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ABSTRACT 25 

We describe and incorporate fragmentary new cranial and postcranial materials of 26 

hadrosaurid ornithopods into the non-avian dinosaur assemblage of the Upper Cretaceous 27 

(Coniacian–Maastrichtian) Lago Colhué Huapi Formation of central Patagonia, south-28 

central Chubut Province, Argentina. The fossils come from the upper part of the formation, 29 

probably from a stratigraphic interval close to the Cretaceous/Paleogene boundary. The 30 

materials belong to at least two ontogenetically distinct individuals that are assigned to 31 

Hadrosauridae due to their possession of anatomical features that characterize this derived 32 

ornithopod group. Sedimentological inferences reveal that the paleoenvironment of these 33 

hadrosaurids was characterized by high-sinuosity, meandering-type fluvial channels, 34 

whereas palynological data suggest the existence of low-energy freshwater bodies in the 35 

floodplains of these rivers and a warm and humid paleoclimate. The deposition of the upper 36 

part of the Lago Colhué Huapi Formation was probably influenced by the Patagonian 37 

Atlantic marine transgression, which may have played an important role in the distribution 38 

of this sedimentary unit. The new Lago Colhué Huapi Formation hadrosaurid specimens 39 

constitute the most stratigraphically recent records of this clade from Argentina. The 40 

materials contribute to the interpretation of Upper Cretaceous hadrosaurid 41 

paleobiogeography in Patagonian basins; moreover, sedimentological and palynological 42 

data suggest that paleoenvironmental conditions may have exerted an important influence 43 

on South American hadrosaur distribution, supporting hypotheses of ornithopod faunal 44 

turnover during the Late Cretaceous of central Patagonia. Finally, the new remains add to 45 

the generally depauperate record of Late Cretaceous ornithopods in the Southern 46 

Hemisphere. 47 

 48 
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1. Introduction 51 

Hadrosaurids were the most diverse and derived group within Ornithopoda (Horner 52 

et al., 2004; Prieto-Márquez, 2010). The fossil record of this clade is particularly abundant 53 

in the Campanian and Maastrichtian of North America and Asia (Lund and Gates, 2006; 54 

Kobayashi et al., 2019; McKellar et al., 2019), and indeed, hadrosaurids were one of the 55 

most dominant terrestrial herbivore clades in Laurasian Late Cretaceous habitats (Gates et 56 

al., 2012; Wosik et al., 2020). In recent years, the fossil record of this herbivorous dinosaur 57 

group has increased in South America as well, particularly in Argentine Patagonia (Coria et 58 

al., 2012; Cruzado-Caballero and Powell, 2017). However, most Patagonian hadrosaurids 59 

are represented by fragmentary remains, which has precluded a robust assessment of their 60 

phylogenetic relationships (Prieto-Marquez and Salinas, 2010; Coria, 2011, 2014; Coria et 61 

al., 2012; Cruzado-Caballero, 2017). The only other definitive Gondwanan hadrosaur fossil 62 

yet identified is the fragmentary holotypic partial skull of the lambeosaurine Ajnabia 63 

odysseus from the Maastrichtian of Morocco (Longrich et al., 2021). 64 

Hadrosaurid fossils are commonly found in diverse paleoenvironments such as 65 

lower coastal plain channel deposits and upper coastal plain, overbank, and delta plain 66 

sediments (Horner et al., 2004). Nevertheless, eggshells and juvenile individuals are 67 

generally recovered from upper coastal plain settings (Horner et al., 2004). Moreover, 68 

marginal marine environments may have been an ancestral habitat for the clade (Kobayashi 69 

et al., 2019). 70 

The Coniacian–Maastrichtian Lago Colhué Huapi Formation is the uppermost 71 

sedimentary unit of the Chubut Group in the Golfo San Jorge Basin of central Patagonia 72 

(Casal et al., 2015). The fossil record of this formation reveals a relatively abundant fauna 73 

in which non-avian dinosaurs are well-represented (see Casal et al., 2016; Ibiricu et al., 74 



2020). Here we describe new hadrosaurid materials (specimens UNPSJB-PV 1050 and 75 

UNPSJB-PV 1061) from the upper part of the Lago Colhué Huapi Formation, from a 76 

stratigraphic interval that is probably close to the Cretaceous/Paleogene boundary. 77 

Although fragmentary, the remains are undoubtedly referable to Hadrosauridae and are 78 

important because they add to the sparse record of terminal Cretaceous Gondwanan 79 

hadrosaurids. Additionally, although the hadrosaurid Secernosaurus koerneri comes from 80 

the same geographic area (Brett-Surman, 1979), it lacks clear stratigraphic provenance (see 81 

below). Therefore, the materials described herein are the first hadrosaurid fossils from the 82 

Golfo San Jorge Basin to be associated with precise geographic and stratigraphic 83 

information, which in turn casts light on the biostratigraphic and paleobiogeographic range 84 

and distribution of South American hadrosaurids during the latest Cretaceous. Furthermore, 85 

UNPSJB-PV 1050 and UNPSJB-PV 1061 were associated with palynomorphs and fossil 86 

leaves (Vallati et al., 2016, 2020) as well as freshwater stromatolites (Casal et al., 2020). 87 

Therefore, the paleoflora (De Sosa Tomas et al., 2017; Vallati et al., 2017) and 88 

paleoenvironmental setting (Vallati et al., 2020) of the remains are well known, which in 89 

turn supports inferences regarding the association of hadrosaurids with coastal, marine-90 

influenced paleoenvironments and how these environmental preferences shaped the 91 

distribution of these dinosaurs. Finally, the first transgression of the Atlantic Ocean across 92 

southern South America occurred during the Maastrichtian, affecting multiple Patagonian 93 

basins (Spalletti and Franzese, 2007). This marine incursion could have played an 94 

important role in influencing the distribution of hadrosaurids in South America and in 95 

driving a previously hypothesized turnover of ornithopod faunas on the continent. 96 

 97 

 98 



2. Geological and paleoenvironmental setting  99 

The Golfo San Jorge Basin is located between 44°S and 47°S latitude and 65°W and 100 

71°W longitude. Rocks deposited within the basin crop out in the southern portion of 101 

Chubut Province and the northern sector of Santa Cruz Province in central Patagonia, 102 

Argentina (Fig. 1A). The main sedimentary infill pertains to the Chubut Group (Lesta, 103 

1968; Lesta and Ferello, 1972). This group consists of fluviolacustrine units that preserve a 104 

rich and important fossil record. The stratigraphically youngest unit of the Chubut Group is 105 

the Coniacian–Maastrichtian Lago Colhué Huapi Formation, which was formally separated 106 

from the Upper Member of the Bajo Barreal Formation by Casal et al. (2015). Therefore, 107 

this unit is placed above the Cenomanian–Turonian Bajo Barreal Formation and, depending 108 

on the specific location in the basin, below the Laguna Palacios Formation or the 109 

Salamanca Formation (Maastrichtian–Danian sensu Barcat et al., 1989; early Danian sensu 110 

Clyde et al., 2014 and Simeoni, 2014; see Casal et al., 2015). According to Gianni et al. 111 

(2018), marked paleobiogeographic changes took place in Patagonia during the 112 

Maastrichtian–early Paleocene in tandem with the first Atlantic marine transgression over 113 

southern South America (Olivero and Medina, 1994; Aguirre-Urreta et al., 2011). In the 114 

Golfo San Jorge Basin, these events coincide with the deposition of the upper section of the 115 

Lago Colhué Huapi Formation as well as that of the Salamanca Formation (see below). 116 

The Lago Colhué Huapi Formation was deposited under a fluvial regime, in 117 

channels that increase in sinuosity toward the top of the formation. The lithology of the unit 118 

consists of light-colored sandstones and red mudstones, and, except in the basal portion, is 119 

characterized by the absence of pyroclastics, unlike the rest of the units of the Chubut 120 

Group (Casal et al., 2015). Its outcrops are well-exposed in the eastern region of the 121 



eponymous lake and in the headwaters of the Río Chico in south-central Chubut Province 122 

(Fig. 1A). 123 

A newly discovered outcrop of the Lago Colhué Huapi Formation at the headwaters 124 

of the Río Chico, informally named Cerro del Hadro, has yielded, to date, an association of 125 

fossils including stromatolites (Casal et al., 2020), palynomorphs (Vallati et al., 2016, 126 

2020), wood fragments, indeterminate eggshells, recently recovered non-avian theropod 127 

teeth (Álvarez et al., in prep.), and the hadrosaurid remains that are the focus of this study. 128 

