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Abstract: This paper investigates the performance of a two-stage multi-criteria decision-making
procedure for order scheduling problems. These problems are represented by a novel nonlinear
mixed integer program. Hybridizations of three Multi-Objective Evolutionary Algorithms (MOEAs)
based on dominance relations are studied and compared to solve small, medium, and large instances
of the joint order batching and picking problem in storage systems with multiple blocks of two
and three dimensions. The performance of these methods is compared using a set of well-known
metrics and running an extensive battery of simulations based on a methodology widely used in the
literature. The main contributions of this paper are (1) the hybridization of MOEAs to deal efficiently
with the combination of orders in one or several picking tours, scheduling them for each picker, and
(2) a multi-criteria approach to scheduling multiple picking teams for each wave of orders. Based
on the experimental results obtained, it can be stated that, in environments with a large number of
different items and orders with high variability in volume, the proposed approach can significantly
reduce operating costs while allowing the decision-maker to anticipate the positioning of orders in
the dispatch area.

Keywords: multiple criteria decision-making; multi-objective evolutionary algorithms; order batching
problem; order picking problem; optimization

MSC: 90-XX; 90B06

1. Introduction

The interest in the operation of distribution centers has grown with the increasing
e-commerce deliveries of small-size packages in a shipping supply chain [1]. The efficiency
of the operational process in storing facilities is critical for the overall performance of a
firm [2–5]. The preparation of batches amounts to between 50% and 70% of the operational
costs in distribution centers, being labor-intensive activities in manual systems and capital-
intensive activities in automatized ones.

The preparation of orders requires picking up goods from certain storage areas in
response to specific requests made by customers [6–10]. These processes cover the most
expensive tasks in most warehouses, namely picking-up the requests from their sites of
storage and conveying them to the preparation/dispatch area [11–13]. Those articles are
classified and consolidated in packages (boxes, pallets, containers, etc.) for dispatch [14,15].
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Single unit loads usually include several goods that must be marked and labeled. These
loads are examined to verify that they fulfill the orders and the corresponding documents
are prepared. They are, finally, dispatched by loading them on the transportation units [11].

The costs of these activities are proportional to the processing time of the orders. The
strict fulfillment of due times increases the processing times and underutilizes the capacities
of pickers [11]. This indicates the existence of a trade-off between the time devoted to
preparing the batches and the possibility of either anticipating or delaying the positioning
of some goods because the times can be achieved by partitioning the pick-up tasks and
assigning them to different pickers, but this increases the distances covered and the total
work time of pikers. Thus, the goal of minimizing picking times may not necessarily be
desirable in all circumstances [16]. On the other hand, anticipating the positioning of goods
before the corresponding due time may shorten the pick-up distances and times [17].

This indicates that no single criterion of optimality exists in this setting. It is more
adequate to find a Pareto set from which the planner may select the best solution given
the circumstances. If the main concern is the congestion in the dispatch area, the strict
satisfaction of due times will be the right goal. On the contrary, if the planner aims to
reduce the costs of the pick-up process, the goal will be to relax the strict compliance with
deadlines. This paper seeks to solve the order batching and the order picking problems
(both are NP-Hard problems [6,7]) in an integrated and multi-criteria approach. The
criteria considered are the minimization of the operational cost of the process of picking
up the goods, which is in correspondence with the length of the pick-up path, and the
minimization of the total earliness picking time, under a zero-delay-of-delivery policy. In
the first stage, a multiobjective optimization (MOO) yields the Pareto optimal solutions. For
this purpose, three hybrid evolutionary algorithms based on a dominance relation (NSGA-
II [18], SPEA2 [19] and PESA-II [20]) are considered. In the second stage, a procedure
orders the alternatives and selects the best one. For this, the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [21] is used. The performance of this
integrated approach is evaluated by comparing the solutions obtained with the benchmarks
of Tsai et al. (2008) [2].

Our main contributions are the following:

1. The introduction of an integrated multi-criteria treatment of Order Batching and Order
Picking problems. The decision criteria are the minimization of both operational cost
and earliness in picking times.

2. A more realistic analysis of the Order Batching and Order Picking problems using
a multi-objective optimization model of nonlinear mixed-integer programming, by
considering a multi-level storage system with an explicit inclusion of the due times of
the requests and a zero tardiness policy.

3. The incorporation into the model of the actual scheduling procedures for different
pick-up teams with capacity restrictions used in real-world warehouses.

4. The consideration of storage systems that combine multiple two and three-dimensional
blocks.

5. Finding that the fronts of efficient solutions that reached the MOO stage dominate the
results presented in [2,11], in which a single-objective approach is applied on smaller
instances and simpler layouts without zero-delay policies.

This joint order-batching and multiple-pickers warehouse-picking problem has barely
been addressed in the literature [22]. As described in the next section, only two papers
analyze it, but not in a Multiple Criteria Decision-Making (MCDM) approach taking into
account economic factors and without considering how to anticipate with no delay the
availability of orders for the next stage of the distribution process.

The structure of this paper is as follows: Section 2 presents the problem and examines
the relevant literature. Section 3 and 4 develop the model. Section 5 presents the solution
method to be applied. Section 6 presents the computer experiments to solve the problem
and Section 7 discusses the results and potential further work.
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2. Problem Description and Literature Review

The problem of picking up orders at a minimal cost, both in terms of time and resources,
can be subdivided into three planning problems. One is how storage positions must be
allocated to the received articles. The second one is how orders must be batched-up in
lots to facilitate the collection process. Finally, there is the question of how to schedule the
pick-up sequence to deliver the articles to the dispatch area [23]. This paper is centered
on developing an integral treatment of the last two problems. A solution to them will
enhance the efficiency of the processes on the storage floor. These activities generate a large
proportion of the costs of the distribution center since they are intensive in equipment and
labor [24–26].

The order picking process can be described as follows. It starts with the reception of the
orders submitted by multiple customers. Each order details the amounts of different articles
requested as well as the due time of availability at the dispatch area. The goods will be
grabbed from the corresponding storage positions by a pick-up team composed of several
pickers. Each of them picks up a batch of items that could belong to different orders [17,27].
Masae et al. [28] present a systematic survey of the literature on the specification of the
picking routes.

Small orders can be finished in a single tour, reducing the length of displacements.
This feature indicates that larger orders may be split up into smaller ones to reduce the total
time of the order batching procedure. Alternatively, a bottom-up procedure is to combine
small orders into a single large order that can be gathered in a single tour [29].

In either case, an integrated process is required to address the problem of reducing
simultaneously the total cost of selecting and picking up the batches of several orders,
satisfying the constraints imposed by the deadlines on deliverance. This cost increases
monotonically with the time length of the displacements across the storage floor and how
strictly the deadlines are complied with. Delays in the fulfillment of orders would lead
to breaches of contracts, with ensuing penalties and other costs. If, instead, orders are
delivered to the dispatch area before the deadline, they may congest it, delaying urgent
requests and inducing larger total costs of operation.

