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Abstract 
Food informatics is having an increasing impact on the food industry and improving the quality of end products, as well as 
the efficiency of manufacturing processes. In the case of winemaking, a particular application of interest for food informatics 
is the sensory analysis of wines. This problem can benefit from the strong development that machine learning has achieved in 
recent decades. However, these data-driven techniques require accurate and sufficient information to generate models capable 
of predicting the sensory profile of wines. A review of the sensory analysis and volatile composition of wines is presented in 
this work, along with significant studies on the use of machine learning models to predict wine-related characteristics such 
as the antioxidant activity of polyphenols of wine and aroma compounds. In this sense, data from a sensory panel and ana-
lytical technology were gathered. This literature review reveals the lack of a homogeneous and sufficiently large database of 
sensory analysis related to the volatile composition of wines to develop machine learning models. However, among artificial 
intelligence approaches, the application of quantitative structure-odour relationship (QSOR) models is currently gaining 
importance. Recent studies show that it would be possible to predict quantitatively the sensory analysis of wines by QSOR 
models, using general volatile composition information. Therefore, the purpose of this review is to identify key aspects and 
guidelines for the development of this area.
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Introduction

The ‘tools of the trade’ in cheminformatics, an emerging dis-
cipline in which chemical data are collected, organized and 
analysed, are generally applied in the pharmaceutical field. 
They can also be applied to other types of chemical datasets, 
such as those containing food chemicals. The interest in the 

use of chemical information methodologies to address food-
related challenges is growing and will continue to grow as 
the methods prove their usefulness, particularly in providing 
practical solutions to food industry challenges (Martínez & 
Medina-Franco, 2014).

Improving food quality is one of the main objectives of 
food science and technology through the development of 
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new processes, food supplements and nutraceuticals. The 
application of artificial intelligence approaches is an emerg-
ing field of study for obtaining new food materials in the 
last years (Kakani et al., 2020; Sun et al., 2019; Misra et al., 
2020; Camaréna, 2020). The behaviour of food chemical 
compounds can be modelled, and a wide number of changes 
can be carried out, such as discovering new enzymes and 
describing substrates, products or inhibitors. Kar et  al. 
(2017) presented the currently available information on 
diverse groups of molecules with applications in agricul-
ture and food science that have been subjected to artificial 
intelligence models. There is also enlisted the availability of 
agrochemical, food and flavour databases along with a list 
of software tools and online resources for in silico studies. 
According to Roy et al. (2015a, b), artificial intelligence 
approaches can be used to predict the activity of advanced 
active agrochemicals. Moreover, they have a huge role in 
the food industry. In silico studies constitute a dependable 
tool, among others, in the research of efficient antioxidant 
molecules with enhanced activity, allowing the identifica-
tion of the fundamental molecular fragments responsible for 
the antioxidant propensity to several classes of chemicals 
and the response pharmacophore. A large number of these 
models have been published for the antioxidant activity in 
the last 10 years, as well as several cases of study of food 
protein-derived bioactive peptides. However, artificial intel-
ligence studies in the areas of food flavour, taste and food 
supplements, which is the scope of this article, are not yet 
complete for full application in the food industries, and a 
lot of new research is still necessary (Roy et al., 2015a, b).

One of the most important quality factors of wine is 
aroma, and it is one of the key factors of consumer accept-
ance (Lockshin & Corsi, 2012; Rapp, 1999; Sáenz-Navajas 
et al., 2013). In many cases, the grape variety employed in 
the elaboration of a particular wine determines completely 
the aroma of that wine. This is due to the persistence of  
certain compounds present in the grape throughout the 
entire process of vinification (Gómez García-Carpintero 
et al., 2011). Wine aroma is defined by more than one thou-
sand three hundred volatile compounds, including alcohols, 
esters, acids, aldehydes, isoprenoids, lactones and ketones, 
with a wide concentration range (Villamor & Ross, 2013). 
Differences in the aromatic profile of wines are determined 
by changes in the type, proportion and concentration of these  
volatile compounds (Atanasova et al., 2005).

The most widely used methodology for characterizing the 
aromatic profile of wine has been descriptive analysis (DA) 
with highly trained panels (Presa-Owens & Noble, 1995; 
Heymann & Noble, 1987; Noble et al., 1984b; Stone, 1992). 
Although this method allows to obtain detailed and repro-
ducible results (Lawless & Heymann, 2010), to create and 
to maintain well-trained and calibrated sensory panels can 
be economically challenging and time consuming (Varela 

& Ares, 2012). Moreover, due to extensive training, highly 
trained assessors can perceive wine aroma differently from 
consumers (Fariña et al., 2015).

A promising method to overcome this situation is the 
application of sensor systems such as electronic tongues 
(E-tongues), which have the additional features of being fast 
and low cost. (Legin et al., 2002; Vlasov et al., 2002, 2005; 
Dias et al., 2017). This instrument was applied by Legin 
et al. (2003) to analyse fifty-six samples of the Italian red 
wines Barbera d’Asti and Gutturnio. The E-tongue was able 
to differentiate all wine samples of the same denomination 
and vintage, but from different vineyards. Moreover, it was 
possible to measure several parameters, such as total and 
volatile acidity, pH, and contents of ethanol, tartaric acid, 
sulphur dioxide, total polyphenols and glycerol with a preci-
sion within 12%. In addition, human sensory scores within a 
precision of about 13% for Barbera d’Asti wines and 8% for 
Gutturnio wines were predicted by the system.

Another instrument to help resolve some of the issues 
involved in the use of human sensory panels is the elec-
tronic nose (E-nose) (Di Rosa et al., 2020). According to the 
basis of their detection systems, these devices are classified 
into two categories: classical instruments, which are based 
on solid-state gas sensors, and new instruments, which are 
based on mass spectrometry (MS). Due to the interference 
caused by the high ethanol content on the solid-state gas 
sensors, MS-based instruments are more appropriate for the 
analysis of alcoholic beverages (Martí et al., 2005). Even 
though E-noses present several advantages over traditional 
methods, they have still some drawbacks: compounds that 
are not relevant to aroma cause noise in the results, the sen-
sors may be poisoned during the analysis, and the sensor 
may give ambiguous responses. In addition, the water pre-
sent in the sample headspace might interfere, as the sensors 
are reactive to the presence of water (Di Rosa et al., 2020).

In general, although E-noses and E-tongues are inspired 
by human senses, correlations with human perceptions are 
not easy to be established due to several factors. They detect 
chemical compounds that human systems cannot, and their 
perception intensity is not directly correlated with the con-
centration of a certain compound. Quite often, the com-
pounds in a mixture have a synergistic effect and the result-
ing aroma or taste is not the addition of the smell or taste 
of the individual components. In addition, human taste also 
perceives the mouthfeel (astringency, heat, viscosity, etc.) or 
flavours that contribute to the perception as well (Rodríguez-
Méndez et al., 2016). Both electronic instruments are pre-
sented in Table A2, in the supplementary material.

In summary, a great development of electronic instru-
ments for food sensory analysis has been achieved so far. 
However, in most cases, they are not analytical instruments, 
and it is not possible to completely describe the organo-
leptic properties of food, particularly fermented beverages. 
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Therefore, nowadays, E-tongues and E-noses cannot replace 
their biological equivalents, but they can provide relevant 
supplementary information for describing the aroma and 
taste profile of food.

The use of quantitative structure-property/activity/odour 
relationship (QSPR/QSAR/QSOR) models is one of the arti-
ficial intelligence approaches that has increased in recent 
years. The design of these models relates a set of ‘descrip-
tors’ (known variables related to the chemical structure 
of molecules) to a certain property/activity/odour (known  
as ‘target’ (Enciso et al., 2016)). It is necessary to iden-
tify which descriptors are most closely related to the target 
property to infer a QSPR/QSAR/QSOR model, known as the 
feature selection (FS) problem (Soto et al., 2009; Martínez 
et al., 2015). Then, a mathematical relationship between a 
set of these descriptors and the property/activity is estab-
lished by fitting a training set, that is a group of molecules 
whose experimental property/activity value is known. In 
general, a QSPR/QSAR/QSOR model only requires a small 
number of descriptors to estimate the property under study  
(Cravero et al., 2019).