The stratigraphic section at the site starts with the light-colored sandstones and red 129 

mudstones that characterize the Lago Colhué Huapi Formation (Fig. 1B). This succession is 130 

interrupted by an irregular unconformity of concave geometry.  131 

The lithofacies analysis presented herein is based on but slightly modified from that 132 

proposed by Casal et al. (2020). The sedimentary infill begins with a coarsening downward, 133 

intraformational coarse conglomerate [Fig. 1C (Casal et al., 2020: table 1)] followed by a 134 

fine conglomerate with low and diffuse-angled crossbedding [Fig. 1D (Casal et al., 2020: 135 

table 1)]. The sediments that bear the hadrosaurid remains are ochre and black, coarse- to 136 

medium-grained crossbedded sandstones [Fig. 1E (Casal et al., 2020: table 1)]. Above and 137 

in direct contact with the sandstones is a finer-grained sedimentary succession that is 138 

interpreted as having originated during inundation of the paleovalley, where decantation 139 

processes dominated (Fig. 1F). This succession starts with 0.3 m of dark gray laminated 140 

mudstone with well-preserved palynomorphs [Fig. 1G (Casal et al., 2020: table 1; Vallati et 141 

al., 2020)].  142 

Vallati et al. (2016) studied the palynoflora of these levels and reported the presence 143 

of Maastrichtian species that became extinct at the Cretaceous/Paleogene boundary (Vajda 144 

and Bercovici, 2014). Among them, Quadraplanus brossus and Tubulifloridites lilliei 145 



characterize the austral Nothofagidites/Proteacidites Province (Herngreen, 1980), whereas 146 

Buttinia andreevi and Gabonisporis vigourouxii typify the tropical to subtropical Palmae 147 

Province (Herngreen, 1980). The cooccurrence of species that are characteristic of the 148 

tropical and austral provinces, respectively, indicates that, at the latitude of the studied 149 

locality, this Patagonian region was located in the Southern Hemisphere transitional zone 150 

recognized by Vajda and Bercovici (2014). Species with affinities to Palmae such as 151 

Spinizonocolpites riochiquensis were also recovered in these deposits, suggesting a warm 152 

paleoclimate with at least seasonal rainfall.  153 

Above these levels, the sedimentary fill continues with a 0.2 m horizontally 154 

laminated white marlstone bed. This bed includes mesocharcoal and a palynoflora 155 

dominated by gymnosperms (mainly Podocarpaceae), followed by angiosperms and lesser 156 

numbers of spores of Monilophyta, Lycophyta, and Bryophyta, and zygospores of 157 

Zygnemataceae. The presence of Zygnemataceae zygospores indicates the presence of a 158 

shallow, low-energy, well-oxygenated body of clear water that accords with the 159 

reconstruction of a humid and warm paleoclimate (Vallati et al., 2016, 2020). This deposit 160 

is laterally related to a stromatolite-bearing horizon [E1; Fig. 1H (Casal et al., 2020: table 161 

1)]. Following from the paleoclimatic conditions inferred from the presence of 162 

Zygnemataceae zygospores, this laminated microbial deposit would have been located near 163 

the shore of a shallow body of water. Above this level, there are alternating green-yellow 164 

(Fig. 1F, Lf4) and gray-green (Fig. 1G, Lf5) sandstones followed by the typical red 165 

mudstones of the Lago Colhué Huapi Formation with intercalated white carbonate 166 

concretions (Fig. 1J, Lf8). The stratigraphic column terminates with a local fissural effusion 167 

dominated by the Angostura Basalt (see Fig. 1B), which was dated to 64 Ma by Marshall et 168 

al. (1981) and 67 Ma by Clyde et al. (2014). However, in a more complex lateral 169 



relationship, depending on the location in the basin, the Lago Colhué Huapi Formation is in 170 

some places covered by marine deposits of the Salamanca Formation. This unit represents 171 

the first Atlantic marine transgression of the Golfo San Jorge Basin. The age of the 172 

Salamanca Formation is Maastrichtian–Danian (sensu Barcat et al., 1989) or early Danian 173 

(sensu Clyde et al., 2014 and Simeoni, 2014). 174 

Finally, near Cerro del Hadro, there are other exposures of the Lago Colhué Huapi 175 

Formation with plant fossils from horizons related to the stratigraphic level from which the 176 

hadrosaurid bones were recovered. Vallati et al. (2020: table 1) noted the presence of 177 

Spinizonocolpites (a Nypa-type pollen grain) in almost every studied outcrop of the 178 

formation in the area of the Río Chico headwaters. The extant mangrove palm Nypa is 179 

restricted to brackish coastal swamps, lagoons, estuaries, rivers, and floodplains. In this 180 

sense, it is notable that several large, linear, symmetrical, parallel-veined, palm-like leaf 181 

fragments were recovered from reddish claystone at Cerro Hoja Grande, 1.5 kilometers 182 

southwest of Cerro del Hadro. If confirmed as those of Arecaceae, these fragmentary leaves 183 

could strengthen the presence of this clade in Maastrichtian strata of the Lago Colhué 184 

Huapi Formation. Based on this collective evidence, we suggest the probable presence, in 185 

the upper levels of this formation, of coastal swamps where Nypa-like palms thrived. 186 

 187 

3. Institutional abbreviations 188 

CNS-V, Cátedra de Paleontología, Departamento de Ciencias Naturales, 189 

Universidad Nacional de Salta, Salta, Argentina. FMNH, Field Museum of Natural 190 

History, Chicago, Illinois, USA. MACN, Museo Argentino de Ciencias Naturales 191 

Bernardino Rivadavia, Buenos Aires, Argentina. MJHG, Museo Jorge H. Gerhold, 192 

Ingeniero Jacobacci, Río Negro, Argentina. MLP, Museo de La Plata, La Plata, Buenos 193 



Aires, Argentina. MPCA-Pv, Museo Provincial Carlos Ameghino, Paleontología de 194 

Vertebrados, Cipolletti, Río Negro, Argentina. MPEF, Museo Paleontológico Egidio 195 

Feruglio, Trelew, Chubut, Argentina. MPHN-Pv, Museo Provincial de Historia Natural, 196 

Paleontología de Vertebrados, La Pampa, Argentina. MRPV, Museo Regional Provincial 197 

de Valcheta, Valcheta, Río Negro Province, Argentina. UNPSJB-PV, Universidad 198 

Nacional de la Patagonia San Juan Bosco, Paleontología de Vertebrados, Comodoro 199 

Rivadavia, Chubut, Argentina. 200 

 201 

4. Systematic Paleontology 202 

Dinosauria Owen, 1842 203 

Ornithischia Seeley, 1887 204 

Ornithopoda Marsh, 1881 205 

Hadrosauridae Cope, 1869 206 

Genus and species indeterminate 207 

(Figs. 2–7) 208 

 209 

Referred specimens: UNPSJB-PV 1050 (collected in situ) and UNPSJB-PV 1061 210 

(surface collected after it had rolled a few meters toward the base of the hill). This 211 

collection of incomplete cranial and postcranial bones is interpreted to comprise associated 212 

partial skeletons of at least two hadrosaurid individuals of differing ontogenetic stages (at 213 

least one juvenile and at least one subadult or adult). It consists of the following elements: 214 

UNPSJB-PV 1050/1, UNPSJB-PV 1050/2, and UNPSJB-PV 1050/3, dentary fragments; 215 

UNPSJB-PV 1061/3, an incomplete middle cervical vertebra; UNPSJB-PV 1050/8 and 216 

UNPSJB-PV 1061/4, two incomplete dorsal vertebrae; UNPSJB-PV 1050/4 and UNPSJB-217 



PV 1050/5, two incomplete sacral vertebrae; UNPSJB-PV 1050/6 and UNPSJB-PV 1061/1, 218 

two incomplete caudal vertebrae; UNPSJB PV 1050/9, a pedal ungual phalanx; and 219 

unidentified fragments.  220 

Locality: Cerro del Hadro, headwaters of Río Chico, east of southeastern shore of 221 

Lago Colhué Huapi, Chubut Province, central Patagonia, Argentina (Fig. 1A).  222 

Horizon and age: Uppermost Lago Colhué Huapi Formation. Geological studies—223 

particularly those of palynomorphs—support a late Maastrichtian age, probably close to the 224 

Cretaceous/Paleogene boundary, for the stratigraphic horizon in question (Vallati et al., 225 

2016, 2020). 226 

 227 

5. Description and comparisons 228 

5.1. Dentary  229 

Three edentulous fragments pertaining to at least two dentaries were recovered 230 

(UNPSJB-PV 1050/1, UNPSJB-PV 1050/2, and UNPSJB-PV 1050/3; Fig. 2). They are 231 

taphonomically distorted and have lost their dorsal and ventral margins. All fragments have 232 

narrow, subvertical, parallel dentary alveoli (alveolar sulci), as is characteristic of 233 

Hadrosauridae (Horner et al., 2004; Godefroit et al., 2008, 2012; Prieto-Márquez et al., 234 