Formally, this problem combines two NP-Hard problems, the Order Batching Problem
(OBP) and the Order Picking Problem (OPP). The former amounts to determining the
optimal configuration of the batches, under constraints given by the capacity of pick-up
teams and the delivery times. OPP, instead, amounts to identifying the optimal sequence of
pick-ups, as to minimize the length of displacements and the corresponding processing
times, under the constraint that each storage site must be visited only once. This combined
problem will be called OBP–OPP in the rest of the paper.

De Koster et al. [6] review thoroughly the literature on both OBP and OPP. Chen and
Wu [14] apply a clustering method to solve OBP to satisfy demand patterns instead of
minimizing the length of the tours. Ho and Tseng [30] examine the heuristic procedures
applied to solve OBP. Henn et al. [15] apply Taboo Search and Attribute-Based Hill Climbing
for OBP. Henn and Schmid [31] add the Iterated Local Search heuristic to this toolbox.
Lam et al. [32] state OBP as an integer programming problem that is solved using a heuristic
based on Fuzzy Logic.

Van Gils et al. [33] present an overview of the published contributions on OPP. Several
authors, like Petersen [34], de Koster et al. [8] and Theys et al. [35], analyze the application
of heuristics to the solution of OPP. So, for instance, Henn et al. [36] use Ant Colony
Optimization and Iterated Local Search, while Chen and Lin [37] apply an efficient two-
stage method. Lu et al. [38] solve a dynamical OPP using a routing algorithm.

Diefenbach et al. [39] examine exact solutions for U-shaped layouts, resulting from the
application of Benders’ combinatorial decomposition, which yields accurate solutions to
small instances. For larger instances, this research group applies a sweep algorithm as a
heuristic approach.

Tsai et al. [2] solve the OBP–OPP problem formulated for storage positions in two
and three dimensions by using a multiple genetic algorithm. Some degree of earliness
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and tardiness is achieved by defining flexible delivery time windows. Miguel et al. [3]
develop a hybrid algorithm to solve the two-dimensional instances presented in [2]. Miguel
et al. [4] improve on the results of [3] by slightly modifying the representation of the
problem. Miguel et al. [11] present improvements on the results obtained by [2] for multi-
level instances.

Concerning the criteria of choice, Molnar and Lipovszki [40] consider both the distance
covered and the weight of the articles. Pan et al. [41] and Battini et al. [42] study a genetic
algorithm with Pareto-optimization and niche technique. Congestion and waiting times
are considered in [41], while [42] include preparation times, human energy expenditure,
and fatigue during the picking process. Elbert et al. [43] analyze the relative efficiency of
routing deviation policies. Ardjmand et al. [16] minimize makespan and total travel time
in a pick-up system but do not consider due dates for individual orders nor the possibility
of being earlier or later with respect to them.

The model proposed by Vázquez et al. [44] minimizes e-fulfillment costs under the
requirements of preservation of perishable products. Another single-objective model, pro-
posed by Kocaman et al. [45], focuses on finding the best layouts of a unit-load warehouse
for single-command operations. Physical distance between pickers, as a COVID-19 mitiga-
tion strategy, is included as a criterion in [46], while an ergonomic evaluation of the effort
of pickers is introduced in [47].

Concerning the concrete problem under study here, only two authors have presented
similar specifications. Cano et al. (2020) [48] develop several models for OBP–OPP with
multi-picker sequencing, solving it for the weighted sum of objectives, one of which is
tardiness. Cals et al. (2021) [49] also study this joint problem, minimizing the number of
orders with delays, using Deep Reinforcement Learning (i.e., Reinforcement Learning in
Deep Neural Networks). A review of the most relevant literature as well as a complete
taxonomy of this problem can be found in Pardo et al. (2023) [22].

3. The Model

The proposed bi-objective OBP–OPP is based on a nonlinear mixed-integer program-
ming formulation that uses the following sets, parameters, and variables.

3.1. Sets and Parameters

- P =
{

1, . . . , p, . . . , P̄
}

is the set of indexes of different articles required items in
storage. Pi represents the subset of different articles requested by customer i. Pb
represents the subset of articles grouped in batch b, and which can be requested by
different customers.

- I =
{

1, . . . , i, . . . , Ī
}

is the set of the index of customers and orders in the current
wave. Ī is the number of customers and orders, each customer places a single order
with different articles.

- B =
{

1, . . . , b, . . . , B̄
}

is the set of the index of batches to be picked up. Bi represents
the subset of batches containing items of order i.

- W =
{

w1, . . . , wp, . . . , wP̄
}

is the set of weights, each article has a unit weight.
- D = {d1, . . . , di, . . . , dĪ} is the set of customer order deadlines.
- L =

{
ℓ0, ℓ1, . . . , ℓp, . . . , ℓP̄

}
is the set of storage positions of the requested articles. ℓ0

represents the dispatch area. ℓp is the coordinates of the storage position of article p is
given by

(
xp, yp, zp

)
.

- K =
{

1, . . . , k, . . . , K̄
}

is the set of the index of pick-up teams. K̄ the total number of
available teams.

- Cap is the total capacity of the pick-up teams.
- Sb = ⟨s1, . . . , su, . . . , sS̄b

⟩ is the sequence of positions to be visited to conform batch b.
- Q =

{
1, . . . , qi,p, . . . , Q̄

}
is the number of units of item p requested by customer i.

Qi = ∑p∈Pi
qi,p is the total demand of articles by customer i. Qp = ∑i∈I qi,p denotes

the total number of requested units of p.
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G = (V ,A) defines an undirected graph where V represents the vertices. Each vertex
corresponds to a storage location of an article p ∈ P , along with two additional copies
(0 and n + 1) of the vertex representing the dispatch area. Consider A to be the set of
edges joining pairs of nodes within V . ς represents the operational cost for each unit of
time. Each edge (h, l) ∈ A has an associated transit time, thl , calculated as the ratio of
the distance between two positions (h, l) and the speed of the picking equipment, v (i.e.,
thl = Dh,l

/
v). The average time to pick a unit of any item is represented by tpick once the

piking equipment is positioned at the corresponding storage position.

3.2. Decision Variables

The model includes the following binary variables:

- xhlkb, which equals 1 if h is grabbed immediately before the article at the storage site l
by the pick-up team k according to the sequencing of batch b, where h, l ∈ V , k ∈ K
and b ∈ B. This means that xhlkb = 1 if k has to go through edge(h, l) to pick up the
goods in batch b.

- yhkb equals 1 if k picks up the item in storage position h for batch b, where h ∈ V , k ∈ K
and b ∈ B.

The model also includes the following continuous variables:

- A time variable gb defines the starting time of batch b.
- A time variable fb represents the end of the picking process of batch b.

