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R8336ATG Villa Regina, Argentina

Jorge L. Moiola
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Abstract. Two general schemes of neutral delay differential equations are

considered. They represent non delayed systems with delayed, nonlinear feed-

back control. The stability conditions in terms of system parameters are de-
rived using an approach based on feedback systems, namely, the Nyquist sta-

bility criterion. It is also shown that those results coincide with some already

found in the literature, and others derived here, which are based on classical
tools, that investigate directly the roots of characteristic equation. Finally,

some examples are given to illustrate the usefulness of this approach.

1. Introduction. The relevance of delay-differential equations (DDEs) in relation
with engineering problems increased enormously in recent years. One of the pio-
neer textbooks [16] analyzes a wide variety of such equations to solve stability and
oscillations problems in mechanics. Most of the contributions concerning DDEs
applied to engineering problems, deal with equations of retarded type, which are
those that do not present a time-delay in the highest-order derivative of the state
variable. Such equations are suitable for modelling a broad diversity of systems
in engineering and other areas. For example, an excellent review of the most rel-
evant problems in control systems with time-delay can be seen in [15]. However,
in the last few years, the importance of equations of the neutral type increased
considerably. Neutral delay-differential equations (NDDEs) are those in which the
rate of change of the system at present and past time values depends on present
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and past values of the states. A precise classification of delay-differential equations
can be found in [4]. Several authors arrived to NDDEs when modelling systems
in control and mechanical engineering ([20], [21] and [22]) and acoustics ([1], [17])
to mention only a few. In addition, when fast communications are required, the
transmission delays are not longer negligible, and also the communication channels
are modeled with distributed parameters, then NDDEs may also appear ([5], [10]
with implementation on numerical continuation routines in [2], [3]).

The theory of delay-differential equations of retarded type is, by far, much more
developed than the corresponding of equations of the neutral type. Even the stan-
dard numerical tools for bifurcation analysis, initially focused on retarded equations
only [7]. Later, a collocation scheme for numerical investigation of NDDEs was de-
veloped in [2] with great success in detecting period-doubled solutions in the route
to chaos [3]. By the same time, other techniques seem to be promissory in order
to deal with NDDEs [6] and the detection of stability regions. However, as faster
applications are required, it is expected that NDDEs will become an important
topic in engineering. For this reason, it is essential to develop analysis techniques
for NDDEs, which should include their stability and bifurcations.

Graphical tests were used in the past since the pioneering work of Tsypkin [18]
enabling the stability analysis for delayed feedback systems in a very original way.
That contribution improved necessary criterion to establish oscillations proposed
by Barkhausen, which is also still used [1] to delimit the border of instability. More
recently, other nearby approaches based on the Cauchy’s argument principle were
used for DDEs and NDDEs, giving the contributions in [8] and [20]. Following this
line, this paper aims to contribute by introducing an analytical technique based
on feedback systems, in order to help to understand the dynamical behavior of
NDDEs. This technique, namely the frequency-domain approach, was originally
developed for ordinary differential equations [11], [12] and then it was extended to
DDEs [9]. This approach can be modified to include NDDEs, by simple algebraic
manipulations and block algebra of feedback systems. The proposed methodology
is used to find the stability regions in the space of system parameters for two general
schemes of NDDEs, one of first differential order and another of second order. These
results are compared with those found using more classical techniques, namely, those
investigating the roots of the characteristic equation. For the first-order model, the
stability conditions derived here coincide with those already given in [19].

2. General models of NDDEs. Two different configurations of neutral delay-
differential equations with one delay will be considered. Even if these models are
scalar, their stability analysis is not straightforward, as will be seen in short. More-
over, many examples of NDDEs studied in the literature are particular cases of the
general structures analyzed below.

2.1. Model of first differential order. The objective is to study the stability
properties of the equilibrium point at x = 0, of the following nonlinear equation of
the neutral type

ẋ(t) + γx(t) = αẋ(t− τ) + βx(t− τ) + h (ẋ(t− τ), x(t− τ)) , (1)

where α 6= 0, β and γ > 0 are real parameters, τ > 0 is the time delay and h is a
nonlinear function such that it vanishes simultaneously with its first derivatives at
(0, 0). In case that h is a polynomial, it contains quadratic and higher order terms.
Notice that in (1), the delay affects the first time-derivative of the state (which is
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the highest time-derivative there) and the state itself, thus it is a NDDE. System (1)
can be represented in the feedback form

ẋ(t) = Ax(t) +Bg (y1(t), y2(t)) ,

y1(t) = y(t− τ), y2(t) = ẏ(t− τ),

y(t) = −Cx(t),

(2)

by choosing the constants A = −γ, B = 1, C = 1 and the nonlinear function
g = g(y1, y2) = −αy2 − βy1 + h(−y2,−y1), where, from (2), one has (y1, y2) =
(−x(t− τ),−ẋ(t− τ)). The representation (2) is equivalent to a feed-forward plant
described by the transfer function G(s) = C(sI−A)−1B plus a delay element given
by e−sτ , with a feedback g, as shown in Fig. 1. Notice that s is the complex variable
of the Laplace transform. Since the feedback depends on two variables (the delayed
output and its derivative), there are two inputs to this block. The plant G(s),
together with the delay element and the two-output split can be combined into a
single linear block given by

G∗(s) =
e−sτ

s+ γ

[
1
s

]
.

Thus, the configuration shown in Fig. 1 is equivalent to a single linear plant G∗

with a nonlinear feedback given by g.
Clearly, x = 0 is an equilibrium point of (1), which translates to (y1, y2) = (0, 0)

in the feedback representation. According to the frequency-domain approach [11],
[12], for the stability analysis, one must consider the Jacobian matrix J of g, com-
puted at the equilibrium, which in this case is simply

J =
[
∂g
∂y1

∂g
∂y2

]∣∣∣
(y1,y2)=(0,0)

= [−β − α] . (3)

Then, the Nyquist stability criterion (see [13]) can be applied to the only nonzero
eigenvalue of the matrix G∗(s)J , namely

λ(s) = − (β + αs)e−sτ

s+ γ
. (4)

In the so called “time-domain”, the stability of the equilibrium can be analyzed
via the following variational equation, obtained by linearization of (1) around the
origin

ẋ(t) + γx(t) = αẋ(t− τ) + βx(t− τ), (5)

by seeking for solutions of the form x(t) = cest, c ∈ R, c 6= 0, s ∈ C. Having such a
solution of (5) with s = iω, ω ∈ R, translates into the condition λ(iω) = −1 in the
“frequency-domain” representation. Moreover, by studying the geometrical locus
of λ(iω) using (4), one can analyze the stability of the equilibrium point.