2016). The septa that separate the alveoli are thin and sheet-like.  235 

UNPSJB-PV 1050/1 (Fig. 2A–C) is the smallest fragment, with a length of 26.2 mm 236 

and a height of 31.7 mm. It belongs to a left dentary in which the medial surface was flat 237 

and the lateral surface convex. It preserves the beginning of the base of the coronoid 238 

process on the lateral side and four tooth positions on the medial side. The presence of the 239 

tooth row in all dentary fragments indicates that the posterior end of the dental battery 240 

nearly surpassed the anterior border of the coronoid process. This is similar to the dentaries 241 



of two indeterminate juvenile hadrosaurids from the Salitral Moreno site near General Roca 242 

in Río Negro Province, Argentina (specimens MPCA-Pv-SM3 and MPCA-Pv-SM7; 243 

Cruzado-Caballero and Coria, 2016). This feature—the position of the posterior end of the 244 

tooth row relative to the anterior margin of the coronoid process—has been considered 245 

ontogenetically variable in the non-hadrosaurid iguanodontian Dryosaurus spp. (Poole, 246 

2015). The alveoli are the narrowest of the three dentary fragments, with a width of 247 

approximately 3.5 mm.  248 

UNPSJB-PV 1050/2 (Fig. 2D–F) is a mediolaterally narrow fragment of a right 249 

dentary. In lateral view, the base of the coronoid process and the posterior end of the 250 

Meckelian canal are observed, but the fragment does not preserve the suprameckelian 251 

foramen. It has eight subvertical tooth positions, each with a width of approximately 4.9 252 

mm. 253 

UNPSJB-PV 1050/3 (Fig. 2G–I) is another fragment of right dentary, possibly more 254 

anteriorly positioned than UNPSJB-PV 1050/2. It is the largest of the three fragments, with 255 

a length of 57.4 mm and a height of 38.8 mm. The lateral surface is eroded and the dorsal 256 

and ventral borders are broken. There are nine preserved tooth positions. The alveoli are 257 

approximately 4.9 mm wide and slightly anterodorsally inclined. Although impossible to 258 

confirm, based on the width of the alveoli, this fragment may represent another part of 259 

UNPSJB-PV 1050/2; therefore, a similar ontogenetic status is inferred for this fragment. 260 

 261 

5.2. Cervical Vertebra  262 

An incomplete cervical vertebra was recovered, consisting of the centrum and the 263 

base of the neural arch (UNPSJB-PV 1061/3; Fig. 3). The bone is strongly eroded; 264 

therefore, it is not possible to establish whether the centrum and neural arch were fused, but 265 



due to the small size of the vertebra it likely represents a juvenile individual. The centrum 266 

is strongly opisthocoelous as in cervical vertebrae of the South American hadrosaurids 267 

Lapampasaurus cholinoi (Coria et al., 2012) and Secernosaurus koerneri (Prieto-Márquez 268 

and Salinas, 2010) and its articular surfaces are heart-shaped, as is typical of Hadrosauridae 269 

(Horner et al., 2004; Coria et al., 2012). The centrum is anteroposteriorly longer than 270 

transversely wide and laterally approximately as wide as tall, which indicates that the 271 

vertebra was probably situated in the middle of the cervical series. It is transversely 272 

constricted at its approximate anteroposterior midpoint (i.e., ‘waisted’), and on the ventral 273 

side there is an eroded longitudinal keel or hypapophysis flanked by a marked ventrolateral 274 

excavation. The parapophyses are located on the lateral sides of the anterior half of the 275 

centrum and are relatively large and oval with their long axis oriented anteroposteriorly. 276 

There are two nutrient foramina on the left lateral surface.. The neural canal is wide 277 

transversely as in Lapampasaurus (see Coria et al., 2012:fig. 3). 278 

 279 

5.3. Dorsal Vertebrae 280 

Two dorsal vertebrae were recovered (UNPSJB-PV 1050/8 and UNPSJB-PV 281 

1061/4; Fig. 4). The centrum of UNPSJB-PV 1050/8 (Fig. 4A, B) has been taphonomically 282 

crushed but is clearly amphiplatyan, with heart-shaped (dorsoventrally taller than 283 

transversely wide) articular surfaces and nutrient foramina on the lateral sides, as is usual 284 

for hadrosaurids (Horner et al., 2004;Godefroit et al., 2012; Prieto-Márquez et al., 2016). 285 

The lateral surfaces are slightly anteroposteriorly concave. The neural arch is fused to the 286 

centrum, suggesting that the element represents a subadult or adult individual, although this 287 

cannot be stated definitively in the absence of an osteohistological analysis (Irmis, 2007). 288 

The preserved, dorsally facing left prezygapophysis appears to surpass the anterior border 289 



of the centrum, and it exhibits a flat, oval articular facet. The neural spine is partly 290 

preserved; its base appears to be relatively anteroposteriorly broad and transversely flat. 291 

UNPSJB-PV 1061/4 (Fig. 4C–E) is an eroded centrum. It is amphiplatyan and the 292 

articular surfaces have the heart-shaped morphology characteristic of hadrosaurids (Horner 293 

et al., 2004; Coria et al., 2012; Godefroit et al., 2012; Prieto-Márquez et al., 2016; Cruzado-294 

Caballero and Powell, 2017). As observed in dorsal view, the junction with the neural arch 295 

is broken and eroded; therefore, it is not possible to ascertain whether the neural arch and 296 

centrum were fused, but based on the tiny size of the bone it presumably represents a 297 

juvenile and as such the neurocentral suture was likely unfused. The lateral surfaces are 298 

anteroposteriorly concave and exhibit several large, elliptical nutrient foramina as is 299 

frequently the case in hadrosaurids [e.g., Bonapartesaurus rionegrensis (Cruzado-Caballero 300 

and Powell, 2017), Lapampasaurus]. On the ventral surface there is a robust sagittal keel 301 

that is pierced by smaller foramina, as in the latter hadrosaurid.  302 

 303 

5.4. Sacral Vertebrae 304 

Two consecutive sacral vertebrae pertaining to a single individual were found 305 

(UNPSJB-PV 1050/4 and UNPSJB-PV 1050/5; Fig. 5). The centra are incomplete and 306 

unfused, suggesting that they represent a juvenile or subadult animal; nevertheless, the 307 

ontogenetic stage of the specimen cannot be definitively determined without an 308 

osteohistological analysis. Based on comparisons with well-preserved hadrosauroid sacral 309 

vertebrae [e.g., those of Eolambia caroljonesa (McDonald et al., 2012) or the partially 310 

preserved sacral elements of Lapampasaurus], UNPSJB-PV 1050/4 and UNPSJB-PV 311 

1050/5 are interpreted as the posteriormost two sacrals. [In hadrosaurids, the anterior sacral 312 

vertebrae resemble the posteriormost dorsals in morphology, whereas the posterior sacrals 313 



are, for example, transversely wider and less ‘hourglass-shaped’ in ventral view; see Coria 314 

et al. (2012) and McDonald et al. (2012). In other words, the centra become shorter and 315 

wider as one moves posteriorly through the hadrosaurid sacrum.] The articular surfaces of 316 

the centra (Fig. 5A–D) are elliptical in outline, wider than tall, and amphiplatyan. UNPSJB-317 

PV 1050/4 probably represents the last vertebra in the sacral sequence, and part of its 318 

anterior articular surface shows a roughened texture. UNPSJB-PV 1050/4 is more 319 

anteroposteriorly compressed than UNPSJB-PV 1050/5, and its neural canal is much 320 

narrower in dorsal view. There is a slightly marked groove on the ventral surface of 321 

UNPSJB-PV 1050/4, unlike the ventral keel of Bonapartesaurus (Cruzado-Caballero and 322 

Powell, 2017); conversely, the ventral surface of UNPSJB-PV 1050/5 does not have a 323 

groove or keel. The ventral surfaces of both centra exhibit well-developed nutrient 324 

foramina, as is also seen in Lapampasaurus and Bonapartesaurus (Coria et al., 2012; 325 

Cruzado-Caballero and Powell, 2017). The sutures for the sacral ribs are partly preserved; 326 

they are circular, shared between centra, and occupy almost the entire dorsoventral height 327 

of each centrum. 328 

 329 

5.5. Caudal Vertebrae 330 

Two caudal vertebrae were found (UNPSJB-PV 1050/6 and UNPSJB-PV 1061/1; 331 

Fig. 6). UNPSJB-PV 1061/1 (Fig. 6A–D) displays typical hadrosaurid anterior caudal 332 

vertebral features such as an anteroposteriorly short, amphiplatyan centrum with 333 

subhexagonal to circular articular surfaces and transverse processes that arise from the 334 

centrum at right angles (Horner et al., 2004; Prieto-Márquez and Salinas, 2010; Cruzado-335 