The mathematical relationship in QSPR/QSAR/QSOR mod-
els is defined as a function Y = f (X) , where X = (x1, x2,⋯ , xd) 
is a vector of molecular descriptors (features), Y is an experi-
mental target property/activity, and d is the number of descrip-
tors. From this database, the function f can be learned by using 
a supervised training method, such as random forest, supported 
vector machine, decision tree, neural networks, and random 
committee. Once f has been inferred, it may be applied to 
unseen molecules not covered by the training method. Thus, f 
can predict in silico the value of a property based on the analy-
sis of data from other experiments. To assess these models, it 
is necessary to identify first which molecular descriptors are 
related to the property under study.

In the case of the aromatic profile of wines, the features 
are the volatile composition parameters of wines, and the 
properties to predict are the aromas present in wine. This 
means that the problem has multiple targets, since there are 
multiple properties to predict. Therefore, Y is a vector of tar-
gets to predict, Y = (y1, y2,⋯ , yt) , and t is the number of 
targets.

Although it is well known that smell is determined by 
physiochemical properties of chemical compounds, there 
are multiple mathematical relationships between them that 
describe the underlying phenomenon. These relationships 
are called quantitative structure-odour relationship (QSOR), 
and so far it is not known how these properties or chemical 
structures affect odour quality (Licon et al., 2019). Neverthe-
less, a major progress has recently been made in the QSOR 
approach. Sharma et al. (2021a) developed a deep neural 
network (DNN) with physicochemical properties and molec-
ular fingerprints (PPMF) and a convolution neural network 
(CNN) with chemical-structure images (IMG) to predict 

the smells of chemical compounds using their simplified 
molecular input line entry specification (SMILES) as molec-
ular representations. They applied their QSOR model to an 
independent test set of chemical compounds and achieved a 
smell prediction accuracy of 97.3% and 98.3% from DNN + 
PPMF and CNN + IMG, respectively. Furthermore, Sharma 
et al. (2021b) presented OlfactionBase, a free, open-access 
web server where they gather together knowledge on many 
aspects of the olfaction mechanism in a single place that 
contains detailed information of components such as odours 
and odourants, among other aspects.

The scope of the present paper is threefold; first, to review 
the state of the art in the use of QSPR/QSAR/QSOR models 
to predict characteristics of wines; second, to review the 
publications on the aromatic profile and volatile composition 
of wines during the last decades, useful to develop a data-
base for QSOR prediction of aromatic profile; and finally, 
to identify challenges and opportunities for the prediction of 
aromatic profiles of wines using QSOR models. To the best 
of our knowledge, this is the first review that addresses these 
goals of food informatics applied to wine.

Application of QSAR/QSPR Modelling 
in Wine‑Related Studies

According to our research, there are few wine-related stud-
ies using QSAR/QSPR models. In a pioneer work, amino 
acid profiles had been used as a criterion for the authentic-
ity of wines in different countries. Duchowicz et al. (2013) 
applied QSPR models to the aminograms obtained by high-
performance liquid chromatography (HPLC) in their labora-
tories for Torrontés and Merlot wines. Their QSPR predic-
tions for the amino acid profiles presented high concordance 
with the experimental data. In addition, their QSPR model 
showed other worthy applications such as the identification 
of each wine varietal, testing their authenticity, and estimat-
ing the concentrations of non-available experimental data in 
the amino acid profiles of Torrontés and Merlot wines. In 
addition, Kang et al. (2014) applied QSPR models between 
initial amino acids in Korean rice wine (makgeolli) mash and 
major aromatic compounds. According to their results, fusel 
alcohols and their acetate esters were positively correlated 
with the amino acid profile at the initial fermentation, but 
ethyl esters of medium-chain fatty acids were independent 
of amino acid profile.

To identify the odourant molecules essential for lower-
ing the odour threshold properties (OTP), Ojha and Roy 
(2018) modelled the OTP of various aroma components 
present in different types of wine using 2D and 3D descrip-
tors by employing QSPR. First, they selected the most rel-
evant descriptors; then, they developed a partial least squares 
(PLS) regression model; finally, they validated it considering 
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its acceptability and predictivity to improve confidence in 
QSPR predictions. Furthermore, they verified the obtained 
results with the observations reported by Wang et al. (2017) 
and concluded that their developed model could be a valuable 
tool for a better understanding of the relationship between 
the aroma characteristics of different types of wines obtained 
under diverse manufacturing conditions and their aroma 
constituents.

Huangjiu is a traditional Chinese wine with special taste 
and flavour, but changes of aroma compounds during storage 
remain unclear. Feng et al. (2020) developed QSAR mod-
els to predict the flavour thresholds for alcohols, acids and 
esters in Huangjiu, obtaining higher accuracy for alcohols 
and acids. Their study is relevant because it provides valu-
able information to unveil the regulation of Huangjiu flavour 
on a molecular basis. However, they did not develop QSAR/
QSPR models for sensory analysis of wines according to 
their volatile composition.

Some recent non-QSAR/QSPR studies in which research-
ers used machine learning algorithms to predict wine flavour 
and aroma are listed below.

Fuentes et al. (2020) used machine learning modelling 
strategies to predict the aroma profile of Australian Pinot 
noir wines (2008–2016 vintages). They determined aroma 
profile by gas chromatography (GC) and chemometric analy-
sis and used weather and water management information 
from a Pinot noir vineyard as input data. They obtained high 
accuracy artificial neural network (ANN) models in the pre-
diction of both parameters compared to the experimental 
values: aroma profile and chemometric analysis.

ANN was found to be the best predictive method for wine 
sensory quality grading as a function of the aroma chemis-
try in Sauvignon Blanc according to Zhu et al. (2021). The 
authors also detected a correlation between certain volatile 
compounds and wine sensory grading. They applied static 
headspace-gas chromatography-ion mobility spectrometry 
(SHS-GC-IMS) to wine aroma analysis and tested the qual-
ity grading prediction capability of six machine learning 
models. In addition, they identified a set of volatile com-
pounds that have been seldom reported in the literature, such 
as methyl acetate, ethyl format and amyl acetate.

Garde-Cerdan et al. (2021) conducted a study to differentiate 
Tempranillo and Tempranillo blanco grapes and wines from 
the La Rioja region (Spain) using machine learning techniques. 
They determined nitrogen and phenolic compounds and vola-
tile compounds using HPLC and gas chromatography–mass 
spectrometry (GC-MS), respectively. They then used a machine 
learning approach for both wine and grape discrimination. 
According to their results, some of the chemical compounds 
were useful parameters for both discriminations, whereas others 
were useful for only one discrimination approach.

Summerson et al. (2021) studied how smoke contamina-
tion exposure of grape vineyards affected the volatile aromatic 

compounds of Cabernet Sauvignon wines. Using the results 
of an E-nose, they developed two high-precision ANN-based 
models. One of them predicted smoke aroma intensity from 
sensory evaluation, and the other predicted the volatile aro-
matic compounds present in the wine. Nevertheless, in none 
of these studies, the authors developed a QSOR model for 
wine aroma.

Finally, Table A6 shows a summary of the computational 
methods used for QSPR modelling in the works cited in 
this section. In some cases, the mentioned methods are used 
for feature selection steps and, in other cases, are used for 
building regression and classification models. As can be 
observed, the machine learning approaches were applied in 
the most recent publications.