(s)

g(y1,y2)

e-s

s

Figure 1. Block diagram representing system (1).
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Since γ > 0, the pole of λ at s = −γ lies in the left half plane. It means, according
to the Nyquist stability criterion [13], that the equilibrium is stable if the locus of
λ(iω) does not enclose the critical point −1 of the complex plane, whereas ω sweeps
from 0 to ∞, acting as a free parameter.

For example, since

|λ(iω)| = |β + iωα|
|γ + iω|

= |α| |β/α+ iω|
|γ + iω|

, (6)

it follows that |λ| → |α| when ω → ∞. Thus, if |α| > 1, the geometrical locus
encloses the point −1 infinitely many times, asymptotically approaching the cir-
cumference |λ| = |α|. Thus, a necessary stability condition is |α| < 1, which will be
assumed to hold hereinafter.

On the other hand, from (4), one has λ(0) = −β/γ. Thus, in addition to |α| < 1,
the condition −β/γ > −1⇒ β < γ must hold to ensure stability. On the contrary,
if β > γ, the point −1 will be encircled by the Nyquist locus, given that it starts on
the negative real axis, at the left of the critical point. Thus, if β > 0, the equilibrium
can loss its stability only via a static bifurcation. This fact is illustrated in Fig. 2.

Since γ > 0, it is simple to show from (6) that

• If γ > |β/α|, then |λ| is monotonously increasing and |β|/γ < |λ(iω)| < |α|.
• If γ < |β/α|, then |λ| is monotonously decreasing and |α| < |λ(iω)| < |β|/γ.

Both cases are illustrated in Fig. 3. If γ > |β/α|, since |λ| ≤ |α| < 1, the equilibrium
is stable (left diagram). On the contrary, if γ < |β/α|, Hopf bifurcations may occur,
as can be seen in the right diagram in Fig. 3. Finally, in case that γ = β/α, it
results |λ(iω)| = |α|, and the equilibrium is stable if and only if |α| < 1. In this
case, there is a zero-pole cancellation of λ(s), i.e., (4) reduces to λ(s) = −αe−sτ .
Under γ = β/α, it is possible to define a variable p(t) := ẋ(t)+γx(t) and (5) reduces
to p(t) = αp(t − τ), which is a difference equation. Defining also the discrete-time
variable p[n] = p(t) for (n − 1)τ < t < nτ , one obtains p[n] = αp[n − 1], and the
solution of this map is p[n] = αnp[0]. Thus, it follows that the equilibrium p = 0 is
stable if and only if |α| < 1.

From (4), the marginal stability condition λ(iω) = −1 can be written as

(β + αiω) e−iωτ = γ + iω, (7)

Figure 2. Left: Nyquist diagram with τ = 1, α = 0.5, β = 0.3
and γ = 0.5 (λ(0) = −0.6, stable equilibrium). Right: Nyquist
diagram with τ = 1, α = 0.5, β = 0.5 and γ = 0.3 (λ(0) ≈ −1.66,
unstable equilibrium).
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Figure 3. Nyquist diagrams for negative values of β. Left: τ = 3,
α = 0.5, β = −0.2 and γ = 0.8 (γ > |β|/α = 0.4). Right: τ = 3,
α = 0.5, β = −0.5 and γ = 0.3 (γ < |β|/α = 1). With β < 0, it is
possible to attain the Hopf bifurcation condition.

which gives β2 + α2ω2 = γ2 + ω2, and the critical frequency is obtained as

ω0 =
√

(β2 − γ2)/(1− α2), (8)

which exists if |β| > γ. The condition β = γ is necessary to produce a static
bifurcation, as can be seen letting ω = 0 in (7). Also from (7), it can be obtained

− ω0τ = arctan(ω0/γ)− arctan(αω0/β), (9)

which shows that ω0τ ∈ (0, π). Replacing (8) into (9), and fixing the values of τ and
γ, one obtains an implicit relationship that defines the Hopf bifurcation curves in
the (α, β) plane. Recall that α and β are control parameters. Thus, by knowing the
stability region/s in the (α, β) space, it allows to select appropriate parameter sets
in this space, making system (1) stable or unstable. However, (9) is still too complex
as to study the shape of those Hopf curves. As an alternative, separating (7) into
real and imaginary parts and by applying Cramer’s rule under ω 6= 0, it is not
difficult to find

β = γ cosωτ − ω sinωτ, (10a)

α = cosωτ + γ
sinωτ

ω
. (10b)

For constant values of γ and τ , (10) allows to plot the Hopf bifurcation curves in
the (α, β) plane, using ω as a free parameter, as displayed in Fig. 4 with τ = π and
γ = 0.8. The stability region is shaded in the enlarged diagram. This region is easily
identified by direct inspection of the Nyquist diagrams, where no encirclements of
the point −1 are observed.

If several values of τ are considered, the corresponding stability regions depicted
in Fig. 5 are obtained. In all cases, the upper boundary is given by β = γ, the side
boundaries by |α| = 1 and the bottom boundary depends on the delay τ , according
to (10a). Notice that as long as τ increases, the stability region becomes narrower.
In addition, (10) can be interpreted as follows: for each fixed value of α, let ω0 be the
smallest positive solution of (10b). Weedermann [19] showed that there is exactly
one solution ω0 of (10b) in the interval 0 < ωτ < π. Thus, the equilibrium is stable
if γ cosω0τ − ω0 sinω0τ < β < γ, |α| < 1. This result agrees with the one given
in [19], where it has been proved using a theorem developed by Pontryagin [14].
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Figure 4. Left: Hopf bifurcation curves in the (α, β) plane for
system (1) with τ = π and γ = 0.8. The straight line β = γ
is shown in dashed-dotted line. Right: Enlarged area where the
stability region is shaded.