Caballero and Powell, 2017). The centrum is marginally taller than wide and considerably 336 

wider and taller than long. Its lateral surfaces are anteroposteriorly concave, pierced by 337 



small nutrient foramina, and ornamented by well-marked horizontal rugosities. The ventral 338 

surface of the centrum does not have hemapophyseal facets; coupled with its 339 

anteroposteriorly short proportions, this indicates that UNPSJB-PV 1061/1 is one of the 340 

anteriormost five vertebrae in the tail (Horner et al., 2004). The preserved fragments of 341 

transverse processes are subtriangular in cross-section. The zygapophyses are 342 

taphonomically affected; nevertheless, the preserved left prezygapophysis is strongly 343 

dorsally projected and surpasses the level of the anterior margin of the centrum. Only the 344 

base of the neural spine is preserved, and it is anteroposteriorly short and transversely 345 

narrow. 346 

UNPSJB-PV 1050/6 (Fig. 6E–H) is a small, amphiplatyan centrum with the 347 

hexagonal articular surfaces typical of hadrosaurid caudal vertebrae (Horner et al., 2004; 348 

Prieto-Marquez and Salinas, 2010; Cruzado-Caballero and Powell, 2017). It is 349 

approximately as long as wide and slightly wider than tall. The lateral surfaces are gently 350 

anteroposteriorly concave and pierced by irregularly distributed nutrient foramina. 351 

Hemapophyseal facets are present on the ventral surface, indicating that the centrum 352 

belongs to the middle or posterior region of the caudal series. Well-developed foramina are 353 

also present and irregularly distributed on the ventral surface. As seen in dorsal view, the 354 

neural canal is narrow, particularly at its anteroposterior midpoint, and sutures for the 355 

neural arch are evident. These unfused neurocentral sutures suggest that the element 356 

belongs to a juvenile individual. 357 

 358 

5.6. Pedal Ungual Phalanx 359 

A small, eroded pedal ungual phalanx (UNPSJB-PV 1050/9; Fig. 7) was also 360 

recovered from the Cerro del Hadro site. It is arrowhead-shaped in dorsal and ventral 361 



views, as in other hadrosaurids (Horner et al., 2004; Prieto-Márquez and Norell, 2010; see 362 

Fig. 7A, B). The phalanx has a well-marked, concave proximal articular surface. Its distal 363 

end is broken and eroded, though what remains of this end is rugose. The dorsal surface of 364 

the ungual is slightly convex, whereas the ventral surface is flat. Both surfaces are 365 

perforated by irregularly distributed nutrient foramina. 366 

 367 

6. Discussion 368 

6.1. Latest Cretaceous Ornithopods from South-Central Patagonia 369 

The specimens described herein were recovered from a small area; moreover, no 370 

other fossil vertebrates were discovered within several meters of the site. Although the 371 

bones were not thin sectioned for paleohistological study, their size, incomplete ossification 372 

and/or fusion (in some cases), and the porous surface texture of selected axial elements 373 

permits tentative ontogenetic stage interpretations (see Farke and Yip, 2019). Specifically, 374 

the fossils support the presence of at least two growth stages among the materials, including 375 

juvenile and subadult/adult specimens; therefore, we interpret that they represent at least 376 

two ornithopod individuals. Although the fragmentary nature of UNPSJB-PV 1050 and 377 

UNPSJB-PV 1061 precludes a taxonomic determination to the genus or species level, we 378 

are confident in referring the specimens to Hadrosauridae. This assignment is supported by 379 

the following features: the general morphology of the alveolar sulci of the dentary 380 

fragments; the dorsoventrally compressed, opisthocoelous cervical vertebral centrum; the 381 

heart-shaped articular surfaces of the dorsal vertebral centra; the hexagonal articular 382 

surfaces of the caudal vertebral centra; and the characteristically arrowhead-shaped pedal 383 

ungual (Horner et al., 2004; Prieto-Marquez, 2007). These features stand in contrast to 384 

those of earlier diverging iguanodontians, in which the dorsal centra retain suboval anterior 385 



and posterior articular surfaces and the caudal centra are rectangular in outline. 386 

Furthermore, the recovered pedal ungual lacks the prominent lateral groove present in non-387 

hadrosaurid iguanodontians (Norman et al., 2004).  388 

Definitive ornithopod fossil records from the Lago Colhué Huapi Formation include 389 

the partial postcranial skeleton of the medium-sized elasmarian Sektensaurus 390 

sanjuanboscoi (Luna et al., 2003; Ibiricu et al., 2010, 2019, 2020). This specimen was 391 

recovered from an ephemeral island near the southeastern shore of Lago Colhué Huapi that 392 

is exposed when the water level is low (Ibiricu et al., 2020). The age of the stratigraphic 393 

level within the formation where this herbivorous dinosaur was recovered is considered to 394 

be Campanian to ?early Maastrichtian (Casal et al., 2007, 2015; Lamanna et al., 2019a). 395 

Two other ornithischians have been reported from the latest Cretaceous of central 396 

Patagonia: the supposed ceratopsian Notoceratops bonarellii (Tapia, 1918) and the 397 

hadrosaurid Secernosaurus koerneri (Brett-Surman, 1979). The holotypic and only known 398 

specimen of Notoceratops, a left dentary, was described as having been collected from the 399 

Lago Colhué Huapi area near the source of the Río Chico (Tapia, 1918). Although no 400 

specific stratigraphic location was provided, the only terrestrial Cretaceous unit that crops 401 

out in this region is the Lago Colhué Huapi Formation (Casal et al., 2015, 2016). 402 

Consequently, the Notoceratops dentary undoubtedly comes from this unit. The 403 

interpretation of this taxon as a ceratopsian is controversial and is complicated by the fact 404 

that its holotype is currently missing (Coria and Cambiaso, 2007; Rich et al., 2014). Based 405 

on the known ornithischian fossil record of the Lago Colhué Huapi Formation—as well as 406 

the total absence of ceratopsian fossils from Late Cretaceous strata elsewhere in the 407 

Gondwanan landmasses—the most parsimonious interpretation, in our view, is that this 408 



dinosaur is a hadrosaurid ornithopod (see below as well as Ibiricu et al., 2010 and 409 

references therein). 410 

By contrast, the taxonomic placement of Secernosaurus within Hadrosauridae is 411 

well supported (Prieto-Marquez and Salinas, 2010). The holotype of this hadrosaurid was 412 

reportedly recovered from the “San Jorgé (sic) Formation” (Brett-Surman, 1979), a rock 413 

unit that does not exist in the Golfo San Jorge Basin (see Casal et al., 2016). Later, Ibiricu 414 

et al. (2010) and Prieto-Marquez and Salinas (2010) concluded that this specimen was 415 

derived from the Upper Member of the Bajo Barreal Formation, based on its documented 416 

geographic provenance from two miles east of the Río Chico headwaters. However, as 417 

pointed out by Casal et al. (2016), the continental Cretaceous strata in question are now 418 

assigned to the Lago Colhué Huapi Formation. Furthermore, we contend that the 419 

Secernosaurus holotype was recovered from the uppermost (Maastrichtian, see below) 420 

portion of this formation, from the same general stratigraphic level as the specimens 421 

described herein.  422 

Based on their hadrosaurid affinities, overall morphology, and closely comparable 423 

geographic and inferred stratigraphic provenance from the Lago Colhué Huapi Formation, 424 

it is possible that UNPSJB-PV 1050 and UNPSJB-PV 1061 pertain to Secernosaurus 425 

koerneri. Nevertheless, this is difficult to determine due to the fragmentary nature of the 426 

new fossils. Interestingly, during recent fieldwork in the Río Chico area, two of the present 427 

authors (LMI, GAC) located a ‘historic-looking’ abandoned quarry that yielded an 428 

indeterminate bone fragment. Based on information provided by people living in the area, 429 

this quarry—which is at the same stratigraphic level as that which yielded UNPSJB-PV 430 

1050 and UNPSJB-PV 1061—may have been opened by a team from the Field Museum 431 

(Chicago) during their 1923 expedition that discovered the Secernosaurus holotype. As 432 



such, though this is difficult to establish with certainty, we suspect that Secernosaurus may 433 

come from the same horizon of the Lago Colhué Huapi Formation as the new hadrosaurid 434 

materials described herein. 435 

Recently, Becerra et al. (2018a) reported fragmentary new hadrosaurid materials 436 

belonging to more than one individual, found several kilometers away from the bones 437 

described herein. Nevertheless, they came from the same stratigraphic level, i.e., the 438 

uppermost section of the Lago Colhué Huapi Formation. 439 

In sum, at the moment, the latest Cretaceous (Campanian–Maastrichtian) 440 

ornithopod record of the Golfo San Jorge Basin includes the medium-sized elasmarian 441 

Sektensaurus, the probable hadrosaurid Notoceratops (originally considered a ceratopsian), 442 

and unquestionable hadrosaurids: the Secernosaurus holotype, the materials reported by 443 

Becerra et al. (2018a), and UNPSJB-PV 1050 and UNPSJB-PV 1061. Continued 444 

paleontological exploration of exposures of the Lago Colhué Huapi Formation in the area 445 

of the Río Chico and Lago Colhué Huapi promises to increase understanding of the 446 