Available Data for Aromatic Profile Studies 
in Wines

A fundamental aspect to address any problem using machine 
learning techniques is the availability of sufficient quantity 
and quality of data for effective model training. In particu-
lar, for the aromatic profiles of wines, there are challenges 
due to the scarcity and heterogeneity of most of the available 
databases.

Wine data sources are classified in the present work as 
red wines and white wines. At the same time, each category 
is divided into three sections: studies with sensory analysis 
and without volatile characterization, studies with aromatic 
profile and total volatile composition but without sensory 
analysis, and studies with sensory analysis and volatile  
characterization. Data sources are also classified in Table 1 
and Table A1 (included in supplementary materials); several 
extraction methods for analytical volatile compounds deter-
mination are presented in Table A3; the sensory analyses used 
in the studied works are described in Table A4; finally math-
ematical methods for data processing and analysis are shown 
in Table A5. In addition, the countries of origin of the wines 
mentioned in the present work are shown in Fig. 1 and the 
main grape varities are represented in a word cloud in Fig. 2.

Red Wines

Studies with Sensory Analysis and Without Volatile 
Characterization

Malolactic fermentation (MLF) is encouraged in wine for the 
purposes of deacidification, converting malic to lactic acid, and 
increasing aroma and flavour complexity as well as biological sta-
bility (Amerine et al., 1982; Davis et al., 1985; Kunkee, 1974). 
Furthermore, several studies have demonstrated that MLF signifi-
cantly improves wine flavour. Gámbaro et al. (2001) reported a 
descriptive sensory analysis on Tannat wine (1999 vintage), with 
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samples from commercial and experimental wines. Panellists 
were trained to recognize twenty-seven tertiary tier descriptors 
from the Wine Aroma Wheel proposed by Noble et al. (1987).  
They analysed their data using principal component analysis 
(PCA), and found significant differences between MLF and non-
MLF wines. MLF resulted in changes in the intensity of various 
aroma descriptors of Tannat wines: decrease of the secondary 
descriptors ‘berry fruit’ and ‘fresh vegetative’ and of the related 
tertiary descriptors ‘blackcurrant’, ‘apricot’, ‘cut green grass’ and 
‘green pepper’.

McDaniel et al. (1987) studied six samples of Pinot noir wine 
(1981 vintage) with different MLF treatments by applying DA. 
Panellists were trained to recognize thirty-three tier descriptors 
from the Wine Aroma Wheel proposed by Noble et al. (1984a), 
which was divided into groups of terms that describe similar 
aroma characters. The main groups, primary tier terms, were fur-
ther divided into specific characters (secondary and tertiary tier 
terms). Panellists used a 9-point scale to rate the intensity of each 
wine aroma: (1) none; (9) extreme. They carried out a balanced 
incomplete block (BIB) experimental design, and data were ana-
lysed as presented by Gacula and Singh (1984) for each panel-
list and the panel as a whole. They found significant differences 
in twenty of the aroma descriptors, showing that the strain of 
malolactic bacteria selected for use can affect aroma perception.

Gámbaro et al. (2003) evaluated by DA the aroma properties 
of fourteen commercial red wines from the Uruguayan market 
(five Tannat, five Cabernet Sauvignon and four Merlot). The 
aim was to characterize the aromatic profile of Tannat wines 
from a sensory approach and compare it with the ones of Merlot 
and Cabernet Sauvignon from the same Uruguayan regions, to 
establish which sensory aroma characteristics are unique to the 
Uruguayan Tannat. They applied generalized Procrustes analy-
sis (GPA) to differentiate among the three groups of samples 
and obtain sensory attributes that were responsible for these 
differences. The samples of Tannat were differentiated from 
the samples of Cabernet and Merlot, and their aroma profiles 
were characterized by the secondary and tertiary descriptors 
‘blackcurrant’, ‘prune’, ‘oak’, ‘liquorice’ and ‘yeasty’.

Accordingly, Varela and Gámbaro (2006) evaluated by 
sensory DA thirteen Uruguayan Tannat wines. Furthermore, 
they correlated the quantitative sensory data with the qual-
ity assessment obtained from a panel of wine consumers. 
Aroma profile was determined for each wine by a panel of 
twenty-two members, using a 9-point structured scale: (1) 
threshold, (9) very intense. Panellists were trained to rec-
ognize the thirty tertiary tier descriptors selected from the 
Wine Aroma Wheel proposed by Noble et al. (1987). Qual-
ity evaluation was performed by an amateur tasting group 
of thirty wine consumers, using a 9-point structured quality 
scale: (1) very bad, (9) excellent. PCA and cluster analy-
sis were used to evaluate panel performance, and ANOVA 
was performed on the sensory panel and the quality panel. 
According to their results, an increase in the ‘dried fruit’, Ta
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‘phenolic’ and ‘berry’ aromas resulted in higher quality 
scores, but high intensities of ‘yeasty’, ‘burned’ and ‘earthy’ 
aromas were not desirable in Tannat wines.

Goldner and Zamora (2007) studied the aroma profile 
of fifty-six Argentine Malbec wines (vintage 2004) from 
seven regions using DA. Sensory DA was performed by a 
panel of ten not-sighted assessors, which allowed them an 
evaluation of the wines only by taste and smell, without the 
influence of visual attributes. Then, ANOVA was carried 
out to determine the aroma attributes that were significantly 
different among wines from different regions, and PCA was 
used to explore the relationship between aroma attributes 
and regions. They found significant differences between 
aroma descriptors and the viticultural regions studied.

Tao et al. (2009) performed a study by sensory analysis 
of eight vintages (1998–2005) of Cabernet Sauvignon dry 
red wine from Changli County (China). Panellists scored 
the intensity of each wine aroma using a 5-point scale: (0) 
not detected; (1) weak, hardly recognizable note; (2) clear, 
but weak; (3) clear but not an intense note; (4) intense note. 
The description of the aroma of each wine was expressed 
by modified frequency (MF), calculated with the formula 
proposed by Dravnieks (1985). According to their findings, 
32 aromatic descriptors were relevant to aroma characters 
of the sampled wines, and these wines were characterized 
by ‘blackcurrant’, ‘green pepper’, ‘smoke’, ‘redcurrant’, ‘cut 
hay’, ‘vanilla’, ‘bilberry’, and ‘cinnamon’ aromas.

Conventional descriptive analysis (conventional DA) has 
been widely used for sensory profiling of a variety of food 
products and involves the evaluation of both the qualita-
tive and quantitative sensory characteristics of products 
by a trained panel. However, although this tool is gener-
ally well adapted when applied to simple products, it is less 
suited to profile complex products, especially when deal-
ing with odour (Lawless, 1999). This could be due to the 
difficulties of humans to discriminate odour qualities in a 
mixture (Laing, 1991; Laing & Glemarec, 1992; Marshall 
et al., 2006) or the limited capacity of humans to reliably dif-
ferentiate concentration and/or intensity levels in a mixture 
(Engen & Pfaffmann, 1959). Campo et al. (2010) compared 
the odour properties of twelve Pinot noir wines (2005 vin-
tage) described by two independent panels that performed, 
respectively, an intensity-based method (conventional DA) 
and a citation frequency-based method (Campo et al., 2008). 
Data from conventional DA and the frequency of citation 
method were analysed by PCA and correspondence analy-
sis (CA), respectively. Their main objective was to compare 
both methods when applied to the description of wine sam-
ples, based on three criteria: similarity of sensory maps, 
panel monitoring and practical aspects of each technique. 
They found that the citation frequency-based method can 
represent a plausible alternative to conventional DA when 

a detailed description of a complex aroma product such as 
wine is required.