Figure 5. Stability regions in the (α, β) plane for γ = 0.8 and
τ = π/2 (left), τ = π (center) and τ = 3π/2 (right).

2.2. Model of second differential order. It is now considered the equation:

ẍ(t) + γx(t) = αẍ(t− τ) + βx(t− τ) + h(ẍ(t− τ), x(t− τ)), (11)

where α 6= 0, β and γ > 0 are real parameters, τ > 0 is the time delay and h,
again, is a nonlinear function vanishing simultaneously with its first derivatives at
(0, 0). In order to represent (11) in a feedback form as in the previous case, one
may choose A = −γ, B = 1, C = 1 and g = g(y1, y2) = −αy2 − βy1 + h(−y2,−y1),
with (y1, y2) = (−x(t− τ),−ẍ(t− τ)). The block representation is shown in Fig. 6,
where G(s) = 1/(s2 + γ), and the output of the block G(s) is y = −x. This output
is affected by the time-delay, represented by the block e−sτ . Finally, this delayed
output splits into two signals, one of them affected by a second-order derivative,
exemplified here by s2. All these operations are linear, thus they can be combined

(s)

g(y1,y2)

e-s

s2

Figure 6. Block diagram for system (11).
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into a single transfer matrix given by

G∗(s) =
e−sτ

s2 + γ

[
1
s2

]
. (12)

Since one is interested in the stability properties of the equilibrium point at the
origin, the Jacobian matrix for g is the same as in (3), so the unique nonzero
eigenvalue of G∗(s)J is

λ(s) = − (β + αs2)e−sτ

s2 + γ
. (13)

The critical stability condition established by the Nyquist stability criterion, given
by λ(iω) = −1, reads

(β − αω2) e−iωτ = γ − ω2, (14)

or, after separating the real and imaginary parts,{
(β − αω2) cosωτ = γ − ω2,
(β − αω2) sinωτ = 0.

(15)

The second equation gives ω2 = β/α or ω = kπ/τ, k ∈ Z. If ω2 = β/α, it results
γ = β/α after replacing into the first equation. Notice that in this case, there is a
zero-pole cancellation in (13), and the characteristic function reduces to

λ(s)|γ=β/α = −αe−sτ , (16)

meaning that the geometrical locus lies in a circumference of radius |α|. Under this
particular combination of parameters, the equilibrium will be stable if |α| < 1 and
unstable (with infinitely many roots in the right-half plane) if |α| > 1. This stabil-
ity condition under this special situation can also be deduced from the linearized
equation of (11) around the equilibrium at x = 0, namely

ẍ(t) + γx(t) = αẍ(t− τ) + βx(t− τ). (17)

If γ = β/α, and by defining the variable p(t) := ẍ(t) + γx(t), (17) reduces to
p(t) = αp(t − τ), which is the same map analyzed in the previous case (with a
stable fixed point if and only if |α| < 1). Hereinafter, it will be considered that
γ 6= β/α.

If ω = kπ/τ , k ∈ Z, in (15), it follows that [β − α (kπ/τ)
2
](−1)k = γ − (kπ/τ)

2
,

giving explicitly the Hopf bifurcation curves in the (α, β) plane for constant values
of γ and τ , by replacing k = 2n+ 1 or k = 2n, n ∈ Z, as follows:

• For odd k values: β = (α+ 1)(2n+ 1)2 (π/τ)
2 − γ.

• For even k values: β = (α− 1)(2n)2 (π/τ)
2

+ γ.

It is necessary to find the stability region (or regions) determined by these straight
lines. Since

|λ(iω)| = |β − αω
2|

|γ − ω2|
=
|α||ω2 − β/α|
|ω2 − γ|

, (18)

thus |λ| → |α| when ω →∞, while arg(λ) decreases linearly with the frequency. In
other words, for large enough values of ω, the locus of λ will turn around the origin,
approaching a circumference of radius |α|. If |α| > 1, the critical point −1 will be
enclosed infinitely many times. Then, a necessary stability condition is |α| < 1.

Since the poles of λ(s) lie on the imaginary axis, the stability analysis becomes
involved, because |λ| assumes arbitrarily large values when ω lies in a neighborhood
of
√
γ. Thus, a modified Nyquist contour must be considered, namely, adding a
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half-circumference described by s = i
√
γ + εeiθ, −π/2 ≤ θ ≤ π/2, with ε � 1,

in order to keep the poles outside of the contour. For values of s on this path,
|λ(s)| will assume large values, and it is necessary to study where this portion of
the Nyquist plot (the locus of λ(s)) will lie, to determine the stability region.

With s = i
√
γ+εeiθ, ε� 1, one has s2 = −γ+i2

√
γεeiθ+ε2ei2θ ' −γ+i2

√
γεeiθ,

and replacing into (13), it follows that

λ(s) ' −
(β − αγ + i2α

√
γεeiθ)e−i

√
γτe−ετe

iθ

i2
√
γεeiθ

. (19)

The calculations can be simplified by considering γ = 1 as a first approach, thus
the argument or phase of λ becomes

arg(λ) = π
2 + arctan

(
2αε cos θ

β − α− 2αε sin θ

)
− τ − ετ sin θ − θ.