Cretaceous herbivorous dinosaur assemblage of central Patagonia. 447 

 448 

6.2. Paleoenvironmental Influences on South American Hadrosaurid Distribution  449 

Casamiquela (1964), Brett-Surman (1979), and Bonaparte (1984) were the first to 450 

describe Patagonian hadrosaurid remains and to analyze the likely mode of arrival of these 451 

dinosaurs to the Southern Hemisphere. According to these and later authors, a dispersal 452 

event occurred from North America to South America no later than the late Campanian 453 

(Fig. 8A), probably via the Proto-Antillean volcanic arc (see Cruzado-Caballero and 454 

Powell, 2017). This is evidenced by the South American record of Hadrosauridae, which is 455 

concentrated in the Campanian–Maastrichtian of Argentina (see Cruzado-Caballero, 2017 456 



and Cruzado-Caballero et al., 2018 and references therein; Table 1). Subsequently, a second 457 

dispersal of hadrosaurids from South America to Antarctica took place, no later than the 458 

mid-Maastrichtian (Fig. 8A). This is supported by the occurrence of definitive and putative 459 

Antarctic fossils of these derived ornithopods, which have so far been recovered only from 460 

middle–upper Maastrichtian horizons of the López de Bertodano Formation of the James 461 

Ross Basin (see Reguero et al., 2016: table 1; Lamanna et al., 2019b: table 1; E. Roberts 462 

pers. comm. to MCL). 463 

Cruzado-Caballero et al. (2018) described a fauna of small- to medium-sized 464 

elasmarian ornithopods in Santonian and more ancient Upper Cretaceous horizons in 465 

northern Patagonia that ultimately gave way to an assemblage of larger-bodied elasmarians 466 

and hadrosaurids during the Campanian–Maastrichtian. The presence of Sektensaurus and 467 

other ornithopod fossils with clear non-hadrosaurid affinities (LMI pers. obs.) recovered 468 

from the eastern shore of Lago Colhué Huapi and ephemeral islands in this lake [from 469 

strata that are regarded as Campanian to ?early Maastrichtian in age (see Casal et al., 2007; 470 

Lamanna et al., 2019a)] confirm that this large-bodied elasmarian-dominated fauna also 471 

occurred in central Patagonia. Therefore, at least in the Golfo San Jorge Basin, and 472 

probably in more southern areas of South America as well (see below), this fauna may have 473 

persisted until the latest Campanian or early Maastrichtian. In sum, in the Lago Colhué 474 

Huapi Formation, two temporally successive ornithopod faunas are observed: a 475 

Campanian–?early Maastrichtian assemblage dominated by elasmarians and potentially 476 

other non-hadrosaurid ornithopods, and a late Maastrichtian fauna dominated by 477 

hadrosaurids, which, as evidenced by the fossils described herein (and those reported by 478 

Becerra et al., 2018a), may have been the only ornithopod clade to survive to the latest 479 

Maastrichtian in central Patagonia. Although this hypothesized elasmarian-to-hadrosaurid 480 



faunal turnover could be an artifact of taphonomic or preservational biases, it appears to 481 

constitute an authentic ecological replacement, at least in central Patagonia. Nevertheless, it 482 

is important to note that some elasmarians may have coexisted with hadrosaurids, 483 

specifically during the late Campanian–early Maastrichtian, suggesting the existence of 484 

some form of niche partitioning between these ornithopod groups (Novas et al., 2019). 485 

However, the hadrosaurid fossil record strongly suggests that, subsequent to at least the 486 

middle Maastrichtian, these highly specialized herbivores were the only ornithopods 487 

present in Patagonia (i.e., in the Neuquén, Cañadón Asfalto, Golfo San Jorge, and Austral-488 

Magallanes basins). This, in turn, suggests that hadrosaurids were well-adapted to 489 

paleoecological conditions in Patagonia during the latest Cretaceous. Moreover, recent 490 

histological studies of Antarctic Campanian–Maastrichtian ornithischians (i.e., elasmarians 491 

and ankylosaurs) indicate that the growth patterns of these high latitude (˃60° S) taxa were 492 

similar to those of related forms from Patagonia. This, in turn, suggests that the distribution 493 

of Gondwanan ornithopods was not strongly influenced by physiological aspects and that 494 

these animals were adapted to cope with significant temperature variations throughout the 495 

year (see Cerda et al., 2019; Garcia-Marsà et al., 2020). Interestingly, the only other 496 

herbivorous dinosaurs that unquestionably shared the Patagonian latest Cretaceous 497 

paleoenvironment with ornithopods were ankylosaurs and titanosaurs (seemingly the only 498 

sauropods to survive to the end of the Cretaceous worldwide), suggesting that these groups 499 

of animals may have not directly competed for resources and niches available at that time 500 

(Coria, 2011). Nevertheless, titanosaurian fossils are generally uncommon in marine-501 

influenced paleoenvironments (Gasparini et al., 2001) such as that which yielded the 502 

hadrosaurids UNPSJB-PV 1050 and UNPSJB-PV 1061 (see below). In particular, 503 

titanosaurian fossils recovered from the Lago Colhué Huapi Formation are associated with 504 



depositional settings that are characterized by braided fluvial channels that are less sinuous 505 

than are those from the uppermost portion of the unit. These low-sinuosity rivers are 506 

indicative of inland paleoenvironments, which in turn suggests that these derived sauropods 507 

were adapted to these types of habitats (Butler and Barrett, 2008).  508 

The sedimentary paleoenvironment of the middle (Campanian–?early 509 

Maastrichtian) section of the Lago Colhué Huapi Formation—the strata that have yielded 510 

non-hadrosaurid ornithopods such as Sektensaurus—corresponds to anastomosing 511 

multichannel fluvial systems that exhibited seasonal fluctuations (Allard and Casal, 2013; 512 

Casal et al., 2014, 2019). This fluvial channel morphology indicates that the fauna present 513 

during the deposition of the middle section of the formation lived inland, well away from 514 

the paleoshoreline. Furthermore, the presence of desiccation cracks, saponite and sepiolite 515 

clays (Pozo Rodríguez and Casas Sainz de Aja, 1992; Zaaboub et al., 2005; Casal et al., 516 

2015), and external iron oxide crusts and abundant hematite in permineralized titanosaur 517 

bones (Casal et al., 2019; Casal and Nillni, 2020) indicates the existence of a seasonally dry 518 

or semiarid climate (Allard and Casal, 2013; Casal et al., 2015, 2019). Conversely, the 519 

strata that yielded the hadrosaurids UNPSJB-PV 1050 and UNPSJB-PV 1061, placed some 520 

40–50 meters higher in section, contain a relatively abundant fossil record, including 521 

stromatolites, palynomorphs (e.g., Buttinia andreevi, Gabonisporis vigourouxii), wood, 522 

theropod teeth, and indeterminate eggshell fragments (Fig. 9). This diversity of fossil 523 

material is congruent with the relative abundance of palynoflora during the latest 524 

Maastrichtian, at least in central Patagonia (Barreda et al., 2012). In particular, 525 

palynomorphs from Cerro del Hadro, which were preserved in a shallow, lagoon-like 526 

freshwater body, suggest a latest Maastrichtian age for this section (close to the 527 

Cretaceous/Paleogene boundary), and are indicative of a warm, humid paleoclimate (Vallati 528 



et al., 2016, 2020). The paleoenvironment of these upper levels of the Lago Colhué Huapi 529 

Formation is interpreted as having been characterized by high sinuosity, meandering-type 530 

fluvial channels. In many cases, these appear as abandoned channels associated with wide 531 

floodplains (Casal et al., 2015, 2019) adjacent to a larger body of water that was fed by 532 

these meandering rivers. In this regard, rising sea levels may have inundated valleys, 533 

causing rivers to slow and overflow, forming lagoon-like features on the floodplains. These 534 

large freshwater bodies could have been related to the proximity of the marine 535 

transgression represented by the Salamanca Formation.  536 

The uppermost, latest Maastrichtian levels of the Lago Colhué Huapi Formation are 537 

laterally related to marine deposits (see Casal et al., 2015 and references therein) of the 538 

Salamanca Formation (Maastrichtian–Danian sensu Barcat et al., 1989; early Danian sensu 539 

Clyde et al., 2014 and Simeoni, 2014). Specimens UNPSJB-PV 1050 and UNPSJB-PV 540 

1061 (as well as the aforementioned stromatolites, palynomorphs, wood, theropod teeth, 541 

and eggshells) were recovered from sediments indicative of warm, low energy, shallow 542 

lagoons within paleovalleys. Moreover, as mentioned above, this interpretation, which is 543 

based on stratigraphic evidence, is further supported by the presence of baculate Arecaceae 544 

pollen grains, specifically Spinizonocolpites (Nypa-type palms, which may have played an 545 

important role in late Maastrichtian paleocommunities; see Barreda et al., 2012). Modern 546 

