq \|T-I\|\|x\|\|y\| \leq \max\{1,|\alpha-1|\}\|x\|\|y\|. \end{aligned}$$

Si  $\alpha \neq 0$  lo obtenido es equivalente a

$$\left|\langle x,z\rangle\langle z,y\rangle-\frac{1}{\alpha}\langle x,y\rangle\right|\leq\frac{1}{|\alpha|}\max\{1,|\alpha-1|\}\|x\|\|y\|.$$

y por continuidad del módulo de los números complejos nos queda

$$|\langle x, z \rangle \langle z, y \rangle| \leq \frac{1}{|\alpha|} (|\langle x, y \rangle| + \max\{1, |\alpha - 1|\} ||x|| ||y||),$$

para cada  $x,y,z\in \mathcal{H}$  con  $\|z\|=1.$ 

Cuando  $\alpha=2$  Tenemos la Clásica desigualdad de Buzano (2).

- ► La idea principal en la demo anterior fue obtener una cota para la distancia entre *T* (de rango 1) e *I*.
- ▶ En [FK1993], la demo del caso  $\alpha=2$  usaron que  $\|2P-I\|\leq 1$ , siendo P una proyección ortogonal determinada.
- Ahora pensamos en llevar esta desigualdad a otros tipos de operadores en  $\mathcal{B}(\mathcal{H})$  que la cumplan.

## Teorema (Buzano Generalizado)

Sean  $T \in \mathcal{B}(\mathcal{H})$  y  $\alpha \in \mathbb{C} - \{0\}$ , con  $\|\alpha T - I\| \le 1$ . Entonces, para cada  $x, y \in \mathcal{H}$ 

$$\left| \langle Tx, y \rangle - \frac{1}{\alpha} \langle x, y \rangle \right| \le \frac{1}{|\alpha|} ||x|| ||y||, \tag{4}$$

У

$$|\langle Tx, y \rangle| \le \left| \langle Tx, y \rangle - \frac{1}{\alpha} \langle x, y \rangle \right| + \frac{1}{|\alpha|} |\langle x, y \rangle| \le \frac{1}{|\alpha|} (|\langle x, y \rangle| + ||x|| ||y||).$$
(5)

**Demo:** Sean  $x,y\in\mathcal{H}$  y  $\alpha\in\mathbb{C}-\{0\}$ , con  $\|\alpha T-I\|\leq 1$ . Por C-S tenemos que

$$\begin{split} \left| \langle Tx, y \rangle - \frac{1}{\alpha} \langle x, y \rangle \right| &= \left| \left\langle \left( T - \frac{1}{\alpha} I \right) x, y \right\rangle \right| \leq \frac{1}{|\alpha|} \, \|\alpha T - I\| \, \|x\| \|y\| \\ &\leq \frac{1}{|\alpha|} \|x\| \|y\|. \end{split}$$

Por lo tanto,

$$|\langle \mathit{Tx}, y \rangle| \leq \left| \langle \mathit{Tx}, y \rangle - \frac{1}{\alpha} \langle x, y \rangle \right| + \frac{1}{|\alpha|} |\langle x, y \rangle| \leq \frac{1}{|\alpha|} (|\langle x, y \rangle| + ||x|| ||y||).$$

# La condición $\|\alpha T - I\| \le 1$

No todo operador T cumple que existe  $\alpha \neq 0$  tal que  $\|\alpha T - I\| \leq 1$ : Consideremos el *shift* a izquierda,  $T: I^2(\mathbb{N}) \to I^2(\mathbb{N}), \ T(x_1, x_2, x_3, \cdots,) = (0, x_1, x_2, x_3, \cdots)$  y  $e_1 = (1, 0, 0, \cdots) \in I^2(\mathbb{N})$ , con  $\|e_1\| = 1$  y  $\langle -Te_1, e_1 \rangle = 0$ . Entonces, por Teorema 2.1 en [BB2012], tenemos que para cada  $\alpha \in \mathbb{C} - \{0\}$ 

$$||I||^2 + |\alpha|^2 m^2 (-T) \le ||I - \alpha T||^2.$$

con  $m(-T)=m(T)=\inf\{\|Tx\|: x\in\mathcal{H}, \|x\|=1\}>0$  pues T es inversible a izquierda, con lo cual

$$1 < ||I||^2 + |\alpha|^2 m^2 (-T) \le ||I - \alpha T||^2.$$

(Todos los T tales que  $I \perp_{BJ} T$  cumplen  $1 \leq \|\alpha T - I\|$  para todo  $\alpha \in \mathbb{C}$ ).