The second term in the right-hand side not only depends on θ, but also on the rela-

tive values of α and β. Let ψ :=
{

0, β > α,
π, β < α, then one may compute lim

ε→0
arg(λ) =

π
2 − θ + ψ − τ. As long as θ increases, arg(λ) decreases, meaning that the locus of
λ rotates in the clockwise sense. As examples, Figs. 7(a)-(b) show the Nyquist
diagrams corresponding to γ = 1, τ = π/2, α = 0.5, β = 0.8 and γ = 1, τ = 3π/2,
α = 0.5, β = 0.8, respectively. In the diagram in Fig. 7(a), the equilibrium is
stable, since the poles of λ(s) lie outside of the Nyquist contour and there are no
encirclements around the critical point −1. On the contrary, in the case depicted in
Fig. 7(b), the equilibrium is unstable, since the locus of λ encloses almost the whole
left half plane when ε → 0. The Nyquist diagram has two asymptotes, given by
arg(λ) = π + ψ − τ (with θ = −π/2) and arg(λ) = ψ − τ (with θ = π/2), following
the definition of ψ when β > α or β < α. Observe that with γ = 1 and τ = nπ,
n ∈ N, the equilibrium is always unstable since the asymptotes are parallel to the
real axis, thus the Nyquist diagram encloses it completely.

(a) (b)

Figure 7. (a) Nyquist diagram (and an enlarged area near the
origin) with γ = 1, τ = π/2, α = 0.5 and β = 0.8. As β > α, ψ = 0
and the asymptotes are arg(λ) = π−τ and arg(λ) = −τ . For great
enough frequencies, the curve lies on the circumference |λ| = |α| =
0.5. (b) Nyquist diagram (and its corresponding enlargement) with
γ = 1, τ = 3π/2, α = 0.5 and β = 0.8. Since β < α, ψ = π and
the asymptotes are arg(λ) = 2π − τ and arg(λ) = π − τ .

The former calculations can be easily generalized for an arbitrary positive value
of γ in (19). In the following analysis, the diagrams shown in Fig. 8 are relevant.
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Using (19), one obtains lim
ε→0

arg(λ) = π
2 −θ+φ−√γτ, where φ :=

{
0, β > αγ,
π, β < αγ.

One needs to consider two cases:

• With β > αγ: One has φ = 0, and arg(λ) decreases from π −√γτ to −√γτ .
Observing the right diagram in Fig. 8, a necessary stability condition can be
deduced graphically, that is, the plot must not enclose the whole negative
real axis. Mathematically, this necessary stability condition can be stated as
−π < −√γτ < 0. Since

√
γτ not necessarily belongs to (0, π), this condition

can be expressed in a general case as −(2n+ 1)π < −√γτ < −2nπ, i.e.,

2nπ <
√
γτ < (2n+ 1)π, n ∈ N ∪ {0} . (20)

The right diagram in Fig. 8 displays a situation in which (20) holds. On the
contrary, if (2n− 1)π <

√
γτ < 2nπ, n ∈ N, the equilibrium is unstable, since

the negative real axis is completely enclosed by the Nyquist plot.
• With β < αγ: One has φ = π, and arg(λ) decreases from 2π − √γτ to
π − √γτ (see the center diagram in Fig. 8). This case is analogous, but
complementary, of the former one. To prevent the Nyquist plot enclosing
completely the negative real axis, the necessary stability condition becomes
−π < π −√γτ < 0, which implies π <

√
γτ < 2π. In general form, it can be

expressed as
(2n− 1)π <

√
γτ < 2nπ, n ∈ N. (21)

On the other hand, if 2nπ <
√
γτ < (2n + 1)π, n ∈ N ∪ {0} , the equilib-

rium results unstable, since the plot encloses the whole negative real axis, as
illustrated in the center diagram in Fig. 8.

Figure 8. The modified Nyquist contour (left) and qualitative
representations of the Nyquist diagrams with β < αγ (center) and
β > αγ (right), for hypothetical values of γ and τ (in this repre-
sentation,

√
γτ < π/2 holds). The values of arg(λ) determining

asymptotes are displayed, since they establish stability conditions.
For the hypothetical situations depicted, the necessary stability
condition is not fulfilled for β < αγ, but it holds for β > αγ.

The conditions stated in (20) and (21) are necessary in order to have a stable
equilibrium point. Additional stability conditions in terms of α and β will be
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investigated in the following. In this sense, one needs to analyze the crossings of
the Nyquist plot across the real axis. Returning to (13) and letting Im(λ) = 0 leads
to ω2 = β/α or ω = kπ/τ, k ∈ Z. But ω2 = β/α also gives Re(λ) = 0, thus this is
not a bifurcation condition. Also, since it is enough to consider positive frequencies,
only the solutions of the form ωk = kπ/τ, k ∈ N are taken into account, and

Re[λ(iωk)] = (−1)k+1 [β − α(kπ/τ)2]

γ − (kπ/τ)2
, (22)

where γ 6= (kπ/τ)2. In order to simplify calculations, let τ = π. Thereby ωk = k,
k ∈ N, and (22) reduces to

Re[λ(iωk)] = (−1)k+1 [β − αk2]

γ − k2
, γ 6= k2. (23)

• With β > αγ: Replacing τ = π into (20), the necessary stability condition
reads 2n <

√
γ < 2n + 1, n ∈ N ∪ {0}. Replacing also k = 0 into (22), gives

Re[λ(iω0)] = −β/γ, and the stability condition is −β/γ > −1 ⇒ β < γ, i.e.,
αγ < β < γ. For k > 0, one must analyze to which section of the Nyquist
contour belongs each frequency ωk. For example, for the part (a) shown in
Fig. 8, where 0 ≤ ω <

√
γ, the locus of λ intersects the real axis a finite

number of times. Since ω <
√
γ, one has β > αγ > αω2 ⇒ β − αω2 > 0,

thus from (18) it follows that ∂|λ|/∂ω = 2ω(β − αγ)/(γ − ω2)2 > 0, i.e., |λ|
is monotonously increasing. It means that the intersection that may cause a
stability change is the one produced with greater modulus, corresponding to
the highest frequency in that section. Since 2n <

√
γ < 2n+ 1 and k ∈ N, the

highest k value for the part (a) is k = 2n. For this value, one has Re[λ(iω2n)] =
−[β−α(2n)2]/[γ − (2n)2], and the stability condition Re[λ(iω2n)] > −1 gives

β < γ + (α− 1)(2n)2. (24)

Graphically, the stability condition above means that the leftmost intersection
point of λ with the real axis must lie at the right of the critical point −1.