3.3. Bi-Objective OBP–OPP Model

min f1 : CT =
∑h∈V ∑l∈V Dh,l ∑k∈K ∑b∈B xh,l,k,b

v
+ ∑

p∈P
∑

q∈Q
qp · tpick (1)

min f2 : ΣE = ∑
i∈I

max(0, di − ci)

s.t.:

∑h∈Pb
(qp · wp) · yhkb ≤ Cap ∀k ∈ K, b ∈ B (2)

∑b∈B yhkb = 1 ∀h ∈ P , k ∈ K (3)

∑k∈K yhkb = K̄ ∀h ∈ {0, |P|+ 1}, b ∈ B (4)

∑h∈V xhlkb = ylkb ∀l ∈ V \ {0}, k ∈ K, b ∈ B (5)

∑l∈V xhlkb = yhkb ∀h ∈ V \ {n + 1}, k ∈ K, b ∈ B (6)

∑i∈I ∑k∈K ∑ b∈B qi,p · ypkb = Qp ∀p ∈ P (7)

∑p∈P ∑k∈K ∑ b∈B qi,p · ypkb = Qi ∀i ∈ I (8)

fb − gb +
[

∑h∈V ∑l∈V Dh,l ·∑k∈K xhlkb
v + ∑p∈Pb ∑q∈Qb

qp · tpick

]
= 0 ∀b ∈ B (9)

ci − max
b∈Bi

(fb) = 0 ∀i ∈ I (10)

∑p∈Pi ∑k∈K ∑b∈B ci · ypkb ≤ di ∀i ∈ I (11)

xhlkb ∈ {0, 1} ∀h, l ∈ V , k ∈ K, b ∈ B (12)

yhkb ∈ {0, 1} ∀h ∈ V , k ∈ K, b ∈ B (13)

gb , fb, ci ∈ R+ ∀b ∈ B (14)
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In Expression (1) we have two objectives: f1 represents the total cost of the pick-up
process (in monetary units) corresponding to the sum of all the batches, while f2 represents
the total earliness in picking times. The travel times in f1 are obtained by analyzing the
layout of the facility. Constraints (2) indicate that the weight of a batch cannot exceed
the capacity of the corresponding picking team. Pb are the positions of the items in batch
b. Constraints (3) indicate that, for each batch b, items in any given storage position can
be picked up only once b. Constraints (4) indicate that the tour of each pick-up team
starts at the dispatch area and returns to it. Restrictions (5) and (6) represent a property of
conservation of the flow of pick-up operations. If team k obtains item l for batch b, it must
pick up item h or the other way around. Constraints (7) mean that the requests of article p
must be satisfied, while Constraints (8) indicate that all the demands of customer i must be
satisfied. Constraints (9) guarantee that the picking process of batch b ends at the sum of its
starting time and the total time devoted to the task. Constraints (10) say that the finishing
time of an order i is the longest completion time of the batches for this order.

Restrictions (11) tell us that the finishing time of order i, corresponding to the time
at which all the units have been collected, must be less than the deadline of the order.
Constraints (12)–(14) are restrictions on the ranges of the variables. Concerning earliness or
tardiness in the orders’ due dates, the earliness in making up the order i can be formally
expressed as Ei = max{0, di − ci} while Ti = max{0, ci − di} is tardiness, where ci is the
finishing time of order i. The constraints (9) allow Ei ≥ 0 ∀i ∈ I but force Ti = 0 ∀i ∈ I .

The first objective function expresses in monetary units the cost of the collection of all
batches. It is proportional to the pick-up time, thus depending on the distances covered
and the amount of articles in the batches. For the definition of the total earliness in picking
times in the second objective function, notice that it depends on the specification of the
pick-up tours because of the capacity limit of each pick-up team k. If two batches must be
picked up by the same team, one batch must wait until the other is finished. If the orders in
a batch have similar deadlines, the variety of items within the batch will increase, forcing
a longer picking time. If instead a single item can be put in the first batch, the efficiency
increases as well as the earliness in picking times.

4. Distribution Center Layout

Figure 1 shows an example of a small distribution center’s layout. On the left at the
bottom, this blueprint shows the access to the dispatch area. A picking team departs the
dispatch area according to a prearranged itinerary, traveling from one position to another,
picking up articles before moving on to the next position until all the goods in a batch are
collected. Afterwards, the team returns to the dispatch area. The areas in which all the
OBP–OPP operations are carried out are enclosed by a dashed red curve.

This type of configuration agrees with the one originally presented by Roodbergen
and de Koster [50] and Tsai et al. [2]. To check the validity of our solution method for
the OBP–OPP problem, the parameters used by them are maintained. More precisely, it
is assumed that there are storage racks on the side walls and double racks in the middle
of each block of the storage area. Multiple blocks are also considered. Figure 1 shows
a representation of a layout with three blocks. Goods are picked out along four vertical
and four horizontal shelves. Orders are released in waves, each wave being made up of
multiple orders that must be picked within a specific time window (which includes due
dates) before the next set (wave) of orders is released.

The length of the path from the site of item l to that of h, i.e., from ℓl to ℓh, where
ℓl = (xl , yl , zl) and ℓh = (xh, yh, zh) is given by:

Dl,h =


|xl − xh|+ |yl − yh|+ |zl − zh| i f Al = Ah

|xl − xh|+ min
{
|yl −H1|+ |yh −H1|
|yl −H1|+ |yh −H1|

}
i f Al ̸= Ah

 (15)

where Al and Ah denote the vertical shelves or aisles along which ℓl and ℓh can be reached,
respectively. Let Bl and Bh be the blocks to which each of them belongs. If Bl = Bh = B,
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H1 and H2 are the second coordinates of the lower and upper cross aisles of block B. But if
Bl ̸= Bh, H1 and H2 are the second coordinates of the lower and upper cross aisles of the
destination block Bh.

Dispatch AreaDispatch Area

(a)

Dispatch Area

(b)

Dispatch Area

(c)

Figure 1. Illustrations of a small layout representation with a position marker for a particular batch. (a)
Orders batch (highlighted) in warehouse layout. (b) A graph-based representation of the underlying
topology. (c) A picking tour for a particular batch of orders.

5. Methodology

A two-stage procedure is proposed. The first stage involves a MOO in which a MOEA
yields an approximate Pareto front. The second stage consists of the application of an
MCDM procedure that assumes an L1 metric applies the TOPSIS method to automati-
cally obtain an approximate classification of solutions and selects the best-ranked one
according to its similarity ratio. The quality of the solutions is tested against those in
benchmark instances.