Por conveniencia, para  $lpha\in\mathbb{C}-\{0\}$  denotamos como

$$\mathcal{A}_{\alpha} = \{ T \in \mathcal{B}(\mathcal{H}) : \|\alpha T - I\| \le 1 \},\$$

el conjunto de todos los operadores que satisfacen el Teorema principal

A continuación, algunas propiedades básicas de  $\mathcal{A}_{lpha}$ .

### Proposición

Sea  $\alpha \in \mathbb{C} - \{0\}$ , entonces

1.  $A_{\alpha}$  es un conjunto no vacío, cerrado y convexo de  $\mathcal{B}(\mathcal{H})$ .

Además, para cada  $T \in \mathcal{A}_{lpha}$ ,

- 2.  $||T|| \leq \frac{2}{|\alpha|}$ .
- 3.  $T^* \in \mathcal{A}_{\overline{\alpha}}$ .
- 4. Si  $S \in \mathcal{A}_{\alpha}$ , entonces  $T + S \in \mathcal{A}_{\frac{\alpha}{2}}$ .
- 5.  $Si \|\alpha T I\| < 1$ , entonces T es inversible.
- 6. Si T es compacto y autoadjunto, entonces  $T \ge 0$  o  $-T \ge 0$ .

## Proposición (Pos)

Sea 
$$T \in \mathcal{B}(\mathcal{H})^+ - \{0\}$$
, entonces  $T \in \mathcal{A}_{\frac{2}{\|T\|}}$ ,

$$\left| \langle Tx, y \rangle - \frac{\|T\|}{2} \langle x, y \rangle \right| \le \frac{\|T\|}{2} \|x\| \|y\|,$$

У

$$|\langle Tx, y \rangle| \leq \left| \langle Tx, y \rangle - \frac{\|T\|}{2} \langle x, y \rangle \right| + \frac{\|T\|}{2} |\langle x, y \rangle|$$
  
$$\leq \frac{\|T\|}{2} (|\langle x, y \rangle| + \|x\| \|y\|),$$

**Demo:** Es consecuencia directa del Teorema de Buzano generalizado y de que  $T \in A_{\frac{2}{11T1}}$  [H2009].

Recordemos que T es una contracción positiva si  $0 \le T \le I$ .

#### Teorema

Sea  $T \in \mathcal{B}(\mathcal{H})$  una contracción positiva. Entonces,  $T \in \mathcal{A}_2$ ,

$$\left| \langle Tx, y \rangle - \frac{1}{2} \langle x, y \rangle \right| \le \frac{1}{2} ||x|| ||y||$$

y además

$$|\langle Tx, y \rangle| \leq \left| \langle Tx, y \rangle - \frac{1}{2} \langle x, y \rangle \right| + \frac{1}{2} |\langle x, y \rangle| \leq \frac{1}{2} (|\langle x, y \rangle| + ||x|| ||y||),$$

para cada  $x, y \in \mathcal{H}$ .

**Demo**: Como 2T-I es autoadjunto, entonces  $\omega(2T-I)=\|2T-I\|$ . Por otro lado,  $W(2T-I)=\{2\langle Tx,x\rangle-1:x\in\mathcal{H},\|x\|=1\}\subseteq[-1,1].$  Luego,  $T\in\mathcal{A}_2$  y se cumple el Teo. de Buzano generalizado.

#### Observación

Siguiendo la idea de la demo anterior se puede probar que si  $T \in \mathcal{B}(\mathcal{H})^+$ , entonces  $T \in \mathcal{A}_{\alpha}$  para cada  $0 < \alpha \leq \frac{2}{\|T\|}$ .

Para  $P=z\otimes z$ , con  $z\in \mathcal{H}$  y  $\|z\|=1$ , usando las desigualdades anteriores

$$|\langle x, z \rangle \langle z, y \rangle| \leq \left| \langle x, z \rangle \langle z, y \rangle - \frac{1}{2} \langle x, y \rangle \right| + \frac{1}{2} |\langle x, y \rangle|$$
$$\leq \frac{1}{2} (|\langle x, y \rangle| + ||x|| ||y||),$$

para cada  $x,y\in\mathcal{H}$ . Esto es un refinamiento de la desigualdad de Buzano Clásica.