On the other hand, the effect of blending Cencibel (Tem-
pranillo) grapes with other grape varieties cultivated in La 
Mancha region (Spain) (Rojal, Moravia Dulce, and Tortosí ) 
on the wine aroma profile was studied by Sánchez-Palomo 
et al. (2018). They compared the aroma profile of mono-
varietal wines with bivarietal ones by means of a sensory 
panel integrated by fifteen trained judges. The authors apply-
ied ANOVA followed by Student-Newman-Keulstoghether 
on data aroma descriptors in order to differenciate among 
the means of chemical data. Finally, they employed PCA 
for determining the aroma terms of the wines. In sum, 
they found that wines obtained by blending presented an 
increased aroma intensity, and consequently an improved 
aroma complexity.

Studies with Aromatic Profile and Total Volatile 
Composition but Without Sensory Analysis

Dimitrov et al. (2018, 2019) studied the aromatic profile and 
total volatile composition of six types of red wines (2017 
vintages) from the Central Northern region of Bulgaria, 
produced by the grape varieties Rubin, Storgozia, Bouquet, 
Trapezitsa, Kaylashky Rubin and Pinot noir. They obtained 
the aromatic profiles of the wines by GC with flame ioni-
zation detector (GC-FID) analysis, identifying twenty-four 
volatile compounds: nine esters, eight higher alcohols, one 
aldehyde and five terpene alcohols. In addition, two suc-
cesive vintages of young Tannat (1999–2000), a typical 
red wine from Uruguay, were characterized by Boido et al. 
(2003). Using GC-FID and GC-MS, they identified and 
quantitatively determined fifty-one volatile components, 
including alcohols, esters, carbonyl compounds, acids, ter-
penes and norisoprenoids. Studies by Gámbaro et al. (2001) 
indicate that some of these volatile components can make 
a sensory contribution, although to understand the impact 
of these individual compounds that can alter the aroma and 
flavour of Tannat wine, Boido et al. (2003) suggested that 
future research on this variety should involve sensory stud-
ies on individual constituents within the group of released 
flavourants and the application of the gas chromatography-
olfactometry (GC-O) technique.

Fanzone et al. (2022) evaluated the combined effect of 
microwave-assisted extraction (MW) application with stem 
additions in different conditions, before fermentation, on 
the chemical composition of Bonarda Argentinian wines. 
The results shown these strategies modified the chromatic 
characteristics and phenolic composition, enhanced the col-
our stability and changed the volatile and polysaccharide 
profile of these wines. Volatile compounds from the wines 
were extracted using headspace solid phase microextraction 
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(HS-SPME) and analysis was performed on high-performance 
liquid chromatograph equipped with a diode array detector, a 
quaternary pump, and an autosampler (HPLC-DAD/ESI-MS). 
del Barrio Galán et al. (2022) studied the volatile profile of 
the red wines from different Spanish Protected Designations 
of Origin, which are very closely geographically, and/or cat-
egories, to differentiate them. Fifty-three volatile compounds 
were identified and quantified using the headspace solid-phase 
micro-extraction technique and gas chromatography-mass 
spectrometry analysis (HS-SPME-GC/MS).

Studies with Sensory Analysis and Volatile Characterization

The odour profiles of Pinot noir wines from the 1987 and 
1988 vintages, and made with grapes harvested at different 
degree of maturation, were analysed by Miranda-Lopez et al. 
(1992) using the Osme method. In addition, the results were 
completed with a quantitive analysis employing GC-MS. In 
summary, they found that wines at the same level of maturity 
in different vintages had more differences than similarities 
and that the odour character varied notably depending on the 
climatic conditions in a given harvest season.

Cliff and Dever (1996) used sensory and compositional 
analyses to profile fourteen Pinot noir wines (1992–1993 
vintages) produced by ten wineries from British Columbia. 
They performed the following analyses: titratable acidity, 
pH, absorbance, phenol and alcohol content, and the sensory 
profile was evaluated by ten expert wine judges. In addition, 
they studied the relationships between the wine attributes and 
samples and classified the wines into groups by performing 
PCA on the mean scores. As a result, they found good agree-
ment between compositional and sensory analyses.

Aznar et al. (2003) studied fifty-seven Spanish aged red 
wines from seven different Spanish Denominations of Ori-
gin, and developed partial least squares regression (PLSR) 
models to predict some of the wine aroma nuances from its 
chemical composition. The sensory panel consisted of fifty-
one judges, divided into five committees of eight to twelve 
professionals. Each of the judges judge tasted up to thirty-six 
different samples; the measure of intensity of a given sen-
sory term was the frequency with which an aromatic descrip-
tor was used to define a given wine. Chemical composition 
was obtained by GC-FID and GC-MS, analyzing sixty-nine 
odourants. Finally, the authors developed models for eight-
een sensory terms and twenty-seven chemicals or groups 
of chemicals obtaining satisfactory models for the most 
important aromatic descriptors: ‘wood-vanillin-cinnamon’, 
‘animal-leather-phenolic’, ‘toasted-coffee’, ‘old wood-reduc-
tion’, ‘vegetal-pepper’, ‘raisin-flowery’, ‘sweet-candy-cacao’, 
‘fruity’ and ‘berry fruit’. These models confirmed complex 
multivariate relationships between chemicals and odours.

Using quantitative GC-O and techniques of quantitative 
chemical analysis, Cullere et al. (2004) studied the aroma of 
six premium quality Spanish red wines, revealing the pres-
ence of eighty-five aromatic notes in which seventy-eight 
aroma compounds were identified. The GC-O study was car-
ried out by eight trained judges, who were asked to measure 
the overall intensity of each odour using a 0–3 scale, being 
half values allowed, using a GC equipped with a FID and 
a sniffing port. Furthermore, microextraction and GC-FID 
analysis, and solid phase extraction (SPE) and GC-ion trap 
MS analysis were employed for quantitative analysis. The 
authors found that the number of components present in con-
centrations above their threshold value was quite substantial, 

Fig. 1  Country of origin of the 
wines classified in this article
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reporting also the presence of 1-nonen-3-one (temptatively) 
and 2-acetylpyrazinesare in wine aroma for the first time. 
Moreover, using time-intensity GC-O and GC-MS, Gürbüz 
et al. (2006) analysed the volatiles of Merlot and Cabernet 
Sauvignon wines produced in California and Australia, not-
ing the presence of seventy-four aroma active compounds. 
With a GC equipped with a FID and a sniffing port, they 
employed two experienced olfactory assessors, and each 
assessor sniffed at least three times each sample. They esti-
mated the overall wine aroma by grouping the aroma active 
compounds into nine odour categories based on similar 
odour descriptors, using the Wine Aroma Wheel of Noble 
et al. (1987). Then, by GC-MS, they identified sixty-six 
volatiles GC-MS, twenty-eight esters and nineteen minor 
alcohols. According to their results, the most relevant com-
pounds were ethanol, ethyl octanoate, ethyl decanoate, ethyl 
acetate, 3-methyl-1-butanol, ethyl hexanoate, diethyl suc-
cinate, and 2-phenylethanol. Although there were distinct 
quantitative differences between Merlot and Cabernet wines, 
the relative aroma category profiles of the four wines were 
similar, characterized by high ‘fruity’, ‘caramel’, ‘green’ and 
‘earthy’ aroma.

Using sensory descriptive analysis, quantitative GC-O 
and chemical quantitative analysis, Escudero et al. (2007) 
studied the aroma profile of five premium red wines. The 
sensory panel that performed the sensory descriptive analy-
sis of the wines, consisting of nine judges, determined the 
nine aroma terms that were best suited for further descrip-
tive analysis of the selected wines: ‘raisin’, ‘berry fruit’, 
‘veggie’, ‘phenolic’, ‘toasted’, ‘woody’, ‘alcohol’, ‘sweet’ 
and ‘reduction’. They scored the intensity of each attribute 
using a 7-point scale: (0) non-detected; (1) weak, hardly 
recognizable note; (2) clear but not intense note; (3) intense 
note, being half values allowed. Another panel consisting 
of twelve assessors performed the sensory evaluation of 
samples spiked with aroma compounds. The data processed 
were a mixture of intensity and frequency of detection (MF) 
according to Dravnieks (1985). The quantitative chemical 
analysis involved liquid-liquid microextraction (LLM) and 
GC-FID analyses, and SPE and GC-ion trap-MS analyses. 
They obtained in most cases satisfactory agreement between 
GC-O and quantitative data, identifiyng forty-five odourants 
and at least thirty-seven odourants at concentrations above 
their odour threshold. The most relevant findings were con-
firmed by sensory analysis.