With ω >
√
γ, the situation is more complex, since |λ| decreases and then

increases, as can be seen in the particular example shown in Fig. 9(a) (dark
line). However, from (18) it can be deduced that |λ| decreases to zero, and then
increases, until it approaches asymptotically the value |α|. Before reaching
the origin, as |λ| is decreasing, the intersection with the real axis with greater
modulus (the leftmost one) occurs with ω = 2n + 1, the critical frequency
immediately higher than

√
γ. Replacing k = 2n + 1 into (23), the stability

condition Re[λ(iω2n+1)] > −1 results in

β < −γ + (α+ 1)(2n+ 1)2. (25)

Figure 9(b) displays the stability region obtained with γ = (4.5)2 and τ = π.
Its boundaries are given by (24)-(25) with n = 2 (4 <

√
γ < 5), and β = αγ.

• With β < αγ: The necessary stability condition, assuming τ = π in (21), is
2n−1 <

√
γ < 2n, n ∈ N. Again, if k = 0 in (22), the stability condition reads

Re[λ(iω0)] = −β/γ > −1 ⇒ β < γ, which holds since β < αγ and α < 1.
With 0 ≤ ω <

√
γ, once again λ intersects the real axis a finite number

of times. However, |λ| is not monotonously increasing or decreasing, as can
be deduced easily from (18). For example, Fig. 10(a) shows a detail of the
Nyquist diagram with γ = (3.5)2, τ = π, α = 0.5 and β = 4, where the light
line corresponds to 0 ≤ ω <

√
γ. From (18), it follows that |λ| is decreasing
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(a) (b)

Figure 9. (a) Detail of the Nyquist diagram obtained with γ =
(4.5)2, τ = π, α = 0.5 and β = 15. Light line corresponds to
ω <
√
γ and dark line corresponds to ω >

√
γ. (b) Stability region

with γ = (4.5)2 and τ = π.

(a) (b)

Figure 10. (a) Detail of the Nyquist diagram with γ = (3.5)2,
τ = π, α = 0.5 and β = 4. Light line corresponds to ω <

√
γ

and dark line corresponds to ω >
√
γ. (b) Stability region with

γ = (3.5)2 and τ = π.

for 0 < ω <
√
|β/α| and increasing for ω >

√
|β/α|. With 0 < ω <

√
|β/α|

it holds that |λ| < |β|/γ = |λ(0)|, so if |β| < γ, no encirclement of −1 can

be introduced for these ω values. With ω >
√
|β/α|, as |λ| is increasing, the

intersection that may cause a stability change is the one observed with greater
modulus, corresponding to the highest critical frequency in that portion. Since
2n−1 <

√
γ < 2n, k ∈ N, that frequency for the part (a) of the corresponding

diagram in Fig. 8 is k = 2n − 1. For this value, one has Re[λ(iω2n−1)] =
[β−α(2n−1)2]/[γ−(2n−1)2], and the stability condition Re[λ(iω2n−1)] > −1
becomes

β > −γ + (α+ 1)(2n− 1)2. (26)

When ω >
√
γ, the situation is much simpler, and from (18) it is easy to show

that |λ| is monotonously decreasing verifying that ∂|λ|/∂ω < 0. It means
that the intersection between the Nyquist diagram and the real axis causing
a stability change, occurs for the critical frequency immediately greater than
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√
γ, i.e., ω = 2n. Replacing k = 2n into (23), the stability condition given by

Re[λ(iω2n)] > −1 becomes

β > γ + (α− 1)(2n)2. (27)

The stability region is displayed in Fig. 10(b) for γ = (3.5)2 and τ = π. Its
boundaries are given by (26)-(27) with n = 2 (3 <

√
γ < 4) and β = αγ.

The previous results can be generalized for an arbitrary value of τ , using (22)
instead of (23). Reproducing the calculations above leads to the following result.

Theorem 2.1. Consider system (11) and assume |α| < 1, β 6= γα. The equilibrium
point at x = 0 is stable if and only if the following inequalities are satisfied:

• With β > αγ: β < γ+(α−1)(2n)2(π/τ)2 and β < −γ+(α+1)(2n+1)2(π/τ)2,
where n ∈ N ∪ {0} is such that 2nπ <

√
γτ < (2n+ 1)π.

• With β < αγ: β > −γ+(α+1)(2n−1)2(π/τ)2 and β > γ+(α−1)(2n)2(π/τ)2,
where n ∈ N is such that (2n− 1)π <

√
γτ < 2nπ.

The above results can be also obtained by an independent approach, namely,
using a classical technique that studies the location of the roots of the characteristic
equation of (17). By substituting a trial solution x(t) = cest, with c 6= 0, s ∈ C
into (17), and multiplying by esτ , gives

P (s) = esτ (s2 + γ)− αs2 − β = 0. (28)

Recall that α 6= 0, β and γ, τ > 0 are real parameters, and notice that P (s)
is an exponential polynomial with a principal term given by esτs2. Let P (iy) =
F (y)+iG(y), y ∈ R. The following results [4], [14] can be applied for the alternative
stability analysis.

Theorem 2.2 (Pontryagin). If all the zeros of P are located on the left half plane,
then all the zeros of F and G are real, alternating and F (y)G′(y)−F ′(y)G(y) > 0,
for all y ∈ R.

Theorem 2.3 (Pontryagin). All the zeros of P are located on the left half plane if
I) all the roots of F are real and for each of these zeros the condition F ′(y)G(y) <

0 is satisfied, or, II) all the roots of G are real and for each of these zeros the
condition F (y)G′(y) > 0 is satisfied, or, III) all the roots of F and G are real and
alternate and the inequality F (y)G′(y) − F ′(y)G(y) > 0 is valid for at least one
value of y.