Si S es subespacio cerrado de  $\mathcal{H}$ , entonces  $P=P_{\mathcal{S}}^2=P_{\mathcal{S}}=P_{\mathcal{S}}^*$  es la proyección ortogonal sobre S, y es contracción positiva con  $\|P\|=1$ . Podemos generalizar la desigualdad (6) a una suma de dos proyecciones ortogonales.

#### Proposición

Sean  $P_{\mathcal{T}}, P_{\mathcal{S}}$  proyecciones ortogonales sobre  $\mathcal{T}$  y  $\mathcal{S}$ , subespacios cerrados de  $\mathcal{H}$ . Entonces, para cada  $x, y \in \mathcal{H}$ ,

$$\left| \langle (P_{\mathcal{T}} + P_{\mathcal{S}})x, y \rangle - \frac{1 + \|P_{\mathcal{T}}P_{\mathcal{S}}\|}{2} \langle x, y \rangle \right| \leq \frac{1 + \|P_{\mathcal{T}}P_{\mathcal{S}}\|}{2} \|x\| \|y\|,$$

y la (7) también se puede llevar a este contexto.

**Demo:** Observemos que  $P_T + P_S \in \mathcal{B}(\mathcal{H})^+$ . También tenemos la igualdad de Duncan-Taylor [DT1975],

$$||P_{\mathcal{T}} + P_{\mathcal{S}}|| = 1 + ||P_{\mathcal{T}}P_{\mathcal{S}}||.$$

Entonces, por Prop. (Pos) el resultado sigue.



#### **Aplicación**

Refinamientos de cotas para el radio numérico:

### Proposición

Sea  $T \in \mathcal{B}(\mathcal{H})$  con descomposición polar  $T = V(T^*T)^{1/2}$  . Entonces,

$$\omega(T) \le \frac{\|T\|}{2} \left(1 + \omega(V)\right) \le \|T\| \tag{6}$$

У

$$\omega(T) - \frac{\|T\|}{2} \le \frac{\|T\|}{2} \omega(V). \tag{7}$$

**Demo:** Observemos que  $|\langle Tx, y \rangle| = |\langle (T^*T)^{1/2}x, V^*y \rangle|$  y usando la Prop.(Pos) llegamos a que

$$|\langle Tx, y \rangle| \leq \frac{\|T\|}{2} (|\langle x, V^*y \rangle| + \|x\| \|V^*y\|).$$

Tomando y=x y el supremo sobre todos los  $x\in\mathcal{H}$  con  $\|x\|=1$  deducimos que  $\omega(T)\leq \frac{\|T\|}{2}(1+\omega(V))$ .

# Cuestiones pendientes

- lacktriangle Profundizar el estudio de  ${\cal A}_lpha$  en vías de una caracterización.
- Usar estas desigualdades en la obtención de nuevas cotas para  $\omega(T)$ , siendo T la matriz compañera de un polinomio  $p(z) \in \mathbb{C}[z]$  [FK1993].

# Agradecimientos

- ► UNRN: mi presentación fue financiada por el PI UNRN 2020 40-B-906 y el PICT 2017-0019
- CONICET.
- ► ANPCyT.
- ► Especialmente a todos los presentes!!! :)

# Referencias (lista abreviada)

- BB2012 M. Barraa y M. Boumazgour, A note on the orthogonality of bounded linear operators. Funct. Anal. Approx. Comput. 4 (2012), no. 1, 65–70.
- Bu1974 M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. e Politech. Torino 31 (1974), 405-409.
- Dra2016 S.S. Dragomir, *Buzano's inequality holds for any projection* Bull. Aust. Math. Soc. 93 (2016), no. 3, 504–510.
- DT1975 J. Duncan y P. J. Taylor, *Norm inequalities for C\*-algebras*, Proc. Roy. Soc. Edinburgh Sect. A 75 (1975/76), no. 2, 119–129.
- FK1993 M. Fujii y F. Kubo, *Buzano's inequality y bounds for roots of algebraic equations*, Proc. Amer. Math. Soc. **117** (1993), no. 2, 359–361.
  - H2009 O. Hirzallah, Commutator inequalities for Hilbert space operators, Linear Algebra Appl., 431 (2009), 9, 1571–1578.