5.1. Solution Methods at the MOO Stage

Population-based MOEAs are rather popular in the MOO scientific community, ex-
hibiting a remarkable performance when solving hard optimization problems [51]. These
algorithms do not guarantee the determination of the exact Pareto-Optimal front, but they
come very close to it. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [18],
the improved Strength Pareto Evolutionary Algorithm (SPEA2) [19] and the improved
Pareto Envelope-based Selection Algorithm (PESA-II) [20] are recognized algorithms in the
multi-objective literature that are used in this work.

The parameters used to describe the algorithms are as follows: N, population size; Pc,
crossover probability; Pm, mutation probability; NE, external population size; NI , internal
population size; T, maximum number of iterations and D, additional parametric informa-
tion to enable operations and evaluation during evolution, for example, weights Dw, orders
DI , due dates Ddd, different items per order Dp, required quantities of each type of article
Dq, etc. Each algorithm returns a set A∗ of non-dominated solutions.

5.1.1. NSGA-II

The Non-dominated Sorting Genetic Algorithm [52] classifies the solutions in layers,
based on a non-dominance criterion. Each layer is assigned a rank proportional to the
fitness of its individuals. It selects individuals for reproduction according to a stochastic
remainder proportionate selection procedure. Its improved version NSGA-II [18,53] uses
an elitism-based non-dominated sorting method for ranking and sorting each individual,
and uses a crowding distance approach in its selection operator for keeping the diversity
among the Pareto optimal solutions (see Table 1).
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Table 1. Pseudocode of NSGA-II (adapted from [18]).

1: Input: N, Pc, Pm, T, D
2: Output: P∗

3: Begin:
4: P ← Initialize population(N)
5: Q ← ∅
6: while t < T do:
7: F ← Fitness Evaluation (P, D)
8: (P, F) ← Non-Dominated Sorting (P, F)
9: (P, F) ← Crowding Distance (P, F)
10: (P, F) ← Sort Population (P, F)
11: Xc ← Selection parents (P, Pc)
12: Yc ← Crossover(Xc, D)
13: (Yc, Fc) ← Fitness Evaluation (Yc, D)
14: Xm ← Selection Individuals (P, Pm)
15: Ym ← Mutation(Xm, µ, D)
16: (Ym, Fm) ← Fitness Evaluation (Ym)
17: R ← Join P, Yc, Ym
18: (R, F) ← Non-Dominated Sorting (R, F)
19: (R, F) ← Crowding Distance (R, F)
20: (R, F) ← Sort Population (R, F)
21: P ← Truncate (R, N)
22: end-while
23: return: P∗ ← P

5.1.2. SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA) was proposed by Zitzler, Lau-
manns, and Thiele in 2001. Each individual is assigned a strength value proportional to
the number of solutions that it dominates. The fitness assignment process of SPEA yields
solutions that are closest to the actual Pareto front. Its improved version, SPEA2 [19], uses
a fine-grained fitness assignment strategy, taking into account, for each individual, the
number of individuals that dominate it as well as the number of those that it dominates. A
nearest neighbor density estimation technique enhances the search procedure. A binary
tournament yields the selected individuals (see Table 2).

Table 2. Pseudocode of SPEA2 (based on [19]).

1: Input: N, T, D
2: Output: P∗

3: Initialization:
4: P ← Initialize population(N)
5: E ← ∅ Create empty external set (archive)
6: While t < T do:
7: FE, FP ← Fitness Evaluation (P, E, D);
8: E ← Non-dominated individuals in P and E;
9: E ← If size(E) > N: truncate(E) otherwise fill E with dominated individuals in P;
10: if t ≥ T then
11: P∗ ← E
12: Stop
13: end-if
14: X ← Selection parents (E)
15: P ← apply Crossover and Mutation operators to X
16: end-while
17: return: P∗

5.1.3. PESA-II

The Pareto Envelope-based Selection Algorithm (PESA) was introduced by Corne et
al. [54]. It defines a hyper-grid division of the phenotype space to ensure the diversity
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of solutions according to a crowding measure. In its improved version PESA-II [20], the
selection is region-based and the subject of the selection is now a hyperbox, not just an
individual, to reduce the computational cost associated with obtaining the Pareto front (see
Table 3).

Table 3. Pseudocode of PESA-II (Based on [20]).

1: Input: T, N, Pc, D
2: Output: P∗

3: Initialization:
4: P ← Initialize population(N)
5: (FP, FE) ← Fitness Evaluation (P, D);
6: E ← ∅ Create empty external set (archive)
7: While t < T do:
8: E ← Non-dominated individuals in P
9: P ← ∅
10: while size(P) = N do:
11: X ← Selection parents (E) with Pc
12: Y ← Crossover operator (X)
13: P ← Mutation operator (Y)
14: X ← Selection parents (E) with (1 − Pc)
15: P ← Mutation operator (X′)
16: end-while
17: end-while
18: return: P∗

These three MOEAs apply selection techniques to ensure the uniform dispersion of
solutions on their Pareto front. PESA-II uses hyperboxes, while NSGA-II uses a measure
of nearness among individuals. SPEA2 achieves an adequate degree of dispersion using
an indirect procedure that measures the degree of isolation of the individuals. These
differences impose distinctions in the ensuing results.

5.2. The Decision Method at MCDM Stage

The TOPSIS method was introduced by Hwang and Yoon [21]. It is based on the axiom
of Zeleny [55]: the rational choice is to select an action closest to the ideal or farthest from
the anti-ideal. TOPSIS chooses the alternatives closest to the ideal (I+) and farthest from
the anti-ideal or nadir (I−). In undefined situations, it uses a notion of similarity with the
ideal [56].

The method goes through six steps:

1. A decision matrix is defined in which each element xij = f j(ai) corresponds to the
evaluation of the alternative i, according to criterion j .

2. Weights are assigned to criteria, w =
{

wj, j = 1, 2, . . . , m
}

associated with each
objective function.

3. The initial values are normalized according to a procedure in [57]:

vij =

∣∣∣∣xij − min
j

xij

∣∣∣∣∣∣∣∣max
j

xij − min
j

xij

∣∣∣∣ (16)

where
(
v1j, v1j, . . . , vnj

)
is the normalized vector for criterion j.

4. The ideal and anti-ideal solutions are identified. The ideal solution I+is is the
solution with the best possible values for each of the objective functions I+ =(

I+1 , . . . , I+j , . . . , I+m
)

. The anti-ideal solution I−is is the solution with the worst possi-

ble values for each of the objective functions I− =
(

I−1 , . . . , I−j , . . . , I−m
)

.
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5. The distances of each action to its ideal and anti-ideal are measured by the metric Lp.

LI+
p =

[
∑m

j=1 wp
j ·

∣∣vij − I+
∣∣p
] 1

p with 1 ≤ p ≤ ∞

LI−
p =

[
∑m

j=1 wp
j ·

∣∣vij − I−
∣∣p
] 1

p with 1 ≤ p ≤ ∞
(17)

Here, vij is the normalized value of action i for criterion j, and m is the number of
criteria.