Goldner et al. (2009) studied how ethanol level affected 
the aroma attributes and volatile compounds in twenty-three 
samples of Malbec wines. Volatile compounds were ana-
lysed by SPME and GC-MS, and sensory DA was performed 
by a panel of ten blind assessors using 9-point intensity 
scales. ANOVA was carried out to determine the character-
istic aroma attributes and volatile compounds in wines with 
different levels of alcohol. Then, using PLS, they confirmed 

the influence of alcohol level on the presence of volatile 
compounds and the perception of aroma descriptors in wine.

Gómez García-Carpintero et al. (2011) presented results 
from the first experiment performed on the free and bound 
aroma compounds of Moravia Agria wines, a minority grape 
variety cultivated in the Castilla La Mancha region. They 
studied five consecutive vintages (2004–2008) of these 
wines using GC-MS analysis and sensory analysis per-
formed by a trained panel of fifteen experienced wine testers 
to determine the influence of grape variety on the aroma of 
wine. Quantitative analysis was carried out using a GC-FID 
for major volatiles and SPE to isolate free and glycosidi-
cally bound aroma compounds for subsequent analysis by 
GC-MS. Over these five consecutive harvests, they identified 
and quantified ninety-two free aroma compounds and sixty-
seven bound aroma compounds and classified the odour 
activity values (OAVs) for the different compounds into 
seven odourants. DA was applied to evaluate the sensory 
profile of Moravia Agria wines, considering eight olfactive 
attributes as the ones that best described the aroma charac-
teristics of Moravia Agria wines. To rate the intensity of 
each attribute, the judges used a unstructured scale, in which 
the left-hand end of the scale was ‘attribute not perceptible’ 
and the right-hand end was ‘attribute strongly perceptible’. 
They found that although some aromatic series such as ‘flo-
ral’, ‘green’ and ‘fresh’ were the minor aroma categories 
according to GC-MS analysis, they were among the most 
characteristic attributes in the sensory profile of Moravia 
Agria wines. In addition, even though the aromatic series 
including ‘pungent’, ‘chemical’, ‘fatty’ and ‘dry’ aromas 
constitute a major aroma category (according to quantitative 
chemical analysis), these attributes were not detected in the 
sensory flavour profile by the authors. This was attributed to 
several factors that, when combined, may alter the intensity 
of the descriptors, masking the descriptors of some aromatic 
series and increasing the intensity of other odour descrip-
tors. Finally, their results are in agreement with the results 
obtained by Gürbüz et al. (2006) in red wines made from 
Merlot and Cabernet Sauvignon grape varieties.

Costello et al. (2012) studied the effects on the chemical 
and sensory impacts of MLF in Cabernet Sauvignon wine. 
MLF was conducted on two styles of Cabernet Sauvignon 
wine, each of them divided into four equal volumes, three 
of which were inoculated with three different commercial 
Oenococcus oeni strains, and the fourth used as a non-MLF 
control. Both Cabernet Sauvignon wine sets were studied 
separately by a sensory panel of eleven participants (set 1) 
and thirteen participants (set 2) trained by the same panel 
leader. The panel selected twenty-four sensory attributes to 
distinguish the wines: appearance (two attributes), aroma 
(twelve attributes) and palate (ten attributes). For each attrib-
ute, an ANOVA analysis was conducted, useful to evaluate 
the effect of the MLF treatment and fermentation replicate 
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nested within the MLF treatment, controlling for the effect 
of presentation replicate and judge. Seven attributes were 
affected in wines from set 1 (‘dark fruit aroma’, ‘savoury 
aroma’, ‘overall fruit flavour’, ‘green flavour’, ‘savoury fla-
vour’, ‘viscosity’ and ‘bitterness’) and six in wines from 
set 2 (‘colour intensity’, ‘overall fruit flavour’, ‘hotness’, 
‘coarseness’, ‘astringency’ and ‘bitterness’). Two of them 
were common to both sets of wines: ‘overall fruit flavour’ 
and ‘bitterness’. They quantified twenty-eight fermentation-
derived volatile compounds in each wine using SPME, sta-
ble isotope dilution analysis and GC-MS. Then, they con-
ducted PLS regression analysis to model the sensory data 
as a dependent variable with the compositional data. This 
analysis revealed a strong correlation between important 
chemical components and sensory attributes, including over-
all ‘fruit flavour’ and ‘dark fruit aroma’.

The volatile composition and aroma of five red wines 
were studied during three consecutive vintages (2007–2009) 
by Vilanova et al. (2012). Brancellao, Mencí a, Merenzao, 
Mouratón and Sousón, traditional red cultivars grown in 
Galicia, were characterized using GC-MS and sensory anay-
sis. In addition, volatile and sensory results were analysed 
using PLSR. Sensory analysis was carried out by a panel 
of eight judges using the Quantitative Descriptive Analysis 
(QDA) methodology (Lawless & Heymann, 2010). Panel-
lists scored the intensity of each aromatic attribute using a 
9-point scale. The frequency, intensity and geometric mean 
(%GM) of the different descriptors were calculated for each 
wine, and ANOVA was performed on the attribute intensity 
scores. They identified twenty out of fifty-one volatile com-
pounds at concentrations higher than their corresponding 
odour thresholds, which contributed to the final wine aroma, 
and analysed the relationships between volatile composition 
and aromatic descriptors by applying PLSR. They obtained 
a satisfactory model for the prediction of four important 
aroma descriptors in these wines: ‘aroma quality’, ‘aroma 
intensity’, ‘herbaceous’ and ‘red fruit’.

The aroma profiles of ten Uruguayan Tannat wines were 
characterized by Fariña et al. (2015). Volatile composition 
was studied by GC-MS, identifying and quantifying sixty-
two volatile compounds, being alcohols and esters the most 
present. Sensory characterization was performed by a panel 
of thirty wine professionals using projective mapping, and 
these data were analysed using multiple factor analysis 
(MFA). The aroma descriptors used by the panellists in the 
description phase were qualitatively analysed and grouped 
according to the Wine Aroma Wheel of Noble et al. (1987). 
PLSR was used to study the relationship between volatile 
composition and sensory characterization. They found that 
the most important sensory descriptors, namely ‘woody’, 
‘earthy’, ‘phenolic’, ‘sulfur’, ‘chemical’ and ‘microbiologi-
cal’, were related to volatile composition. Their aroma profile 

results were in agreement with those reported by Varela and 
Gámbaro (2006).

Sánchez-Palomo et al. (2017) characterized by chemical 
and sensory analysis four consecutive vintages (2013–2016) 
of the aroma of Malbec red wines from La Mancha. Volatile 
composition was determined by SPE and GC-MS: they iden-
tified seventy-nine aroma compounds. Sensory analysis was 
carried out by a panel of ten experts that selected the nine 
aroma attributes that best describe the main characteristics 
of these wines and the differences among them. Panellists 
rated the intensity of each attribute using a unstructured 
scale, in which the left-hand end of the scale was ‘none/
weak’ and the right-hand end was ‘strong’. QDA was con-
ducted to identify the sensory aroma profile, and ANOVA 
was performed for each judge and each attribute. They found 
that the sensory aroma of these wines was characterized by 
‘red fruit’, ‘clove’, ‘caramel’, ‘liquorice’, ‘leather’, ‘tobacco’ 
and ‘coffee’ aroma descriptors. Their results were consist-
ent with the ones obtained by Gómez García-Carpintero 
et al. (2011), Gürbüz et al. (2006) for red wines made from 
the Moravia Agria, Merlot and Cabernet Sauvignon grape 
varieties.