Nypa are found in continental brackish to coastal marine environments (Vallati et al., 2016, 547 

2017; De Sosa Tomas et al., 2017); therefore, this indicates that the new central Patagonian 548 

hadrosaurids were directly associated with coastal plain paleoenvironments and 549 

paleoecosystems. Interestingly, charcoalified plant material identified at Cerro del Hadro 550 

(Vallati et al., 2020) indicates that wildfires were relatively common in the 551 

paleoenvironment represented by the upper section of the Lago Colhué Huapi Formation. A 552 



similar ecological pattern has been described for other well-known latest Cretaceous 553 

habitats that were also frequented by hadrosaurids (see Vajda et al., 2013). 554 

At the site from which the hadrosaurid Lapampasaurus cholinoi was recovered, 555 

Coria et al. (2012) described a tidally influenced, marginal marine paleoenvironment that 556 

transitioned to a restricted, low-energy marine environment by the lower portion of the 557 

upper Campanian?–lower Maastrichtian Allen Formation. Moreover, multiple hadrosaurid 558 

fossils have been reported from the La Colonia Formation (Campanian–Maastrichtian, 559 

Cañadón Asfalto Basin) (Hill et al. 2002; Gasparini et al., 2015), from a low-energy 560 

restricted environment, probably in the central, mixed-energy zone within an estuary 561 

(Gasparini et al., 2001; Boyd et al., 2006; see also Cúneo et al., 2014). Body and 562 

ichnofossil evidence of hadrosaurids associated with coastal and/or marginal marine 563 

paleoenvironments has also been found in other, chronologically equivalent formations in 564 

Argentina and other South American countries (Table 1). The same condition characterizes 565 

the strata from which UNPSJB-PV 1050 and UNPSJB-PV 1061 were collected, suggesting 566 

that South American hadrosaurids may have typically been associated with these kinds of 567 

paleoenvironmental patterns or conditions (see below and Table 1). Nevertheless, although 568 

Coria (2011) also noted that Patagonian hadrosaurids have mostly been recovered from 569 

marine-influenced depositional settings, he could not completely dismiss the possibility of 570 

the presence of these ornithopods in more inland regions as well. According to Coria 571 

(2011), the observed distribution of Patagonian hadrosaurids may therefore be an artifact of 572 

the fossil record. In the Lago Colhué Huapi Formation, however, at least two distinct, 573 

temporally successive, well-characterized paleoenvironments are present, the older of the 574 

two representing an inland habitat and the younger an environment that was much closer to 575 

the paleoshoreline. These settings yield two distinct ornithopod assemblages—the older 576 



populated by elasmarians and the younger hadrosaurid-dominated—thus supporting the 577 

hypothesis that these latter herbivorous dinosaurs may have been specifically adapted to 578 

coastal paleoenvironments.  579 

As mentioned above, in a regional context, the Salamanca Formation is probably 580 

laterally related to the Lago Colhué Huapi Formation. The Maastrichtian levels of the 581 

Salamanca Formation probably represent an Atlantic marine incursion into central 582 

Patagonia (Barcat et al., 1989). This marine incursion attained its maximum during the 583 

latest Maastrichtian, probably related to the climax of thermal subsidence linked with sea 584 

level rise (Spalletti and Franzese, 2007). Moreover, although the Maastrichtian–Paleocene 585 

marine transgressions across Patagonia occurred in a context of global sea level decline, 586 

based on geodynamic processes, Gianni et al. (2018) recently suggested that dynamic 587 

subsidence of the edge of the flat-slab could have caused sudden Atlantic marine 588 

transgression during the Maastrichtian–early Paleocene (represented by the Salamanca 589 

Formation) in the Golfo San Jorge Basin. In this regard, the putative asynchronous 590 

transgression may have taken advantage of topographic depressions (e.g., fluvial valleys) in 591 

the area, which may in turn have favored the generation of estuaries. Therefore, the marine 592 

transgression may have started near the source of the Río Chico during the Maastrichtian 593 

instead of the early Paleogene (i.e., Danian, see Clyde et al., 2014; Simeoni, 2014). 594 

Moreover, this marine transgression would have been contemporaneous with the marine 595 

arms of the so-called Pampeano Embayment (= Pacha Sea) and the North Patagonian 596 

Embayment (= Kawas Sea), which according to Apesteguía et al. (2012) may have reached 597 

as far as the North Patagonian (= Somuncurá) Massif in Chubut. Nevertheless, this marine 598 

transgression clearly also extended to south-central Chubut.  599 



In a geochronological context, the materials described herein come from the upper 600 

portion of the Lago Colhué Huapi Formation. According to Casal et al. (2016), these levels 601 

are partially or completely correlative with the Allen and Loncoche formations of the 602 

Neuquén Basin, the Los Alamitos, Coli Toro, and Angostura Colorada formations of the 603 

North Patagonian Massif, and the Paso del Sapo and La Colonia formations of the Cañadón 604 

Asfalto Basin. Furthermore, this correlation may be also extrapolated to the Austral-605 

Magallanes Basin of southernmost Argentina (e.g., Chorrillo Formation; see Novas et al., 606 

2019) and Chile (Dorotea Formation, see George et al., 2020). Finally, UNPSJB-PV 1050 607 

and UNPSJB-PV 1061 constitute the first unquestionable Argentinean evidence of latest 608 

Maastrichtian (i.e., close to the Cretaceous/Paleogene boundary) hadrosaurids, with the 609 

possible exceptions of trackways from the Maastrichtian–Danian Yacoraite Formation of 610 

Jujuy and Salta provinces in the northwestern part of the nation (Alonso, 1980, 1989; 611 

Alonso and Marquillas, 1986; Díaz-Martínez et al., 2016; see Table 1). (Note, however, 612 

that the purported hadrosaurid nature of many of these trackways is in doubt; Leonardi, 613 

1994; C. Meyer pers. comm. to MCL.) 614 

In sum, the distribution of hadrosaurids in Patagonia appears to be directly related to 615 

coastal environments, suggesting a positive association between South American members 616 

of this clade and these kinds of habitats. This was also directly linked to the ongoing 617 

Atlantic marine transgression that influenced Patagonian basins during the Maastrichtian 618 

(Gasparini et al., 2001) and that probably also impacted South American hadrosaurid 619 

distribution (Fig. 8B). Moreover, this is congruent in Patagonia as a whole, where marine 620 

transgression occurred during the Maastrichtian and persisted into the early Paleogene 621 

(Novas et al., 2019; see also Malumián and Náñez, 2011). In contrast, in the Northern 622 

Hemisphere, the peak marine transgression occurred during the Campanian, followed by 623 



regression during the Maastrichtian. Furthermore, marine-influenced environments may 624 

have been a selected habitat for the hadrosaurid clade early in its evolution during the 625 

Campanian of North America (Kobayashi et al., 2019). Whether or not this could have 626 

affected the dispersal capabilities of these dinosaurs remains unknown.  627 

 628 

7. Conclusions 629 

We report fragmentary new remains that unquestionably pertain to hadrosaurid 630 

ornithopods from the uppermost part of the Lago Colhué Huapi Formation (Chubut Group, 631 

Golfo San Jorge Basin), close to the Cretaceous/Paleogene extinction event. The fossils 632 

represent at least two ontogenetic stages (i.e., juvenile and subadult/adult) individuals. 633 

Furthermore, we contend that the stratigraphically controversial holotypic partial skeleton 634 

of the hadrosaurid Secernosaurus koerneri was also recovered from the Lago Colhué Huapi 635 

Formation, probably from the same stratigraphic level as the materials described herein. At 636 

the moment, all hadrosaurid fossils from central Patagonia (i.e., the Golfo San Jorge Basin) 637 

have been recovered from the uppermost portion of the Lago Colhué Huapi Formation. 638 

Therefore, at least in central Patagonia, these ‘duckbilled dinosaurs’ appear to have been 639 

restricted to the final stages of the Cretaceous. 640 

Reconstruction of the latest Maastrichtian paleoenvironment frequented by these 641 

hadrosaurids indicates the occurrence of freshwater bodies and a warm, humid climate. 642 

These paleoenvironmental inferences are supported by a rich and relatively abundant 643 

palynoflora recovered from the same horizons. Furthermore, in a broader geological 644 

context, the paleoenvironment preserved in the uppermost portion of the Lago Colhué 645 

Huapi Formation may have been affected by an Atlantic marine transgression that resulted 646 

in the generation of estuaries and lagoons.  647 



Interestingly, two temporally successive ornithopod assemblages seem to be present 648 

in the latest Cretaceous (Campanian–Maastrichtian) of southern South America. In the 649 

Lago Colhué Huapi Formation, specifically, the earlier, elasmarian-dominated fauna occurs 650 

in the middle (Campanian–?lower Maastrichtian) section of the unit, associated with 651 

anastomosing multichannel fluvial systems and seasonally arid conditions indicative of an 652 

inland paleoenvironment. The younger of the two faunas is present in the uppermost (upper 653 