6. The similarity ratios S(v) are computed, yielding an ordering of actions:

S(v) =
LI−

p
(
vi)

LI+
p
(
vi
)
+ LI−

p
(
vi
) (18)

In [58] it was shown that even if I+ and I− are unknown, v+ and v− can be obtained
from the approximate Pareto fronts using the L1 distance. Since this is the case of the
problem under consideration, this approach is followed.

5.3. Measures of Performance

Four metrics are applied to compare the performance of the multi-objective algorithms [59,60]:

• Number of Pareto Solutions (NPS): This metric counts the number of non-dominated
solutions found by each algorithm.

• Mean Ideal Distance (MID): It measures the closeness between the Pareto solution and
the ideal point (0, 0) as:

MID =
∑n

i=1 ci

n
(19)

where n is the number of non-dominated solutions and ci =
√

f 2
1i + f 2

2i being f1i

and f2i, respectively, the values of the first and second objective functions for the ith

non-dominated solution. A lower value of MID indicates a better solution.
• Spread of Non-dominance Solution (SNS): It is a measure of the diversity of the Pareto

front solutions. It is given by:

SNS =

√
∑n

i=1(MID − ci)
2

n − 1
(20)

• Hypervolume (HV): It measures the size of the region dominated by the Pareto
front (P) and is limited by a point of reference dominated by the front. It takes
into account both the convergence towards the Pareto front and the distribution of
solutions:

HV =

∣∣∣∣∣
{

n⋃
i=1

A(xi) : ∀xi ∈ P

}∣∣∣∣∣ (21)

where xi is a solution in P, n is the number of non-dominated solutions in P, and A(xi)
is the rectangular area confined between the points xi and a reference point. If the
Pareto front Pa is a better approximation of the real front than the Pareto front Pb, it
will follow that HV(Pa) > HV(Pb).

All measures of performance are multiplied by the factor λ = 1.0 × 10−3 to present a
clearer representation of numerical results.

5.4. Characterization of the MOEAs

MOEAs will be used to find solutions in the instances presented by Tsai et al. [2] for
single and multi-level storage systems. A representation as permutations of integers usual
in the treatment of combinatorial problems is used.
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Each chromosome has two genomes. The first holds information about the articles in
each batch, while the second contains the pick-up sequence for each batch.

To illustrate the representation, a greatly simplified example is presented in Table 4,
which shows the roster of orders slated for scheduling in the wave.

Table 4. List of orders.

Articles
Orders A1 A2 A3 A4 A5 Due Dates

O1 1 0 1 0 0 0.50
O2 0 1 2 2 1 0.35
O3 1 1 0 1 1 0.25
O4 2 0 0 1 0 0.75

The encoding of the order list in the example wave is presented in Tables 5–7. The first
four rows of Table 5 and the first three rows of Table 6 provide additional information that
remains unchanged throughout evolution. The last row of each table represents genomes 1
and 2 that compose the chromosome, respectively.

The chromosome composed of the two genomes is shown in Table 7. Each element
of the first genome represents the batch to which each item is assigned, while the second
genome represents the index in the visit sequence of each batch. The dimension of genome 1
corresponds to the number of orders, and that of genome 2 corresponds to the number of
different items in the order list.

Table 5. Genome 1. Assigned Batch.

Order Index (DI) 1 2 3 4
Nº Art. diff. (Dqip ) 2 4 4 2

Due Date (Ddd) 0.25 0.75 0.15 0.50
Weight (DW ) 10 12 11 12

Genome 1 (Batch) 1 2 2 1

Table 6. Genome 2. Sequence.

Order Index 1 1 2 2 2 2 3 3 3 3 4 4
Article Index 1 3 2 3 4 5 1 2 4 5 1 4

Quantity 1 1 1 2 2 1 1 1 1 1 2 1

Genome 2 (sequence) 1 2 1 3 4 2 5 1 4 2 1 3

Table 7. Chromosome.

Genome 1 Genome 2

Chromosome 1 2 2 1 1 2 1 3 4 2 5 1 4 2 1 3

The advantage of this representation is that it yields higher levels of efficiency than
Holland’s original binary representation [61], thanks to the incorporation of specific knowl-
edge about the problem. The downside is that, instead of general operators, it requires
problem-specific ones [62].

The crossover operator (Table 8) implements a constructive hybridized method based
on the k-closest neighbor heuristic, to improve the sequences with λ-exchanges.

The mutation operator (Table 9) applies the well-known insertion operator and local
search with λ-exchanges to improve the sequences.

The satisfaction of the family of Constraints (2)–(6) and (9) is guaranteed by the hybrid
nature of the genetic operators. The representation makes the Constraints (7) and (8)
trivially satisfied. To initiate a satisfactory level of diversity, the population is initially
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randomized. The process terminates according to a criterion of limitation of costs, which
restricts the maximum number of iterations.

We apply the approach of tournament selection [63], which prescribes selecting the
individuals with the highest scores between k ones randomly chosen from the current
population. Repeated applications generate a new population.

Table 8. Crossover Operation.

1: Input: X1, X2 and D. Parent solutions and data parametric information
2: Output: Y1 and Y2. Offspring solutions generated by the crossover operation
3: Initialization: Obtain the genomes of each parent. x11, x12, x21, and x22
4: Generate k random integers, between 1 and Ī
5: Swap k elements belonging to the first genome in the two parents and store in y11 and y21
6: Identify batches with changes in genome 1 of each offspring
7: Apply the closest neighbor heuristic and store the modified batches in the second genomes

of each offspring y12 and y22
9: Termination: Join the pairs of genomes 1 and 2 of each offspring and save them in Y1 and Y2

Table 9. Mutation Operation.

1: Input: X3 and D. Parent solution and data parametric information
2: Output: Y3. Offspring solution generated by the mutation operation
3: Initialization: Obtain the genomes of parent. x31, and x32
4: Generate random integer, between 1 and B̄
5: Insert the integer into a random position between 1 and Ī in the first genome of the parent

and store in y31
6: Identify batches with changes in genome 1
7: Apply a lambda swap procedure to enhance the local sequence within the modified batches

of genome 2 and save it in y32
9: Termination: Join the pairs of genomes 1 and 2 of the mutated child and save it in Y3

6. Results
6.1. Data Sets and Parameters Settings

The OBP–OPP instances generated by Tsai et al. [2] consider the positioning of the
element in two and three dimensions, as can be seen in Table 10. We have previously used
a single-objective hybrid evolutionary algorithm to obtain satisfactory solutions to some 2D
and 3D instances in [3,4,11]. These cases are addressed here from a multi-objective approach.
To study this more realistic but more complex setting, we evaluate the performance of the
hybridizations of three MOEAs.

Table 10. Order batching and picking problem instances.