Longo et al. (2020) studied colour components, volatile and 
sensory attributes of 15 Australian Pinot noir wines, in order 
to discriminate them according to their region of origin. A 
HS-SPME (headspace solid-phase micro-extraction) GC-MS 
method was used to quantify 28 fermentative compounds and 
all of the datasets were analysed by ANOVA. Sensory analysis 
was performed by a panel of 11 judges using a Pivot© pro-
file sensory method (Thuillier et al., 2015), a frequency-based 
descriptive method based on free description. The sensory  
panel generated 53 descriptors: 10 appearance, 22 aroma and 21  
palate, but only 14 attributes (four appearance, and five for both 
aroma and palate) were included in the CA. They found that the 
region of origin is a strong driver of aroma typicity of wine. For 
these wines, ethyl decanoate, ethyl 2-methylpropanoate, ethyl 
2-methylbutanoate, and decanoic acid appeared to significantly 
contribute to the distinctiveness of the producing regions, and 
the most relevant sensory attributes were ‘red fruits’, ‘floral’ 
and ‘oaky’ aromas, ‘acidic’, ‘astringent’, ‘complex’ and ‘soft’ 
palate descriptors.

Denat et al. (2021) studied the effects after fermentation 
and after ageing on the sensory and chemical aroma profiles 
of Tempranillo wine from Rioja, Spain (vintage 2019). They 
also used two S. cerevisiae strains. For twelve samples, vola-
tile composition was determined by SPE and GC-FID, and 
aroma compounds were arranged into aroma vectors. Aroma 
vectors, according to Ferreira et al. (2022), are groups of 
aroma compounds which share chemical and sensory char-
acteristics. They identified 17 aroma vectors. They did two 
sensory studies: a sorting task carried out by twenty judges 
without previous training, and a descriptive analysis by flash 
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profile with a trained panel of fourteen judges. They found 
that the strain of yeast introduces significant and consist-
ent differences. Not only sensory profile but also 11 of the 
aroma vector profiles were affected. Particularly, wines made 
with one one of the strains contained higher levels of ethyl 
esters, acetic acid, cinnamates and ethyl acetate (related to 
black and fresh fruit), and lower levels of linear fatty acids, 
�-damascenone, acetaldehyde, higher alcohols and lactones 
(related to white and compote fruits).

Finally, a compilation of considered key compounds in 
wine aroma was presented by Francis and Newton (2005), 
who provided an overview of the relationships between 
wine sensory properties and volatile chemical composition 
obtained by GC-O for rosé, young red and aged red wines, 
and also reported their odour threshold.

White Wines

Studies with Sensory Analysis and Without Volatile 
Characterization

Sauvageot and Vivier (1987) also studied the differences between 
MLF and no-MLF Chardonnay wines (1991–1992 vintages). 
MLF wines were perceived higher in ‘hazelnut’, ‘fresh bread’ 
and ‘dried fruit’ aromas, whereas non-MLF wines kept specific 
aromas such as apple and grapefruit-orange. Also for Chardon-
nay wine and according to Gámbaro et al. (2001), after MLF, 
Laurent et al. (1994) found a significant decrease of the attributes 
‘berry fruit’ and ‘floral’, and an increase of the aromatic descrip-
tors ‘earthy’ and ‘buttery’. The increase of the ‘buttery’ character 
after MLF in Chardonnay wine was also reported by Rodriguez 

et al. (1990), after an experienced panel of seven judges measured 
four aromatic characters: ‘fruitiness’, ‘butteriness’, ‘cheesiness’ 
and ‘sauerkraut’. Panellists also determined the acidity level of 
each sample. QDA measurements were made and analysed using 
ANOVA and Tukey’s honestly significant difference (HSD) test 
(Stone & Sidel, 2004). Campo et al. (2008) studied twenty-three 
commercial monovarietal young white wines (2004 vintage) 
produced in Spanish regions from different grape varieties 
(Albariño, Chardonnay, Godello, Macabeo, Sauvignon Blanc, 
Verdejo, Treixadura, Xarello and Palomino Fina). A panel of 
thirty-two judges sorted the wine samples into groups on the 
basis of odour similarity, followed by sensory DA based on cita-
tion frequencies for each sample. DA was analysed by CA and 
HCA. They found that only Verdejo and Sauvignon Blanc vari-
etals were similarly perceived and described by the panel, being 
tropical fruit the major descriptor and that no other clear grouping 
was observed for the rest of grape varieties.

Nanou et al. (2020), in turn, studied sensory aroma profiles 
of white wines of the indigenous Greek grape varieties Assyr-
tiko, Malagousia, Moschofilero and Roditis. They employed a 
panel integrated by twenty-three trained members and applied 
a frequency of attribute citation method for identifying the 
aromatic descriptors, besides different descriptive analysis for 
testing panel performance, experiment reproducibility, and so 
on. They found banana and vanila profiles for Roditis variety; 
lemon, grapefruit, and citrus blossom character as descriptors 
for Assyrtiko variety; and floral odour profile, particularlly, rose, 
jasmine or more citrus blossom-like for Moschofilero variety. In 
addition, Malagousia and Assyrtiko presented some common 
aromatic descriptors such as mushroom and earthy, whereas 
Malagousia and Moschofilero shared floral and citrus notes.

Fig. 2  Grapes from which the 
wines classified in this article 
come from
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Studies with Aromatic Profile and Total Volatile 
Composition but Without a Panel

Three aroma categories, volatile compounds (except for monoter-
penols), monoterpenols and bound forms were analysed in depth 
by Versini et al. (1994) using GC-MS and GC-FID for wines 
from the three most interesting Galician white grape varieties 
(Albariño, Loureira and Godello). Data about young white 
wines were also compiled by Francis and Newton (2005) in their 
review.

Ubeda et al. (2022) subjected a Chilean Sauvignon Blanc 
wine to a maturation during 6 months by using four differ-
ent types of vessels, and subsequently wines were bottled 
using three different closures (natural cork, synthetic cork, 
and screwcaps). The volatile compound profiles of the wine 
samples were recorded by SPME-GC-MS throughout vessel 
maturation as well as after the bottle storage period. They 
conclude the selection of vessels and closures during wine 
maturation could be employed as a tool by winemakers to 
modulate wine features and could be a helpful strategy to 
mitigate the side effects of uncontrolled elements such as 
climate change.

Zhang et al. (2022) investigated the effects of triple mixed 
culture of T. delbrueckii, H. vineae, and S. cerevisiae with 
different inoculation ratios on the basic wine parameters, 
aroma profiles, biogenic amines and phenolic compounds in 
Petit Manseng wines. The results collectively indicated that 
co-inoculation of T. delbrueckii and H. vineae is an effective 
method to make up the species shortages and further improve 
the overall quality of wines. The technique used for identi-
fication of volatile compounds is micro-extraction coupled 
with gas chromatography-mass spectrometry (HS-SPME-
GC-MS). The phenolic compounds were separated and ana-
lysed using high-performance liquid chromatography triple-
quadrupole tandem mass spectrometry (HPLC-QqQ-MS/
MS).

