
A NOTE ON A MATRIX VERSION OF GRÜSS INEQUALITY
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Abstract. In [P. Renaud, A matrix formulation of Grüss inequality, Linear Al-
gebra Appl. 335 (2001), 95–100] it was proved an operator inequality involving
the usual trace functional. In this article, we give a refinement of such result and
we answer positively the Renaud’s open problem.

1. Introduction

In 1935, Grüss [5] obtained the following inequality if f, g are integrable real
functions on [a, b] and there exist real constant α, β, γ, δ such that α ≤ f(x) ≤
β, γ ≤ g(x) ≤ δ for all x ∈ [a, b] then∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

(b− a)2

∫ b

a

f(x)dx

∫ b

a

g(x)dx

∣∣∣∣ ≤ 1

4
(β − α)(δ − γ), (1.1)

and the inequality is sharp, in the sense that the constant 1
4

cannot be replaced
by a smaller one. This inequality has been investigated, applied and generalized
by many mathematicians in different areas of mathematics, such as inner product
spaces, quadrature formulae, finite Fourier transforms, linear functionals, etc.

Along this work H denotes a (complex, separable) Hilbert space with inner prod-
uct 〈·, ·〉. Let (B(H), ‖ · ‖) be the C∗-algebra of all bounded linear operators act-
ing on (H, 〈·, ·〉) with the uniform norm. We denote by Id the identity operator,

and for any A ∈ B(H) we consider A∗ its adjoint and |A| = (A∗A)
1
2 the abso-

lute value of A. By B(H)+ we denote the cone of positive operators of B(H), i.e.
B(H)+ := {T ∈ B(H) : 〈Th, h〉 ≥ 0 ∀h ∈ H}. In the case when dimH = n, we
identify B(H) with the full matrix algebra Mn of all n× n matrices with entries in
the complex field C. For each T ∈ B(H), we denote its spectrum by σ(T ), that is,
σ(T ) = {λ ∈ C : T − λId is not invertible} and a complex number λ ∈ C is said to
be in the approximate point spectrum of the operator T , and we denote by σap(T ),
if there is a sequence {xn} of unit vectors satisfying (T − λ)xn → 0.

For each operator T we consider

r(T ) = sup{|λ| : λ ∈ σ(T )} spectral radius of T,

W (T ) = sup{〈Th, h〉 : ‖h‖ = 1} numerical range of T
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and
w(T ) = sup{|λ| : λ ∈ W (T )} numerical radius of T.

Recall that for all T ∈ B(H), r(T ) ≤ w(T ) ≤ ‖T‖ ≤ 2w(T ), σ(T ) ⊆ W (T ) and
by the Toeplitz-Hausdorff’s Theorem W (T ) is convex.

Renaud [8] gave a matrix analogue of Grüss inequality by replacing integrable
functions by matrices and the integration by a trace function as follows: let A, T ∈
Mn, suppose that W (A) and W (T ) are contained in disks of radii RA and RT ,
respectively. Then for a positive semi-definite matrix P with tr(P ) = 1 holds

|tr(PAT )− tr(PA)tr(PT )| ≤ 4RART , (1.2)

and if A and T are normal, the constant 4 can be replaced by 1. We can see can
easily see that if A = αId or T = βId with α, β ∈ C then the left hand side is
equal to zero. In the same article, Renaud propose the following open problem: to
characterise k(A, T ), where

|tr(PAT )− tr(PA)tr(PT )| ≤ k(A, T )RART , (1.3)

with 1 ≤ k(A, T ) ≤ 4. In particular, whether it depends on A and T separately, i.e.
whether we can write k(A, T ) = h(A)h(T ), where h(A), h(B) are suitably defined
constants.

In this article we give a new proof and a refinement of Renuad’s inequality and a
postive answer to his open question.

2. Preliminaries

Let us begin with the notation and the necessary definitions.
The set of compact operators in H is denoted by B0(H). If T ∈ B0(H) we

denote by {sn(T )} the sequence of singular values of T , i.e., the eigenvalues of |T |
(decreasingly ordered). The notion of unitary invariant norms can be defined also
for operators on Hilbert spaces. A norm |||.||| that satisfies the invariance property
|||UXV ||| = |||X|||. If dimR(T ) = 1, then |||T ||| = s1(T )g(e1) = g(e1)‖T‖. By
convention, we assume that g(e1) = 1. If x, y ∈ H, then we denote x ⊗ y the rank
one operator defined onH by (x⊗y)(z) = 〈z, y〉x then ‖x⊗y‖ = ‖x‖‖y‖ = |||x⊗y|||.