Instance DS0 DS1 DS2 DS3 DS4 DS5 DS6

Problem size 1 S S M L S M L
Dimensions of storage system 2D 2D 2D 2D 3D 3D 3D
Number of orders in a wave 25 40 80 200 40 100 250
Number of different articles in a wave of
orders

30 80 160 300 80 200 400

Maximum number of units per order 89 117 138 132 116 116 124
Minimum number of different items per
order

18 18 23 22 21 19 27

Total number of units ordered per wave 1459 2690 4589 11,889 2096 5805 15,080
Weight per order 1512 1426 1403 1978 1200 1416 1886
1 Small; M: Medium; L: Large.

Each customer i has a request with a due date uniformly distributed within the time
range from 10:00 a.m. to 6:00 p.m., denoted as ti ∼ U(36,000, 64,800) s. The uniform
distribution qi,p ∼ U(1, 10) describes the required quantities q of an item p by a customer



Mathematics 2024, 12, 1246 13 of 23

i. The probability distribution of the number of distinct items per order follows a normal
distribution, with a mean of 10 distinct items per order and a standard deviation of five
distinct items per order, i.e., |Pi| ∼ N(10, 5). Each item p has a unit weight evenly
distributed between 8 and 24 kg, i.e., wp ∼ U(8, 24). We also suppose an average speed
of v = 2 m/s, an average time for pick-up of any item of tpick = 15 s, a cost of traveling per
unit of time ς = 0.05 and an instance-dependant capacity (Cap).

A strategy used in the literature to limit the search space is to consider the upper
and lower limits to the number of possible lots based on the level of capacity utilization.
To facilitate a comparison with the results of Tsai et al. [2], these limits are assigned as
follows: B̄min =

(
φ1 ∑p∈P wp

)
/Cap and B̄max =

(
φ2 ∑p∈P wp

)
/Cap, where φ1 and φ2 are

constants such that φ2 ≥ φ1. If φ1 is too big or φ2 is too small, it may generate non-feasible
sequences. In that case, longer tours and heavier batches can overtake the capacity of the
picking equipment. Analogously, a bigger φ1 may generate numerous batches incurring
significant travel expenses.

The first stage prescribes the assignment of values to other parameters using standard
procedures of hyperparameter tuning. Performance evaluations of the algorithms were
conducted in terms of the described metrics, followed by the selection of configurations that
yielded the most favorable results. So, the maximal number of generations is T = 500, the
population size is N = 40, the internal population size is NI = 40, the external population
size is NE = 40, the tournament size in the process of selection is st = 2, the parameters
in the number of batches bounds are φ1 = 2 and φ2 = 4, the probability of mutations
is Pm = 0.02, the probability of crossover is Pc = 0.8, using direct sampling as an elite
selection rule. Each algorithm is run 200 times, each run independent of the others, for each
test instance selected from [2] under the same initial conditions, starting with a randomly
generated population.

Subsequently, the second stage of the decision-making process is carried out and the
best-ranked alternative is determined using the TOPSIS [21] methodology, assigning equal
weights to the objective functions.

6.2. Numerical Experiments

First, the proposed methodology is applied to the joint OBP–OPP bi-objective problem
in a multi-level storage system. The objectives of the problem are the minimization of the
total operational cost of the pick-up process and the minimization of the total earliness in
picking times. The runs were performed on a PC with a 3.00 GHz processor and 8 GB of
RAM. The results presented in this section correspond to 200 independent runs for each
instance.

Table 11 presents the mean values for each of the four performance measures on the
Pareto fronts generated over the 200 independent runs on the seven sizes of the problem.
Figures 2a–d present the corresponding box plots. Figure 2a shows that the median number
of solutions in the Pareto fronts (NPS) is practically the same for all three algorithms.
Figure 2b shows that for large instances the distance to the ideal solution (MID) is shorter
for NSGA-II and SPEA2. The measure of the dispersion of non-dominated solutions on
the Pareto front (SNS), shown in Figure 2c, yields, in general, better results with PESA-II
than with NSGA-II and SPEA2. In terms of hypervolume (see Figure 2d), in large instances,
NSGA-II shows a better performance than PESA-II and SPEA2.

Pairwise Tukey tests are performed to provide a statistical validation of the results.
This test reduces the risk of incurring Type I errors. The hypotheses to be tested are as
follows:

H0 : ui − uj = 0 H1 : ui − uj ̸= 0

where ui − uj is the difference between the values of a pair of MOEAs under a given metric.
The significance level (α) is set at 0.05.
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Table 11. Numerical results of mean performance measures.

DS0 DS1 DS2 DS3 DS4 DS5 DS6

NPS

NSGA-II 39.875 39.852 39.764 39.687 39.624 39.625 39.545
PESA-II 39.913 39.858 39.826 39.770 39.716 39.652 39.616
SPEA2 39.868 39.826 39.763 39.724 39.681 39.635 39.572

MID

NSGA-II 5.991 2.681 5.606 19.62 2.370 4.570 36.07
PESA-II 5.860 2.469 5.897 21.81 2.579 5.211 38.69
SPEA2 6.393 2.693 5.888 21.85 2.440 4.724 36.53

SNS

NSGA-II 3.936 1.155 2.558 6.801 1.969 2.157 19.572
PESA-II 4.049 1.161 2.946 8.936 2.268 2.681 21.083
SPEA2 3.669 1.032 2.667 7.437 1.916 2.239 19.922

HV

NSGA-II 1.170 1.166 1.320 0.371 1.178 1.264 9.737
PESA-II 1.170 1.155 1.316 0.354 1.129 1.241 9.694
SPEA2 1.174 1.161 1.315 0.333 1.114 1.241 9.617
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Figure 2. Box-plots of measurement comparisons.

Table 12 presents the results of the hypothesis tests. A p-value < α indicates that
there is sufficient evidence to reject the null hypothesis; therefore, it can be concluded that
significant differences are found between the means compared. Taking this into account,
it can be seen that, for the NPS metric, in general, no significant differences are observed
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between NSGA-II and SPEA2; however, PESA-II obtains higher mean values. For the MID
metric, in general, significant differences are observed between the algorithms, and, in
particular, for large and medium-sized instances, NSGA-II obtains smaller mean values,
followed by PESA-II. In general, significant differences between the algorithms are also
observed for the SNS metric, with PESA-II obtaining higher mean values. Finally, significant
differences are detected for the hypervolumes obtained by the three MOEAs in the different
instances. Moreover, NSGA-II obtains the highest mean values.

Table 12. Statistical test results of MOEAs for the four criteria.