Substituting s = iω into (28), making the variable change z = ωτ , and separating
into real and imaginary parts, yields

F (z) = cos z (γτ2 − z2) + αz2 − βτ2 = 0, G(z) = sin z (γτ2 − z2) = 0. (29)

The roots of G(z) are zk = kπ, k ∈ Z, and z̄1,2 = ±τ√γ. In order to simplify the
following exposition, consider τ = π. As γ > 0, all the roots of G are real as is
required in Theorem 2.3 II). Moreover, it is not difficult to show that (28) has at
least one solution with positive real part if |α| > 1. Thus, the assumption |α| < 1
is made hereinafter. To prevent F and G having common roots, neither of the
following equations must be satisfied

β = [(−1)k+1 + α]k2 + γ(−1)k, αγ − β = 0. (30)

Also, it is simple to verify that the roots of G are simple if γ 6= k2.
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The condition II) in Theorem 2.3 will be used to give sufficient stability condi-
tions for system (11). It is required that F (z)G′(z) > 0 for any root z of G. One can
divide the analysis in the following cases: (1) 0 < γ < 1, and (2) k2 < γ < (k+1)2,
the latter with two sub-cases: (2A) k even or (2B) k odd. Since FG′ is an even
function, it is enough to consider only positive values of k and the root z̄1 of G.

(1) Let 0 < γ < 1. From (29), it follows that F (0)G′(0) > 0 implies β < γ. Besides
F (z̄1) = (αγ − β)π2 and G′(z̄1) = sin z̄1(−2z̄1) < 0 (since 0 < z̄1 < π). Thus
F (z̄1)G′(z̄1) > 0 implies αγ < β. For the roots zk = kπ of G with k even, one has

F (kπ) = π2[k2(α− 1) + γ − β], G′(kπ) = π2(γ − k2), (31)

and to verify F (kπ)G′(kπ) > 0 it must be certain that k2(α− 1) + γ − β < 0, i.e.,
β > k2(α − 1) + γ. But this condition is already fulfilled if αγ < β, the inequality
obtained with z̄1, since α < 1. On the other hand, for zk = kπ with k odd, one has

F (kπ) = π2[k2(α+ 1)− γ − β], G′(kπ) = π2(k2 − γ), (32)

and the condition F (kπ)G′(kπ) > 0 gives β < k2(α + 1) − γ, where k is an odd,
positive integer. Under the assumption −1 < α < 1, all of them are satisfied if the
one corresponding to k = 1 holds, i.e., if β < α+ 1− γ.

Thus, one can summarize the stability conditions with 0 < γ < 1, as follows:

|α| < 1, β < γ, γα < β < α+ 1− γ.
(2) Consider 1 < k2 < γ < (k + 1)2.
(2A) With k even. The condition F (0)G′(0) > 0 gives again β < γ. For the root
z̄1 ∈ (kπ, (k + 1)π), one has F (z̄1) = (αγ − β)π2 and G′(z̄1) = sin z̄1(−2z̄1) < 0,
thereby F (z̄1)G′(z̄1) > 0 implies αγ < β.

Using (31) with γ > k2, the condition F (kπ)G′(kπ) > 0 leads to β < k2(α−1)+γ.
By replacing the root zk+1 = (k+ 1)π into F and G′, it is simple to verify that the

condition F (zk+1)G′(zk+1) > 0 implies β < (k + 1)
2

(α+ 1)− γ.
It is also necessary to analyze the cases where z = jπ, with j < k or j > k + 1.

• Consider j < k, with j even. One can replace k by j into (31) to find that
F (jπ)G′(jπ) > 0 holds if j2(α − 1) + γ − β > 0, but this is always certain if
β < k2(α− 1) + γ, since α < 1.

• Consider j < k, with j odd. Replacing k by j into (32), the condition
F (jπ)G′(jπ) > 0 gives j2(α+1)−γ−β < 0, but this is verified provided that
β > αγ > j2(α+ 1)− γ, due to −1 < α.

• Consider j > k + 1, with j even. Using (31), the condition F (jπ)G′(jπ) > 0
holds if j2(α−1)+γ−β < 0, which is satisfied as long as β > αγ > j2(α−1)+γ,
given that α < 1.

• Consider j > k + 1, with j odd. From (32), the condition F (jπ)G′(jπ) > 0
gives j2(α+1)−γ−β > 0, which holds immediately if β < (k+1)2(α+1)−γ
with −1 < α.

One can summarize the stability conditions with k2 < γ < (k + 1)2, k even, as:

|α| < 1, αγ < β < γ, β < k2(α− 1) + γ, and β < (k + 1)
2

(α+ 1)− γ.
(2B) With k odd. The condition F (0)G′(0) > 0 leads again to γ > β. For the root
z̄1 ∈ (kπ, (k+1)π), it follows that F (z̄1) = (αγ−β)τ2 andG′(z̄1) = sin z̄1(−2z̄1) > 0,
so the condition F (z̄1)G′(z̄1) > 0 leads to β < αγ. As k is odd, using (32) one can
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verify that F (kπ)G′(kπ) > 0 yields β > k2(α + 1) − γ. On the other hand, as
F (zk+1) = π2(k + 1)2 [(α− 1) + γ] − βπ2 and G′(zk+1) = π2[−(k + 1)2 + γ] < 0,

the condition F (zk+1)G′(zk+1) > 0 gives β > (k + 1)
2

(α− 1) + γ.
It is again necessary to analyze the cases where z = jπ, with j < k or j > k+ 1,

where j may be even or odd. One may proceed analogously as in case (2A). The
details are omitted here for short. Thus, the summary of stability conditions with
k2 < γ < (k + 1)2, k odd, is:

|α| < 1, β < αγ, β > k2(α+ 1)− γ, and β > (k + 1)
2

(α− 1) + γ.

The former analysis gives sufficient conditions for P (see (28)) to have all its roots
with negative real part. Those conditions are also necessary for the stability, as it
is proved in the Appendix. Thus, the main result is stated as follows.

Theorem 2.4. Consider (28) with α 6= 0, β ∈ R, γ, τ > 0. It is assumed that
neither of the equations in (30) is satisfied. Suppose τ = π and γ 6= k2, k ∈ Z. All
the roots of P (28) lie on the left-half plane if and only if, the following inequalities
are verified, while |α| < 1 and β < γ:

(1) If 0 < γ < 1, then γα < β < α+ 1− γ.
(2) If k2 < γ < (k + 1)2, k ∈ N,

(2A) If k is even, then αγ < β, β < k2(α− 1) + γ and β < (k + 1)
2

(α+ 1)− γ.