Studies with Sensory Analysis and Volatile Characterization

Cliff and Dever (1996) studied Chardonnay wines (1988–1993 
vintages) produced by wineries from British Columbia by 
sensory and compositional analyses. For each sample, titrat-
able acidity, pH, absorbance, phenol and alcohol content were 
determined, and sensory profile was performed by a panel of 
ten expert wine judges. Data were analysed by performing 
PCA on the mean scores of sixteen samples of wines to assess 
the relationship between attributes and wines, and they found 
good agreement between compositional and sensory analyses. 
They also used discriminant analyses on twenty-five samples 
of wine to determine the linear combination of variables that 
distinguished between vintages and wineries, and obtained 
that discriminant analysis effectively distinguished between 
the vintages: in general, the 1992–1993 vintages were more 

‘fruity’ than the 1988–1991 vintages. In addition, they found 
specific winery ‘styles’: some wineries produced ‘yellow’, 
‘oaky’, ‘buttery’ and ‘astringent’ wines, whereas others pro-
duced wines that were more ‘fruity’ and ‘floral’.

Guth (1997) and (1998) studied the aroma profile of two 
wine varieties: Gewürztraminer and Scheurebe. Volatile com-
position was obtained by GC-MS and HPLC. Sensory profile 
was determined by a panel of six assessors using GC-O and a 
3-point scale: (0) none, (1) weak, (2) medium, (3) strong. In 
addition, Guth (1998) studied the influence of barrel ageing 
on the flavour of Gewürztraminer wine. They found the pres-
ence of 4-Mercapto-4-methylpentan-2-one only in Schreube 
wines, whereas cis-rose oxide was one of the most relevant 
odourants present only in Gewürztraminer wines.

To study the effect of in-bottle storage time on the organo-
leptic characteristics of wines, González-Viñas et al. (1998) 
performed a sensory analysis of the aroma attributes of 
twenty-six young Airén white wines (1991–1994 vintages), 
stored under usual commercial conditions for 6, 18, 30 and 
42 months. Another aim of their work was to evaluate the 
shelf life of wines in the absence of careful storage condi-
tions. A panel of twelve assessors selected seven attributes 
that best suited to the differences between wines stored in a 
bottle for different time periods. Then, six aroma attributes 
were evaluated for each wine sample: ‘fresh-citric’, ‘floral’, 
‘apple’, ‘spicy-green pepper’, ‘banana’ and ‘sweet-raisin-
prune’. The judges rated the intensity of each attribute using 
a unstructured scale, in which the left-hand end of the scale 
was ‘attribute not perceptible’ and the right-hand end was 
‘attribute strongly perceptible’. PCA was applied to this data: 
according to their results, ‘fresh-citric’ aroma disappeared 
after 18 months, and ‘spicy-green pepper’ and ‘sweet-raisin-
prune’ aromas became noticeable to consumers. This study is 
related with an earlier study by Gonzalez-Viñas et al. (1996), 
in which four consecutive vintages (1990–1993) of Airén 
wines were analysed using GC-FID for major and minor 
volatile determination. They found significant changes in 
composition within 12 months of storage in bottles as well 
as in subsequent months.

Using GC-O, Campo et al. (2005) developed a PLSR 
model to predict wine sensory properties of six monovari-
etal young white wines (2001 vintage). Monovarietal wines 
were selected from the following grapes: Albariño, Godello, 
Malvasí a, Parellada, Treixadura and Verdejo. The vola-
tile composition of wines was determined by GC-FID and 
GC-MS, and a panel of eight judges scored the ten aroma 
terms selected for descriptive analysis using a 4-point scale: 
(0) not detected; (1) weak, hardly recognizable note; (2) clear 
but not intense note; (3) intense note. Data were processed 
using MF (Dravnieks, 1985). Then, DA data were analysed 
by CA, �2 analysis and ANOVA, in which the considered 
factors were judges and wine varieties. Finally, PLSR mod-
els were validated by sensory analysis performed by a panel 
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composed of twelve judges, confirming most of the sensory 
descriptor predictions described by the model. Then, by sen-
sory analysis, GC-O and GC-MS, Campo et al. (2006) stud-
ied the aroma profile of Malvazia, Boal, Verdelho and Sercial 
monovarietal wines, four of the most emblematic grape varie-
ties from Madeira, Portugal. The sensory panel, composed 
of eight judges, determined the seven aroma terms that best 
described the selected wines for further DA: ‘dried fruit’, 
‘candy’, ‘lacquer’, ‘nutty’, ‘maderized’, ‘toasty’ and ‘spicy’. 
The intensity of each attribute was scored using a 7-point 
scale: (0) non-detected; (1) weak, hardly recognizable note; 
(2) clear but not intense note; (3) intense note, being half 
values allowed. The data processed were a mixture of inten-
sity and frequency of detection (MF) according to Dravnieks 
(1985). Quantitative analysis was carried out using GC-FID, 
SPE and GC-ion trap-MS analyses. Furthermore, to identify 
the odourants specifically related to the process of elabora-
tion of Madeira wines, GC-O profiles of the four wines were 
compared to the GC-O profiles obtained from three young 
white monovarietal wines elaborated with Malvasia, Boal 
and Verdello, respectively. Their GC-MS results confirmed 
most of the results of the GC-O study, leading to the conclu-
sion that GC-O is a useful tool for the detection of presence 
of active odourants in wine.

Peťka et al. (2006) studied the aroma profile of a Slovakian 
white wine made from Deví n grapes, using GC-O profile 
and sensory characterization performed by a panel of judges. 
GC-O sniffings were carried out by a panel of eight judges, 
and the profile revealed that this wine aroma resembles a 
mixture of Gewürztraminer, Sauvignon Blanc and Muscat. A 
panel of thirteen experts evaluated the orthonasal, retronasal 
and residual wine aroma, using a list of twenty-five aromatic 
descriptors previously agreed and a 7-point scale: (0) non-
detected; (1) weak, hardly recognizable note; (2) clear but 
not very intense odour; (3) extremely strong odour, being 
half values allowed. Data were processed using adjusted 
frequencies (MF) according to Dravnieks (1985) combined 
with ANOVA and GPA. They found that aromatic profile was 
primarily ‘Muscat’ and intense ‘fruity’, ‘sweet’, and ‘herba-
ceous’ notes.

Using GC-FID and GC-MS, Sánchez-Palomo et al. (2007) 
studied the volatile composition of must and wines from 
Muscat ‘à petits grains’ and Albillo grape cultivars harvested 
at different degree of maturation (2001–2002 vintages). They 
found higher ester and fatty acid concentrations in wines with 
a low degree of maturity, but less terpene compounds and 
benzene derivatives than in wines from more mature grapes. 
Although they do not provide information about the panel 
composition, the judges performed a sensory profile for each 
wine. Wines obtained from Albillo varieties had ‘citric’ and 
‘fruity’ aromas with ‘floral’ notes, whereas wines made from 
Muscat ‘à petits grains’ had a ‘muscat’ aroma, and ‘fresh’ 
and ‘fruity’ odour.

The volatile composition and sensory profile of wines made 
from Inzolia grape, which is one of the most widespread native 
white grapes in Sicily, Italy, were characterized by Verzera 
et al. (2008). Twelve samples from 2006 vintage were stud-
ied. They identified fifty-six volatile compounds and alcohols, 
esters, terpenes and fatty acids using HS-SPME/GC-MS. Sen-
sory characterization was performed by a panel of ten judges, 
who evaluated eight descriptors selected by the panellists as 
the most representative of these wines. Aromatic attributes 
were defined according to the Wine Aroma Wheel proposed 
by Noble et al. (1987). Sensory attributes were quantified using 
a 9-point intensity scale and analysed using ANOVA. Wine 
samples were described mainly with the descriptors ‘fruity’, 
‘banana’, ‘rippened apple’, ‘floral’, ‘acid’ and ‘pungent’, which 
was in agreement with volatile composition.