NPS MID SNS HV

DS0 ui − uj p-value ui − uj p-value ui − uj p-value ui − uj p-value

NSGA-II vs. PESA-II −0.038 0.025 0.131 0.026 −0.112 0.000 0.000 0.000
NSGA-II vs. SPEA2 0.007 0.502 −0.402 0.016 0.267 0.000 0.000 0.001
SPEA2 vs. PESA-II −0.045 0.025 0.533 0.020 −0.379 0.000 0.004 0.002

DS1 ui − uj p-value ui − uj p-value ui − uj p-value ui − uj p-value

NSGA-II vs. PESA-II −0.006 0.628 0.212 0.019 −0.007 0.575 0.011 0.000
NSGA-II vs. SPEA2 0.026 0.056 −0.013 0.738 0.122 0.000 0.005 0.000
SPEA2 vs. PESA-II −0.032 0.032 0.225 0.025 −0.129 0.000 0.007 0.000

DS2 ui − uj p-value ui − uj p-value ui − uj p-value ui − uj p-value

NSGA-II vs. PESA-II −0.062 0.025 −0.292 0.000 −0.380 0.000 0.004 0.002
NSGA-II vs. SPEA2 0.002 0.938 −0.282 0.000 0.109 0.000 0.005 0.000
SPEA2 vs. PESA-II −0.063 0.025 −0.009 0.791 −0.279 0.000 0.000 0.000

DS3 ui − uj p-value ui − uj p-value ui − uj p-value ui − uj p-value

NSGA-II vs. PESA-II −0.083 0.025 −2.189 0.000 −2.135 0.000 0.017 0.051
NSGA-II vs. SPEA2 −0.037 0.085 −2.233 0.000 −0.636 0.000 0.038 0.000
SPEA2 vs. PESA-II −0.046 0.034 0.044 0.858 −1.499 0.000 −0.020 0.015

DS4 ui − uj p-value ui − uj p-value ui − uj p-value ui − uj p-value

NSGA-II vs. PESA-II −0.092 0.025 −0.209 0.000 −0.299 0.000 0.048 0.000
NSGA-II vs. SPEA2 −0.057 0.037 −0.070 0.221 0.053 0.215 0.064 0.000
SPEA2 vs. PESA-II −0.035 0.122 −0.139 0.015 −0.352 0.000 −0.010 0.000

DS5 ui − uj p-value ui − uj p-value ui − uj p-value ui − uj p-value

NSGA-II vs. PESA-II −0.027 0.286 −0.641 0.000 −0.528 0.000 0.023 0.000
NSGA-II vs. SPEA2 −0.010 0.702 −0.154 0.001 0.082 0.009 0.027 0.000
SPEA2 vs. PESA-II −0.017 0.502 −0.487 0.000 −0.442 0.000 0.000 0.000

DS6 ui − uj p-value ui − uj p-value ui − uj p-value ui − uj p-value

NSGA-II vs. PESA-II −0.071 0.036 −2.622 0.000 −1.511 0.000 0.043 0.000
NSGA-II vs. SPEA2 −0.027 0.370 −0.463 0.001 0.350 0.016 0.120 0.000
SPEA2 vs. PESA-II −0.044 0.131 −2.160 0.000 −1.162 0.000 −0.080 0.000

These statistical tests validate the results presented in Table 11 and depicted in
Figure 2a–d. In large instances, hybridized NSGA-II reaches Pareto fronts with mean
hypervolumes up to 10% larger than those obtained by the other algorithms. The mean
distances to the ideal solution are 17% shorter (averaging the large DS3 and DS6 instances)
with NSGA-II. Finally, concerning the mean dispersion in the fronts, in the small and
medium-sized instances, NSGA-II gives worse results than the other MOEAs but, in large
instances, its results are similar or even better than those of the other two algorithms.

Figures 3a–d depict the fronts selected by TOPSIS (see Tables A1–A4 in the Ap-
pendix A).

The results obtained by TOPSIS are compared with those of the M1 single-objective
model of Tsai et al. (2008) [2]. In this model, the authors consider the total operating cost
(TOC) obtained from the weighted sum of the travel cost (TC) and the costs of anticipation
and tardiness (ET) [2].

Tables 13 and 14 compare the solutions of TOPSIS with the results obtained with the
M1 model for instances DS1 to DS6 [2]. The columns in Table 13 show the TOC values in
both cases, while the columns in Table 14 show the ratios between these values. It can be
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seen that the solutions of TOPSIS, in the smaller instances, do not differ much from those
obtained by Tsai et al. (2008) [2] for the M1 model but, in larger instances, the solutions of
TOPSIS are better in terms of TOC.
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Figure 3. Non-dominated solutions medium and large problem size.

Figure 4 depicts these differences. It can be seen that the benchmark solutions are
dominated by the best-ranked solution by TOPSIS on the front obtained by the hybridized
NSGA-II algorithm.

Table 13. MCDM performance and comparison with the benchmark [2].

M1 TOPSIS M1 TOPSIS M1 TOPSIS

TOC (Small) TOC (Medium) TOC (Large)

DS1 1092.60 1078.50 DS2 3104.83 2914.24 DS3 9207.13 8217.20
DS4 1322.20 1287.51 DS5 4431.03 4098.40 DS6 14,546.63 12,848.32

Table 14. Comparisons of mean criteria ratios.

TOPSIS/M1 TOPSIS/M1 TOPSIS/M1

Small Medium Large

DS1 0.987 DS2 0.939 DS3 0.892
DS4 0.974 DS5 0.925 DS6 0.883
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Figure 4. Comparison of the TOPSIS-based results with M1 in all instances.

7. Conclusions

This paper presents an integrated procedure to solve the joint OBP–OPP problem by
combining an MOO and an MCDM. The first one consists of a MOEA that produces an
approximate Pareto front. In the second one, TOPSIS is applied, which ranks the solutions
of this approximate Pareto front according to their similarity ratios and selects the best one.

The objective of the procedure is the minimization of both the total operational cost
of the pick-up process and the total earliness picking time. This multi-criteria approach
considers the trade-off between minimization of operational costs and inefficiency due to
earliness in the positioning of items to be included in the batches, assuming that no delays
are allowed.

Three multiobjective hybrid evolutionary algorithms based on the dominance re-
lation among solutions (NSGA-II, SPEA2, and PESA-II) are applied and compared on
small, medium-sized, and large instances of mono and multilevel storage systems by
Tsai et al. (2008) [2] Four performance metrics are used to compare the performance of the
proposed multi-objective algorithms according to different measures: NPS, MID, SNS,
and HV.

The results were statistically validated using Tukey’s test of difference of means for
each of the metrics. It is found that on medium-sized and large instances, the hybridized
NSGA-II algorithm achieves Pareto fronts with mean hypervolumes up to 10% above those
of the other two algorithms, while the distances to the ideal solution are around 17% shorter,
on average, for the large DS3 and DS6 instances. On the other hand, NSGA-II achieves a
similar or even higher mean dispersion on large instances, although in smaller instances
the other two MOEAs show better results.