The most known examples of unitary invariant norms are the Schatten p-norms
For 1 ≤ p <∞, let

‖T‖pp =
∑
n

sn(T )p = tr |X|p ,

and
Bp(H) = {T ∈ H : ‖T‖p <∞},

called the p−Schattenclass of B(H). That is the subset of compact operators with
singular values in lp. The positive operators with trace 1 are called density operator
(or states) and we denote this set by S(H). The ideal B2(H) is called the Hilbert-
Schmidt class and it is a Hilbert space with the inner product 〈S, T 〉2 = tr(ST ∗). On
the theory of norm ideals and their associated unitarily invariant norms, a reference
for this subject is [4].
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For A, T ∈ B(H) and P ∈ S(H) we introduce the following notation

VP (A, T ) = tr(PAT )− tr(PA)tr(PT ).

In the particular case T = A∗ we get the variance of A respect to P . More precisely,
Audenaert in [1] consider the following notion, given A,P ∈ Mn, P ≥ 0, tr(P ) = 1
the variance of A respect to the matrix P

VP (A) = tr(|A|2P )− |tr(AP )|2 = VP (A,A∗),

Note that VP (A− λId) = VP (A). Futhermore, he showed that if A ∈Mn then

max{tr(|A|2P )− |tr(AP )|2 : P ∈M+
n , tr(P ) = 1} = dist(A,CId)2, (2.1)

and the maximization over P on the left hand side can be restricted to density
matrices of rank 1.

We will prove that the equality (2.1) holds in infinite dimensional context and as
consequence of this fact we obtain the Renaud’s result.

3. Distance formulas and Renaud’s inequality

Let A and T linear bounded operators acting in H, the vector-function A−λT is
known as the pencil generated by A and T . Evidently there is at least one complex
number λ0 such that

‖A− λ0T‖ = inf
λ∈C
‖A− λT‖.

The number λ0 is unique if 0 /∈ σap(T ) (or equivalently if inf{‖Tx‖ : ‖x‖ = 1} > 0).
Different authors, following [9], called to this unique number as center of mass of A
respect to T and we denote by c(A, T ) and when T = Id we write c(A). Following
Paul, for A, T ∈ B(H) such that 0 /∈ σap(T ) we consider

MT (A) = sup
‖x‖=1

[
‖Ax‖2 − |〈Ax, Tx〉|

2

〈Tx, Tx〉

]1/2
= sup
‖x‖=1

∥∥∥∥Ax− 〈Ax, Tx〉〈Tx, Tx〉
Tx

∥∥∥∥ , (3.1)

in [6], he proved that MT (A) = dist(A,CT ). The unique minimizer is characterized
by the following conditions: there exists a sequence of unit vectores {xn} such that

‖(A− λ0T )xn‖ → ‖A− λ0T‖ and 〈(A− λ0T )xn, xn〉 → 0.

Recently, S. Dragomir in [3] related the variance of A respect to P with the
distance from A to the unidimensional subspace CId, more precisely he proved that
for any A ∈ B(H) and P ∈ S(H) the following inequality holds

VP (A)1/2 = [tr(|A|2P )− |tr(AP )|2]1/2 ≤ min
λ∈C
‖A− λId‖.

Now, we present a new proof of this fact.

Proposition 3.1. Let A ∈ B(H) and P ∈ S(H) then

tr(|A|2P )− |tr(AP )|2 = ‖AP 1/2‖22 − |〈AP 1/2, P 1/2〉2|2

= ‖AP 1/2 − 〈AP 1/2, P 1/2〉2P 1/2‖22
= min

λ∈C
‖AP 1/2 − λP 1/2‖22.
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Proof. Is a simple consequence from following general statement for any Hilbert
space H: let x, y ∈ H with y 6= 0 then

inf
λ∈C
‖x− λy‖2 =

‖x‖2‖y‖2 − |〈x, y〉|2

‖y‖2
.

�

The following statement is an extensión of the Audenaert’s formula to infinite
dimension.

Theorem 3.2. Let A ∈ B(H) then

sup{[tr(|A|2P )− |tr(AP )|2]1/2 : P ∈ S(H)} = dist(A,CId). (3.2)

Proof. We note that by [7] we get

dist(A,CId)2 = sup
‖x‖=1

‖Ax‖2 − |〈Ax, x〉|2

≤ sup{tr(|A|2P )− |tr(AP )|2 : P ∈ S(H)}
≤ dist(A,CId)2.