Maastrichtian) part of the formation and is clearly dominated by hadrosaurids. The 654 

paleoenvironment inhabited by these latter ornithopods was characterized by a warm, 655 

humid paleoclimate and high sinuosity, meandering-type channels and wide floodplains 656 

adjacent to larger, lagoon-like bodies of water related to marine transgression. The largely 657 

disjunct stratigraphic occurrence of elasmarians and hadrosaurids would appear to support a 658 

previously proposed hypothesis of Patagonian ornithopod faunal turnover during the Late 659 

Cretaceous. Nevertheless, it could also be an artifact of changing paleoenvironments and 660 

differing habitat preferences between the two groups. Elasmarians and hadrosaurids may 661 

have coexisted during the Campanian–early Maastrichtian, suggesting some type of niche 662 

partitioning between the two clades during this interval. After the middle Maastrichtian, 663 

however, the only ornithopods in Patagonia appear to have been hadrosaurids, suggesting 664 

that these animals may have replaced elasmarians, possibly due to their being better 665 

adapted to the environmental conditions and resources that prevailed at that time. This 666 

could be also related to greater dietary flexibility in these herbivores relative to other 667 

ornithopods (see Chin et al., 2017; Wosik et al., 2020). Therefore, the floral richness and 668 

paleoenvironmental conditions of the upper portion of the Lago Colhué Huapi Formation 669 

may have benefited hadrosaurids. As mentioned above, however, distinctions in 670 

paleoenvironmental preferences between these two groups could also have played a role in 671 



generating this apparent pattern. In this context, the distribution and putative turnover of 672 

ornithopod faunas may have been directly related to the influence of marine transgressions 673 

that strongly affected conditions in these Late Cretaceous paleoenvironments. In sum, (1) 674 

the distribution of Late Cretaceous ornithopods in southern South America was directly 675 

related to paleoenvironmental conditions; (2) the proximity of the paleoshoreline, which 676 

shows a positive association, could have favored hadrosaurids over earlier-diverging 677 

ornithopods such as elasmarians; and (3) the Atlantic marine transgression may have played 678 

an important role in the distribution of hadrosaurids (probably starting in the northern and 679 

central Patagonian basins and ending in the southernmost Patagonian basin, the Austral-680 

Magallanes Basin). Nevertheless, these hypotheses must remain tentative in the event that 681 

non-hadrosaurid ornithopods are eventually recovered from the latest Cretaceous (i.e., latest 682 

Maastrichtian) of South America. 683 

Finally, in a broad context, the hadrosaurid materials described herein add to the 684 

generally meager record of ornithopods in the Late Cretaceous of the Southern Hemisphere. 685 

Moreover, these fossils add information and support to the putative paleoenvironmental and 686 

geochronological correlation of the Lago Colhué Huapi Formation of the Golfo San Jorge 687 

Basin to the Loncoche and Allen formations of the Neuquén Basin, the Angostura 688 

Colorada, Los Alamitos, and Coli Toro formations, which are well exposed in the 689 

occidental section of the North Patagonian (= Somuncurá) Massif, and the La Colonia and 690 

Paso del Sapo formations of the Cañadón Asfalto Basin. 691 
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Figure captions 1091 

 1092 

Fig. 1. A, Locality map and general geographic and geological context of Cerro del Hadro, 1093 

the site in the Lago Colhué Huapi Formation of central Patagonia, Argentina that yielded 1094 

the new hadrosaurid fossils (modified from Casal et al., 2020). B, Stratigraphic column and 1095 

photograph of Cerro del Hadro showing the location of the fossils. C–J, Lithofacies present 1096 

at the Cerro del Hadro site. C, Intraformational coarse conglomerate (Lf1). D, 1097 

Intraformational fine conglomerate (Lf2). E, Coarse- to medium-grained sandstone that 1098 

yielded the hadrosaurid remains (Lf3). F, Succession of fine- to coarse-grained sandstone 1099 

(Lf4). G, Gray laminated mudstone with well-preserved palynomorphs (Lf5). H, 1100 

Stromatolite (Lf6). I, White marlstone with palynomorphs (Lf7). J, Red mudstone typical 1101 

of the Lago Colhué Huapi Formation (Lf8). Abbreviation: Lf, lithofacies. 1102 

 1103 

Fig. 2. Hadrosauridae indet., fragments of left (UNPSJB-PV 1050/1) and right (UNPSJB-1104 

PV 1050/2; UNPSJB-PV 1050/3) dentaries. UNPSJB-PV 1050/1 in medial (A), ventral (B), 1105 

and lateral (C) views. UNPSJB-PV 1050/2 in medial (D), ventral (E), and lateral (F) views. 1106 

UNPSJB-PV 1050/3 in medial (G), ventral (H), and lateral (I) views. Abbreviations: als, 1107 

alveolar sulci, cp?, coronoid process, mkc, Meckelian canal. 1108 

 1109 

Fig. 3. Hadrosauridae indet., middle cervical vertebra (UNPSJB-PV 1061/3). A, anterior, 1110 

B, posterior, C, ventral, and D, laterodorsal views. Abbreviations: as, anterior articular 1111 

surface, lve, lateroventral excavation, nc, neural canal, pp, parapophysis, ps, posterior 1112 

articular surface. 1113 

 1114 



Fig. 4. Hadrosauridae indet., dorsal vertebrae (UNPSJB-PV 1050/8 and UNPSJB-PV 1115 

1061/4). UNPSJB-PV 1050/8 in left (A) and right (B) lateral views. UNPSJB-PV 1061/4 in 1116 

anterior (C), left lateral (D), and ventral (E) views. Abbreviations: as, anterior articular 1117 

surface, fo, foramen, nc, neural canal, ns, neural spine, prz, prezygapophysis, ps, posterior 1118 

articular surface. 1119 

 1120 

Fig. 5. Hadrosauridae indet., sacral vertebrae, UNPSJB-PV 1050/4 and UNPSJB-PV 1121 

1050/5 in anterior (A, B), posterior (C, D), dorsal (E), and ventral (F) views. 1122 

Abbreviations: as, anterior articular surface, fo, foramen, nc, neural canal, ps, posterior 1123 

articular surface, sr, sacral rib. 1124 

 1125 

Fig. 6. Hadrosauridae indet., caudal vertebrae. UNPSJB-PV 1050/6 in anterior (A), right 1126 

lateral (B), posterior (C), and left lateral (D) views. UNPSJB-PV 1061/1 in anterior (E), 1127 

dorsal (F), posterior (G), and ventral (H) views. Abbreviations: as, anterior articular 1128 

surface, fo, foramen, nc, neural canal, ns, neural spine, prz, prezygapophysis, ps, posterior 1129 

articular surface, rug, rugosities. 1130 

 1131 

Fig. 7. Hadrosauridae indet., pedal ungual phalanx (UNPSJB-PV 1050/9) in dorsal (A), 1132 

ventral (B), proximal (C), and distal (D) views. 1133 

 1134 

Fig. 8. Late Cretaceous hadrosaurid paleobiogeography in the Western Hemisphere. A, 1135 

Hypothesized hadrosaurid dispersal events from North America to South America (no later 1136 

than the late Campanian) and from South America to Antarctica (no later than the mid-1137 

Maastrichtian). Paleogeographic reconstruction redrawn after Blakey (2016). B, 1138 



Hadrosaurid distribution in southern South America and the influence of marine 1139 

transgression on Patagonian basins. Abbreviations: An, Antarctica, NA, North America, 1140 

SA, South America. Red points in B indicate body fossil records; question mark indicates 1141 

putative hadrosaurid ichnofossils. 1142 

 1143 

Fig. 9. Schematic paleoecological reconstruction (not to scale) of the upper section of the 1144 

Lago Colhué Huapi Formation at the headwaters of the Río Chico, Golfo San Jorge Basin, 1145 

central Patagonia, Argentina (modified from Vallati et al., 2020). Genera in parentheses 1146 

represent modern analogues for selected plant fossils. 1147 

 1148 

Table 1. Comprehensive overview of the body and ichnofossil record of South American 1149 

hadrosaurids with associated paleoenvironmental interpretations. Abbreviations: Ar, 1150 

Argentina, Bo, Bolivia, Ca, Campanian, Ch, Chile, e, early, l, late, m, middle, Ma, 1151 