In small-sized instances, TOPSIS does not yield better top-ranked results than those of
the M1 model of Tsai et al. (2008) [2] . On the contrary, in large instances, the best-ranked
results of the hybridized TOPSIS procedure proposed in this paper dominate those of the
benchmark model.

Taking into account the growing importance of e-commerce and the high costs of
picking activities in logistic centers, the proposed methodology can contribute to reducing
those costs and gaining efficiency in their procedures.

Future work includes finding optimal placings for the articles, simultaneously taking
into account aspects such as the size of the goods, the volume of their packaging, their
relative demands, as well as operational considerations.
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Appendix A

Table A1. TOPSIS DS2.

Ord. S(v) v1 v2

1º 0.583 0.318 0.516
2º 0.575 0.437 0.412
3º 0.572 0.401 0.454
4º 0.571 0.231 0.627
5º 0.571 0.267 0.591
6º 0.57 0.304 0.557
7º 0.568 0.217 0.646
8º 0.563 0.014 0.861
9º 0.563 0.515 0.359
10º 0.563 0.178 0.696
11º 0.563 0.387 0.488
12º 0.562 0.123 0.753
13º 0.56 0.139 0.74
14º 0.56 0.37 0.51
15º 0.559 0.295 0.587
16º 0.558 0.432 0.452
17º 0.558 0.103 0.781
18º 0.556 0.632 0.255
19º 0.555 0.579 0.311
20º 0.555 0.716 0.175
21º 0.551 0.66 0.238
22º 0.55 0.618 0.281
23º 0.547 0.05 0.856
24º 0.546 0.075 0.833
25º 0.542 0.682 0.234
26º 0.541 0.616 0.303
27º 0.54 0.699 0.22
28º 0.535 0.825 0.106
29º 0.534 0.763 0.169
30º 0.534 0.847 0.086
31º 0.531 0.786 0.152
32º 0.531 0.855 0.083
33º 0.531 0.816 0.122
34º 0.524 0.911 0.041
35º 0.517 0.942 0.024
36º 0.515 0.933 0.036
37º 0.506 0.908 0.08
38º 0.505 0.972 0.018
39º 0.5 0 1
40º 0.5 1 0
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Table A2. TOPSIS DS3.

Ord. S(v) v1 v2

1º 0.608 0.322 0.463
2º 0.604 0.298 0.494
3º 0.599 0.391 0.412
4º 0.596 0.175 0.633
5º 0.596 0.282 0.527
6º 0.596 0.356 0.453
7º 0.591 0.273 0.545
8º 0.59 0.629 0.191
9º 0.59 0.254 0.566
10º 0.588 0.2 0.624
11º 0.588 0.475 0.349
12º 0.586 0.236 0.591
13º 0.585 0.546 0.283
14º 0.584 0.599 0.233
15º 0.581 0.613 0.224
16º 0.58 0.459 0.38
17º 0.58 0.448 0.392
18º 0.576 0.746 0.101
19º 0.575 0.706 0.145
20º 0.571 0.597 0.261
21º 0.569 0.534 0.327
22º 0.567 0.821 0.044
23º 0.564 0.126 0.746
24º 0.56 0.739 0.141
25º 0.56 0.161 0.719
26º 0.558 0.704 0.179
27º 0.556 0.144 0.744
28º 0.546 0.112 0.797
29º 0.545 0.121 0.789
30º 0.541 0.068 0.85
31º 0.54 0.032 0.888
32º 0.535 0.102 0.828
33º 0.535 0.065 0.865
34º 0.535 0.012 0.923
35º 0.532 0.031 0.913
36º 0.531 0.013 0.966
37º 0.525 0.021 0.963
38º 0.505 0.03 0.909
39º 0.5 0 1
40º 0.5 1 0

Table A3. TOPSIS DS5.

Ord. S(v) v1 v2

1º 0.577 0.358 0.488
2º 0.566 0.434 0.434
3º 0.563 0.297 0.578
4º 0.56 0.406 0.475
5º 0.553 0.557 0.338
6º 0.551 0.486 0.412
7º 0.546 0.509 0.399
8º 0.545 0.524 0.387
9º 0.545 0.604 0.307
10º 0.545 0.118 0.793
11º 0.539 0.236 0.686
12º 0.538 0.726 0.197
13º 0.538 0.656 0.269
14º 0.536 0.16 0.767
15º 0.534 0.821 0.112
16º 0.532 0.255 0.681
17º 0.529 0.75 0.192
18º 0.528 0.868 0.076
19º 0.527 0.703 0.244
20º 0.525 0.09 0.859
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Table A3. Cont.

Ord. S(v) v1 v2

21º 0.525 0.901 0.05
22º 0.524 0.896 0.056
23º 0.522 0.925 0.031
24º 0.522 0.943 0.012
25º 0.521 0.939 0.019
26º 0.521 0.929 0.029
27º 0.519 0.807 0.155
28º 0.519 0.802 0.16
29º 0.518 0.104 0.859
30º 0.517 0.698 0.267
31º 0.517 0.778 0.187
32º 0.515 0.797 0.173
33º 0.508 0.972 0.012
34º 0.503 0.991 0.004
35º 0.501 0.061 0.953
36º 0.5 0.987 0.01
37º 0.5 0.07 0.94
38º 0.5 0.989 0.006
39º 0.5 0 1
40º 0.5 1 0

Table A4. TOPSIS DS6.

Ord. S(v) v1 v2

1º 0.765 0.29 0.179
2º 0.765 0.419 0.051
3º 0.757 0.439 0.047
4º 0.757 0.439 0.047
5º 0.756 0.255 0.234
6º 0.755 0.315 0.175
7º 0.754 0.382 0.109
8º 0.754 0.382 0.109
9º 0.747 0.248 0.258
10º 0.744 0.494 0.019
11º 0.744 0.494 0.019
12º 0.742 0.469 0.047
13º 0.737 0.481 0.045
14º 0.737 0.481 0.045
15º 0.734 0.519 0.014
16º 0.734 0.519 0.014
17º 0.732 0.372 0.165
18º 0.718 0.244 0.321
19º 0.705 0.173 0.416
20º 0.702 0.582 0.013
21º 0.697 0.6 0.007
22º 0.697 0.6 0.007
23º 0.685 0.234 0.396
24º 0.665 0.156 0.514
25º 0.662 0.669 0.006
26º 0.646 0.703 0.006
27º 0.644 0.152 0.559
28º 0.636 0.145 0.583
29º 0.634 0.142 0.591
30º 0.605 0.786 0.004
31º 0.605 0.786 0.004
32º 0.605 0.786 0.004
33º 0.597 0.042 0.763
34º 0.596 0.131 0.677
35º 0.594 0.127 0.685
36º 0.565 0.11 0.76
37º 0.509 0.039 0.943
38º 0.506 0.048 0.913
39º 0.5 1 0
40º 0.5 0 1
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