�

As consequence of the Audenaert’s formula we get the following upper bound for
VP (A, T ).

Corollary 3.3. Let A, T ∈ B(H) then

|VP (A, T )| ≤ sup
P∈S(H)

|tr(PAT )− tr(PA)tr(PT )| ≤ dist(A,CId)dist(T,CId), (3.3)

and in particular

|VP (A,A∗)| ≤ sup
P∈S(H)

|tr(P |A|2)− |tr(PA)|2| ≤ dist(A,CId)2.

Proof. It is consequence of Theorem 3.2 and Theorem 6 in [3]. �

Remark 3.4. If we define VP : B(H)× B(H)→ C,

VP (A, T ) := tr(PAT )− tr(PA)tr(PT ).

Then VP is a bilinear function and by (3.3) a continuous mapping with ‖VP‖ ≤ 1.

Now, we give a new proof and a refinement of (1.2).

Proposition 3.5. Let A, T ∈ B(H) and we suppose that W (A),W (T ) are contained
in closed disk D(λ0, RA), D(µ0, RT ) respectively. Then for any P ∈ S(H)

|tr(PAT )− tr(PA)tr(PT )| ≤ sup
P∈S(H)

|tr(PAT )− tr(PA)tr(PT )|

≤ dist(A,CId)dist(T,CId)

≤ ‖A− λ0Id‖‖T − µ0Id‖
≤ 4w(A− λ0Id)w(T − µ0Id)

≤ 4RART . (3.4)
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In particular, if A and T are normal operators, we have

|tr(PAT )− tr(PA)tr(PT )| ≤ sup
P∈S(H)

|tr(PAT )− tr(PA)tr(PT )|

≤ dist(A,CId)dist(T,CId) = rArT , (3.5)

where rS denotes the radius of the unique smallest disc containing σ(S) for any
S ∈ B(H).

Proof. The inequalities are consequence of Theorem 3.2 and (3.3). In the last in-
equality we use that W (A − λ0Id) ⊂ D(0, RA) and W (T − µ0Id) ⊂ D(0, RT )
respectively.

On the other hand, Björck and Thomée [2] have shown that for a normal operator
A

dist(A,CId) = sup
‖x‖=1

(‖Ax‖2 − |〈Ax, x〉|2)1/2 = rA,

and this completes the proof.
�

From (3.5), if we consider A is a positive invertible operator, T = A−1 and
P = x⊗ x with x ∈ H with ‖x‖ = 1, then

|tr(PAT )− tr(PA)tr(PT )| = |1− 〈Ax, x〉〈A−1x, x〉|
≤ dist(A,CId)dist(A−1,CId) = rArA−1 ,

i.e. we obtain the Kantorovich inequality for an operator A acting on an infinite
dimensional Hilbert space H with 0 < m ≤ A ≤M .

Finally, in the following statement we give a positive answer at the Renuad’s open
question.

Theorem 3.6. Let A, T ∈ B(H) with A, T /∈ CId and we suppose that W (A),W (T )
are contained in closed disk D(λ0, RA), D(µ0, RT ) respectively. Thus for any P ∈
S(H) we get

|tr(PAT )− tr(PA)tr(PT )| ≤ sup
P∈S(H)

|tr(PAT )− tr(PA)tr(PT )|

≤ dist(A,CId)dist(T,CId)

≤ h(A)h(T )RART , (3.6)

where h(A) = 1 + ‖A−c(A)Id‖
2w(A−λ0Id) , h(T ) = 1 + ‖T−c(T )Id‖

2w(T−µ0Id) and 1 ≤ h(A)h(T ) ≤ 4.

Proof. From (3.4) we have

|tr(PAT )− tr(PA)tr(PT )| ≤ sup
P∈S(H)

|tr(PAT )− tr(PA)tr(PT )|

≤ ‖A− c(A)Id‖‖T − c(T )Id‖. (3.7)
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On the other hand,

‖A− c(A)Id‖ ≤ 1

2
‖A− c(A)Id‖+

1

2
‖A− λ0Id‖

≤ 1

2
‖A− c(A)Id‖+ w(A− λ0Id)

= w(A− λ0Id)

(
1 +
‖A− c(A)Id‖
2w(A− λ0Id)

)
= h(A)w(A− λ0Id), (3.8)

where h(A) ≤ 2 since ‖A− c(A)Id‖ ≤ ‖A− λ0Id‖ ≤ 2w(A− λ0Id).
Thus, combining (3.7) and (3.8) we complete the proof. �
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