Muñoz González et al. (2011) studied the volatile and 
sensory characterization of twenty-five Xarel⋅ lo monova-
rietal white wines (2005–2008 vintages), a representative 
wine from Penedés region (Catalonia, Spain). By GC-FID 
and HS-SPME-GC-MS, they found fifty-nine aroma com-
pounds in the wine samples, although some of them were 
not detected in every sample. Only twenty-five volatile com-
pounds were found in more than 90% of the samples. DA 
was performed by a panel composed by twelve experts, who 
selected the sixteen best suited descriptors to characterize 
these wines and used a 10-point scale to rate their presence 
in each sample, being (0) descriptor not perceived and (9) 
highest intensity the bottom and upper bounds, respectively. 
In addition, they applied several statistical methods for the 
data analysis (ANOVA and Scheffe test, PCA, cluster analy-
sis) and found considerable differences in the sensory attrib-
utes and volatile composition between aged and younger 
wines. Finally, the relationship between the sensory attrib-
utes and volatile composition was predicted by applying 
PLS.

In addition, the influence of geographical location on 
volatile composition and perceived flavour of Sauvignon 
Blanc wines from Marlborough (New Zealand), Sancerre, 
Loire and Saint Bris (France), and Styria (Austria) was stud-
ied by Green et al. (2011). Sensory analyses of eighteen 
commercial Sauvignon Blanc wines (2006–2007 vintages) 
were performed by a panel of nineteen judges using eleven 
experimenter-provided flavour descriptors and analysed 
using HCA. Chemical analyses were determined using 
HS-SPME, SPME-GC-MS and SPME-GC-MS/MS. Their 
results indicated that wines from New Zealand were domi-
nated by ‘green’ characteristics (‘green capsicum’, ‘herba-
ceous’, ‘grassy’ and ‘leafy’), Austrian wines were perceived 
as ‘fruity’ (‘tropical’ and ‘stonefruit’), and French wines 
received relatively high intensity ratings for ‘mineral-smoky-
flinty’ aromas.

Using GC-MS and QDA, Vilanova et al. (2013) studied 
the aroma and volatile composition of wines from five white 

36 Food and Bioprocess Technology  (2023) 16:24–42

1 3



grape cultivars from northwestern Spain (Loureira, Blanco 
lexí timo, Torrontés, Treixadura and Albariño) during three 
consecutive vintages (2007–2009). The sensory evaluation of 
the wines was performed by eight wine tasters using DA, who 
scored the intensity of each attribute using a 9-point scale. 
The frequency, intensity and GM of each of the thirty-six 
descriptors were calculated for each wine. They also per-
formed ANOVA on the individual intensity scores of attrib-
utes and found that the effect of wine was significant for the 
terms ‘gold color’, ‘odor intensity’, ‘floral’, ‘herbaceous’, 
and ‘ripe fruit’ aromas, ‘balanced’, ‘sweetness’ and ‘acidity’, 
‘body and global value’. This means that these ten terms were 
useful for characterizing differences among the five cultivars. 
They identified twenty out of forty-six volatile compounds 
at concentrations higher than their corresponding odour 
thresholds, thus contributing to the final wine aroma, and 
analysed the relationships between volatile composition and 
aromatic descriptors by applying of PLSR. They obtained 
a satisfactory model for the prediction of three important 
aroma descriptors in this set of wines, ‘floral’, ‘herbaceous’ 
and ‘ripe fruit’ aromas, and aroma intensity from instrumen-
tal analysis data.

Ayestarán et al. (2019) studied the effect of maceration 
on the volatile composition and aroma characteristics of 
Tempranillo Blanco wines during three consecutive vin-
tages (2014–2016). Sensory analysis was performed by an 
experienced panel using a total of nine aromatic descriptors. 
In addition, the GM of each one was calculated, and GC-ion 
trap and CG-MS were employed to determine the volatile 
composition. They analysed the relationships between vola-
tile compounds and sensory analysis using PLS, conclud-
ing that while wines with carbonic maceration process were 
more aromatic and had ‘ripe fruit’ descriptors, convention-
ally made wines were associated with ‘citrus’, ‘tropical’ and 
‘seed fruit’ aromatic descriptors.

Naranjo et al. (2021) studied the volatile composition and 
aroma characteristics of Maturana Blanca wines (vintage 
2018), an autochthonous minor variety of grape from Rioja, 
Spain. Volatile composition was determined by GC-MS after 
liquid-liquid extraction (LLE), quantifying 33 volatile com-
pounds. The sensory evaluation of the wines was carried 
out by thirteen wine tasters. The sensory panel selected a 
consensual group of descriptors, and the GM of each one of 
the descriptors was calculated. They found that Maturana 
Blanca wines were influenced the most by acetates, ethyl 
esters, 2-phenylethanol and �-decalactone, which are related 
to ‘fruity’ and ‘floral’ aromas and ‘spicy’ notes. Sancho-
Galán et al. (2022) also studied an autochthonous cultivar 
from Spain, specifically from Cadiz, and the influence of the 
grape over-ripening in the production of white wines for a 
particular grape. They characterized the volatile composi-
tion and sensory profile of wines made from Palomino Fino. 
Volatile composition was determined by GC-FID (for major 

volatile compounds) and GC-MS after SPE (for free minor 
volatile compounds). Sensory analysis was performed by 
a 20-member panel, using an 11-point scale, with 0 points 
representing the lowest score and 10 points representing the 
highest score of the aroma attributes selected. They found 
that grape over-ripening implies modifications in the volatile 
composition of wines, and that there are differences between 
grapes that have been over-ripened naturally or in the sun 
versus those that have been over-ripened in a climatic cham-
ber under controlled conditions. The wines that were made 
with overripe grapes were dominated by fruity and floral 
notes.

Country of origin, most relevant aromas and volatile com-
pounds of wines of the studied works are detailed in Sup-
plementary Information.

Conclusions

A review of the available datasets about wine features, 
chemical composition and aromatic profiles was performed 
in the present paper. In addition, the state of the art on the 
use of machine learning–based models to predict character-
istics of wines was carried out. As a first conclusion, as far 
as we have found, none of the reviewed works presented a 
study on the relationship between the quantitative sensory 
analysis of wines and their volatile composition by applying 
the QSOR modelling approach. Additionally, the homogene-
ous datasets of wines available in the literature is scarce, and 
those that can be found contain a reduced amount of infor-
mation. This makes the development of predictive models 
based on supervised machine learning approaches consider-
ably complicated.

In this regard, there are several requirements and guidelines 
that a dataset must meet in order to allow the generation of reli-
able models. The first one is the homogeneity in the processes 
and standards used for data acquisition. We have seen a great 
diversity of criteria both in the definition of the descriptive 
variables of the wines, such as their chemical compositions, 
and in the characterization of the variables to be predicted, 
whether they are aromatic descriptors or other types of objec-
tive variables. This heterogeneity in the data makes it impos-
sible to integrate most of the datasets that are available in the 
literature. Another important guideline is that the variety and 
quantity of wines represented in the datasets should be large 
enough to guarantee a wide domain of applicability of the 
QSOR models, because models derived from small datasets 
are going to have a very limited scope and practical use in the 
industry, even when they have been properly trained.

Nevertheless, as we mentioned in the “Introduction”, in 
2021, a key progress for developing QSOR modelling approach 
was published by Sharma et al. They applied their QSOR model 
to an independent test set of chemical compounds and achieved 
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high accuracy on smell predictions. Furthermore, the same 
research group published OlfactionBase, a free, open-access 
web server in which the knowledge about many aspects of the 
olfaction mechanism is gathered, containing detailed informa-
tion of components such as odours and odourants, among other 
aspects. Using this new database, we think that the aromatic 
profiles of wines can be predicted transitively. In other words, 
whereas traditional technologies determine the composition of 
wine in terms of its chemical compounds, aromatic descrip-
tors and their intensity might be inferred by machine learning 
models. This is the most relevant finding of this review, which 
can give future directions to the community working in food 
informatics applied to the wine industry.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11947- 022- 02836-x.

Country of origin, most relevant aromas and volatile compounds of 
wines of the studied works are presented as supplementary material 
to the present work.
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