(2B) If k is odd, then β < αγ, β > k2(α+ 1)− γ and β > (k + 1)
2

(α− 1) + γ.

Notice that even if Theorems 2.1 and 2.4 are stated in slightly different ways
(replace τ = π in the former theorem), they are completely equivalent.

3. Examples. In this section, a couple of examples of nonlinear systems will be
considered. For their stability analysis, the linearized equations studied in Section 2
are relevant.

3.1. Chua’s circuit with lossless transmission line. Consider the Chua’s cir-
cuit consisting of a resistor R, a capacitor C1 and a nonlinear diode D, connected
to a long lossless transmission line. This realization, proposed in [10], is shown
schematically in Fig. 11. The model is developed as a system of partial differ-
ential equations, since it has distributed parameters. Nevertheless, by using the
D’Alembert’s wave equation, it can be reduced into a single NDDE, which accord-
ing to [10], is given by

C1 [ẋ(t)− qẋ(t− τ)] = −1
Z+R [x(t) + x(t− τ)]− g (x(t)− qx(t− τ)− E) , (33)

Figure 11. Realization of the Chua’s circuit connected to a long
lossless transmission line of length `. The nonlinear element known
as Chua’s diode is labeled as D.
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with Z =
√
L/C, where L and C are the inductance and capacity, respectively, of

the transmission line (per unit length), and q = (Z−R)/(Z+R). There is an offset
voltage E in the nonlinear element, which is assumed to be zero. The delay of the
transmission line is denoted by τ , and g(x) = ax+bx3 is the nonlinear characteristic
of the Chua’s diode. The state variable x represents a scaled version of the voltage
across D. Liao [10] analyzed the stability and bifurcations of the equilibrium point
at x = 0. If a small perturbation around x = 0 is considered in (33), the linearized
equation, after regrouping terms, results

ẋ(t) + 1
C1

(
1

Z+R + a
)
x(t) = qẋ(t− τ) + 1

C1

(
aq − 1

Z+R

)
x(t− τ).

It is simple to verify that equation above is in the form (5), with

γ = 1
C1

(
1

Z+R + a
)
, α = q, β = 1

C1

(
aq − 1

Z+R

)
. (34)

For system (1), the stability conditions were expressed in terms of parameters α
and β, since they represent control parameters. In Chua’s circuit, the usual control
parameters are R and a (they can be handled by using variable resistances). Thus,
it would be convenient to express the stability conditions in terms of R and a. By
replacing q = (Z −R)/(Z +R) into (34), it is not difficult to find that

R = Z(1− α)/(1 + α), a =
1 + α

2αZ
+
β

α
C1. (35)

Using (35), and from the knowledge of the stability region for system (1), one can
choose values of α and β corresponding to a stable (unstable) equilibrium, and
then compute the corresponding values of R and a from (35) to produce a stable
(unstable) equilibrium in system (33).

As particular examples, in [10] the author performed numerical simulations of (33)
with Z = 25, R = 5, C1 = 0.1, τ = 1 and a = 0.05 (he found a stable equilibrium)
and with Z = 25, R = 5, C1 = 0.1, τ = 1 and −a = 0.05 (he found an unsta-
ble equilibrium). The Nyquist diagrams corresponding to those parameter sets are
shown in Fig. 12. The results here agree with those reported in [10].

Figure 12. Left: Nyquist diagram for system (33) with Z = 25,
R = 5, C1 = 0.1, τ = 1 and a = 0.05 (the equilibrium is stable).
Right: Nyquist diagram with Z = 25, R = 5, C1 = 0.1, τ = 1 and
−a = 0.05 (the equilibrium is unstable).

3.2. Mechanical system with delayed force control. Another interesting ex-
ample, is the mechanical system with force control presented in [22], which is shown
schematically in Fig. 13. There is a mass m coupled to a fixed frame through a
spring of stiffness k1. Another spring of stiffness k2 (k2 � k1) is a sensor, measuring
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Figure 13. Mechanical system with force control studied in [22].

the displacement q2, which is sent to the controller. It is assumed that the control
is affected by a time delay τ . This scenario may occur, for example, in robotic
teleoperation, where the transmission delay cannot be neglected. It is considered
a proportional control, of gain P . The basic expression of the control action is
Q = −P (Fm − Fd) + Fm, Fm = k2q2, where Fm and Fd are the measured and de-
sired forces, respectively. However, by including the saturation effect of the control
action and the time-delay, the following expression is more accurate

Q = −Fs tanh
(
P
Fs

[k2q2(t− τ)− Fd]
)

+ k2q2(t− τ).

After writing the equations of movement based on Newton’s laws, replacing the
expression of the control action, and by scaling both the time and the state variables,
the authors in [22] finally arrive to the model

ẍ(t) + (ωnτ)2x(t) =ẍ(t− 1) + (ωnτ)2x(t− 1)

− (ωnτ)2 tanh
(
P
[

1
(ωnτ)2

ẍ(t− 1) + x(t− 1)
])
,

(36)

where ωn ≈
√
k1/m is the natural oscillation frequency of the uncontrolled system.

The linearized equation around the equilibrium in x = 0 can be arranged as

ẍ(t) + (ωnτ)2x(t) = (1− P )ẍ(t− 1) + (ωnτ)2(1− P )x(t− 1).

Equation above has the structure of (17), with γ = (ωnτ)2, α = 1 − P and β =
γ(1− P ). Thus, the condition γ = β/α is verified. It gives the particular situation
given by (16). Recall that, under this condition, the equilibrium is stable if |α| < 1
and infinitely unstable if |α| > 1. Then, the system is stable if |1 − P | < 1 ⇐⇒
0 < P < 2, and it does not depend on the delay. This result coincides with the
conclusion arrived in [22] but using a different approach.