Maastrichtian, Pa, Paleocene, Pe, Peru, Sa, Santonian. *Very probably not a hadrosaurid 1152 

ichnofossil (C. Meyer pers. comm. to MCL). †Reposited at the MACN according to the 1153 

relevant Paleobiology Database entry (collection 51594).1154 



Table 1. Comprehensive overview of the body and ichnofossil record of South American hadrosaurids with associated 1155 
paleoenvironmental interpretations. Abbreviations: Ar, Argentina, Bo, Bolivia, Ca, Campanian, Ch, Chile, e, early, l, late, m, middle, 1156 
Ma, Maastrichtian, Pa, Paleocene, Pe, Peru, Sa, Santonian. *Very probably not a hadrosaurid ichnofossil (C. Meyer pers. comm. to 1157 
MCL). †Reposited at the MACN according to the relevant Paleobiology Database entry (collection 51594). 1158 
 1159 
Taxon/specimen Specimen number(s) Formation (nation) Stage(s) Paleoenvironment (source) Taxon/specimen source(s) 
Body fossils      

Bonapartesaurus 
rionegrensis  MPCA-Pv-SM2 Allen (Ar) m/l Ca–e Ma 

“Moderate-energy fluvial” 
(Cruzado-Caballero and 
Powell, 2017) 

Powell, 1987; Juárez Valieri 
et al., 2010; Cruzado-
Caballero and Powell, 2017 

‘Kritosaurus’ 
australis (= 
Secernosaurus 
koerneri?) MACN-RN various Los Alamitos (Ar) l Ca–e Ma 

“Lacustrine environment 
mixed with shallow marine 
sediments” (Andreis, 1987) 

Bonaparte, 1984; Bonaparte et 
al., 1984; Bonaparte and 
Rougier, 1987; Salinas et al., 
2006; Prieto-Marquez and 
Salinas, 2010; Coria, 2014; 
Becerra et al., 2018b 

Lapampasaurus 
cholinoi  MPHN-Pv-01 Allen (Ar) m/l Ca–e Ma 

“Marginal marine conditions 
with tidal influence” 
(translated) (Coria et al., 
2012) 

González Riga and Casadío, 
2000; Juárez Valieri et al., 
2010; Coria et al., 2012 

Secernosaurus 
koerneri  FMNH PP13423 

Lago Colhué Huapi 
(Ar) l Ma 

Floodplain, proximal to 
paleoshoreline (this paper) 

Brett-Surman, 1979; Prieto-
Marquez and Salinas, 2010; 
this paper 

Hadrosauridae indet. 
(= ‘Willinakaqe 
salitralensis’) 

MPCA-Pv-SM 
various Allen (Ar) m/l Ca–e Ma ? 

Juárez Valieri et al., 2010; 
Coria, 2014; Cruzado-
Caballero and Coria, 2016; 
Cruzado-Caballero and 
Powell, 2017 

Hadrosauridae indet. Not reported Allen (Ar) m/l Ca–e Ma ? 
Corsolini, 2014; Coria, 2016; 
Cruzado-Caballero, 2017 



Hadrosauridae indet.  Not reported Allen (Ar) m/l Ca–e Ma 

“Supratidal environment in 
close proximity to the coast” 
(Salgado et al., 2007) Salgado et al., 2007 

Hadrosauridae indet.  
MPCA-Pv-25442–
25445 Allen? (Ar) l Ca–e Ma? ? Cruzado-Caballero, 2017 

Hadrosauridae indet.  MACN-PV RN 1085 
Allen or Los 
Alamitos (Ar) l Ca–e Ma 

“Continental environment 
developed close to a 
marginal-litoral (sic) place” 
(Martinelli and Forasiepi, 
2004) Martinelli and Forasiepi, 2004 

Hadrosauridae indet.  MLP 62-XII-13-1 

Angostura 
Colorada/Coli Toro 
(Ar) Ca–e/m Ma 

Marine-influenced? 
(Casamiquela, 1964) Casamiquela, 1964 

Hadrosauridae indet.  
MJHG.Pa26/9/14-1–
14-57 

Angostura 
Colorada/Coli Toro 
(Ar) e Ca–m Ma ? 

Cruzado-Caballero, 2015, 
2017 

Hadrosauridae indet.†  
MACN? (numbers not 
reported) Coli Toro (Ar) Ca–Ma 

Lacustrine (Casamiquela, 
1978; Powell, 2003) 

Casamiquela, 1978, 1980; 
Powell, 2003 

Hadrosauridae indet.  Not reported Dorotea (Ch) l Ma 

“Marine-influenced,” 
“associated with littoral 
environments”; “fluvial, 
shoreface, and deltaic” 
(Novas et al., 2019; George et 
al., 2020) 

Jujihara et al., 2014; Soto-
Acuña et al., 2014; Novas et 
al., 2019; George et al., 2020 

Hadrosauridae indet.  
MPEF-PV 10872, 
10873, 10875 La Colonia (Ar) Ca–Ma 

“Low-energy restricted 
environments… probably in 
the central mixed-energy 
zone within an estuary” 
(Gasparini et al., 2015) Gasparini et al., 2015 



Hadrosauridae indet.  Not reported La Colonia (Ar) Ca–Ma 

“Low-energy restricted 
environments… probably in 
the central mixed-energy 
zone within an estuary” 
(Gasparini et al., 2015) Hill et al., 2002 

Hadrosauridae indet. 
UNPSJB-PV 1050, 
1061 

Lago Colhué Huapi 
(Ar) l Ma 

Floodplain, proximal to 
paleoshoreline (this paper) This paper 

Hadrosauridae indet.  Not reported 
Lago Colhué Huapi 
(Ar) l Ma 

“Distal floodplains” (Becerra 
et al., 2018a) Becerra et al., 2018a 

Hadrosauridae indet.  
MJHG.Pa26/9/14-59–
61 Los Alamitos (Ar) l Ca–e Ma ? 

Cruzado-Caballero, 2015, 
2017 

Hadrosauridae indet.  MRPV 431/P–437/P Los Alamitos? (Ar) l Ca–e Ma 

“Continental environment 
developed close to a 
marginal-litoral (sic) place” 
(Martinelli and Forasiepi, 
2004) 

Martinelli and Forasiepi, 
2004; Cruzado-Caballero, 
2017 

Hadrosauridae indet.  Not reported Los Alamitos? (Ar) l Ca?–e Ma? ? 
Cruzado-Caballero et al., 
2018 

Hadrosauridae indet.  MPEF-PV 1914–1928 Paso del Sapo (Ar) Ca–Ma 

“Littoral environment of the 
‘Senoniano lacustre’” 
(translated) (Apesteguía et al., 
2012) 

Apesteguía and Cambiaso, 
1999; Apesteguía et al., 2012 

Hadrosauridae indet.  Not reported 
Río Colorado? 
(Subgroup) (Ar) Sa?–Ca? ? 

Cruzado-Caballero et al., 
2018 

      
Ichnofossils      
Hadrosaurichnus 
australis  CNS-V 10.020 Yacoraite (Ar) Ma “Tidal flat” (Alonso, 1980) Alonso, 1980, 1989 



Hadrosaurichnus 
titacacaensis 

N/A (specimens not 
collected) 

Upper Vilquechico 
(Pe) Ma 

“Probably deposited in a 
mixed, deltaic-shallow 
marine environment, and 
might represent a 
progradational deltaic 
sequence” (Jaillard et al., 
1993) Jaillard et al., 1993 

Hadrosauropodus isp. 
N/A (specimen not 
collected) Yacoraite (Ar) Ma–Pa 

“Lagoon with some tidal 
influence” (Díaz-Martínez et 
al., 2016) Díaz-Martínez et al., 2016 

Taponichnus 
donottoi* 

N/A (specimen not 
collected) Yacoraite (Ar) l Ma 

“Coastal area with 
periodically flooded beaches” 
(Alonso and Marquillas, 
1986) 

Alonso and Marquillas, 1986; 
Alonso, 1989; Leonardi, 1994 

Telosichnus saltensis* 
N/A (specimen not 
collected) Yacoraite (Ar) l Ma 

“Coastal area with 
periodically flooded beaches” 
(Alonso and Marquillas, 
1986) 

Alonso and Marquillas, 1986; 
Alonso, 1989; Leonardi, 1994 

Tridigitichnus 
inopinatus* Not reported 

Angostura Colorada 
(Ar) Ca–Ma 

“Flood plain… not very far 
from the sea-coast” 
(translated) (Casamiquela, 
1987; Leonardi, 1994) 

Casamiquela, 1987; Leonardi, 
1994; Díaz-Martínez et al., 
2015 

?Hadrosauridae indet.  
N/A (specimen not 
collected) El Molino (Bo) Ma 

“Seasonal migration route 
along the shoreline and deltas 
of an ancient lake system” 
(Meyer et al., 2021) Meyer et al., 2021 

?Hadrosauridae 
indet.*  

N/A (specimen not 
collected) El Molino? (Bo) l Ma ? Leonardi, 1994 

?Hadrosauridae indet.  
N/A (specimen not 
collected) 

Couches Rouges 
(Pe) Sa?–Ma? 

“Flood plain” (Leonardi, 
1994) 

Leonardi, 1994; Noblet et al., 
1995 



?Hadrosauridae 
indet.*  

N/A (specimen not 
collected) Yacoraite? (Ar) l Ma? ? Leonardi, 1994 
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