4. Conclusions. The analysis of NDDEs is a challenging field and here the fre-
quency domain approach has been used in order to extend the results from the
corresponding study of equations of retarded type in [9]. A simple block manip-
ulation allows to consider certain NDDEs, in order to study their stability and
bifurcations so results are very auspicious to extend the technique to analyze more
complicated models.

The counterpart analysis via “time-domain” techniques may become very sophis-
ticated, specially if the roots of the real and imaginary parts of the characteristic
equation cannot be explicitly computed, as can be seen in [19]. Even if those roots
can be computed, the stability analysis may be very involved, as can be appreciated
from the proof of Theorem 2.4.

Thus, the graphical interpretation provided by the Nyquist criterion simplifies
the stability analysis by a great extent. Though the frequency-domain method is
introduced here for scalar NDDEs, it is straightforward to extend it to multivariable
input-multivariable output systems due to application of the generalized Nyquist
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stability criterion [11]. The key point here is to compute the so-called character-
istic gain loci which are like different transfer functions, sweeping on the Nyquist
contour, and see if they enclose the critical point −1. These characteristic gain
loci belong to an algebraic function defined on an appropriate Riemann surface.
In simple words, this is a trade-off when modelling systems between input-output
box (external model) and the state-space approach (internal model). Moreover, the
amplitude and frequency of the emerging periodic solution via Hopf bifurcation can
be obtained from the current approach but this will be communicated elsewhere.
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Appendix

It will be shown that the hypotheses in Theorem 2.4 are also necessary for the
stability of the equilibrium point of system (11). It is supposed that all the roots
of P (28) lie in the left-half plane. Thus Theorem 2.2 guarantees that all the zeros
of F and G (see 29) are real and alternating. Using a related result [4], if γ > 0,
τ = π and γ 6= k2 , it can be deduced G has 4n+ 2 roots in any interval of the form
[−2nπ + π/2, 2nπ + π/2] , supposing that γ ∈

(
(n− 1)2, n2

)
for certain n ∈ N. The

roots of G are zk = kπ, k ∈ Z and z̄1,2 = ±√γπ. Since

F (0) = (γ − β)π2, F (
√
γπ) = (αγ − β)π2, (A1)

the conditions F (0) 6= 0 and F (±√γπ) 6= 0 give γ 6= β and αγ 6= β, respectively.

Moreover, from (29) the roots z of F satisfy cos z = α − (αγ − β)π2/(γπ2 − z2)
and they must be countable and infinite. Since lim

z→∞
(αγ − β)π2/(γπ2 − z2) = 0,

if |α| ≥ 1 there is possibly only a finite set of roots of F in R. Thus, in all the
reasoning that follows, it is assumed that the condition |α| < 1 holds. The analysis
is divided again according to the values of γ. Suppose that:

(1) 0 < γ < 1. Consider the roots of G given by 0,
√
γπ and π. From (A1), one

has γ 6= β and αγ 6= β. Taking into account the alternation of the roots of F and
G, if β < γ, then F (0) > 0. Also if αγ − β < 0 then F (

√
γπ) < 0, and finally if

F (π) > 0, it follows that β < α+ 1− γ. On the contrary, if γ < β results F (0) < 0,
but if αγ − β < 0, F (

√
γπ) < 0, and the roots of F do not necessarily alternate.

But if F (
√
γπ) > 0, it follows αγ−β > 0 which is an absurd since γ < β and α < 1.

Thereby, one concludes that β < γ. So if 0 < γ < 1, one needs αγ < β < γ and
β < α+ 1− γ.

(2) Suppose now k2 < γ < (k + 1)
2
, k > 1, and consider the roots kπ,

√
γπ and

(k + 1)π of G.
(2A) Let k be even, then

F (kπ) = [k2(α− 1) + γ − β]π2, F (
√
γπ) = (αγ − β)π2,

F ((k + 1)π) = [(k + 1)2(α+ 1)− γ − β)]π2.
(A2)

Provided that the roots of G alternate with those of F , it follows that if αγ−β < 0,
from (A2) results F (

√
γπ) < 0 and it should be F (kπ) > 0 and F ((k + 1)π) > 0,

giving β < k2(α − 1) + γ and β < (k + 1)2(α + 1) − γ. On the other hand, if
αγ − β > 0, using (A2) again, results F (

√
γπ) > 0 and it should be F (kπ) < 0

and F ((k + 1)π) < 0, giving β > k2(α − 1) + γ and β > (k + 1)2(α + 1) − γ.
However, as |α| < 1, the condition αγ > β > k2(α − 1) + γ implies γ < k2 which
is an absurd. Besides αγ > β > (k + 1)2(α + 1) − γ implies γ > (k + 1)2 which
is also a contradiction. So if k2 < γ < (k + 1)2, k > 1, and k is even, one needs
αγ < β < k2(α− 1) + γ and β < (k + 1)2(α+ 1)− γ.
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(2B) If k is odd

F (kπ) = [k2(α+ 1)− γ − β]π2 6= 0, F (
√
γπ) = (αγ − β)τ2,

F ((k + 1)π) = [(k + 1)2(α− 1) + γ − β)]π2.
(A3)

If αγ−β < 0 results F (
√
γπ) < 0 and it should be F (kπ) > 0 and F ((k+ 1)π) > 0,

giving β < k2(α+1)−γ and β < (k+1)2(α−1)+γ. However, αγ < β < k2(α+1)−γ
implies γ < k2 (absurd, since −1 < α), and αγ < β < (k + 1)2(α − 1) + γ
implies γ > (k + 1)2 (absurd, since α < 1). On the contrary, if αγ − β > 0
results F (

√
γπ) > 0 and it should be F (kπ) < 0 and F ((k + 1)π) < 0, giving

β > k2(α+1)−γ and β > (k+1)2(α−1)+γ. So if k2 < γ < (k + 1)
2
, where k > 1

and odd, one needs k2(α − 1) + γ < β < αγ and (k + 1)2(α + 1) − γ < β, always
under the assumption that γ > 0 and |α| < 1.

In conclusion, the hypotheses of Theorem 2.4 are not only sufficient, but also
necessary, in order to have all the roots of P (28) in the left-half plane.
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