Best approximation, unitary groups and orbits of compact self-adjoint operators

Tamara Bottazzi* and Alejandro Varela¹

*Sede Andina, Universidad Nacional de Río Negro; ¹ IAM-CONICET and Universidad Nacional de General Sarmiento.

Introduction

Let \mathcal{H} be a separable Hilbert space, $\mathcal{D}(\mathcal{B}(\mathcal{H})^{ah})$ the anti-Hermitian bounded diagonals in some fixed orthonormal basis and $\mathcal{K}(\mathcal{H})$ the compact operators $(\mathcal{B}(\mathcal{H}))$ is endowed by usual operator norm $\|\cdot\|$). We study the subgroup of unitary operators

$$\mathcal{U}_{k,d} = \{ u \in \mathcal{U}(\mathcal{H}) : \exists D \in \mathcal{D} (\mathcal{B}(\mathcal{H}))^{ah} / u - e^{D} \in \mathcal{K}(\mathcal{H}) \}$$

in order to obtain a concrete description of short curves in unitary Fredholm orbits $\mathcal{O}_b = \{e^K b e^{-K} : K \in \mathcal{K}(\mathcal{H})^{ah}\}$ of a compact self-adjoint operator b with spectral multiplicity one. We consider the rectifiable distance on \mathcal{O}_b defined as the infimum of curve lengths measured with the Finsler metric defined by means of the quotient space $\mathcal{K}(\mathcal{H})^{ah}/\mathcal{D}(\mathcal{K}(\mathcal{H})^{ah}).$

Previous results

Minimality and best approximation in $\mathcal{B}(\mathcal{H})$

Let $\mathcal{B} \subset \mathcal{A}$ von Neumann algebras. Then, for every $a \in \mathcal{A}^h$ there exists $b_0 \in \mathcal{B}^h$ such that

$$dist(a, \mathcal{B}) = ||a + b_0||, [1].$$

▶ If $C \in \mathcal{K}(\mathcal{H})^{ah}$ has finite range, there exists $D_0 \in \mathcal{D}(\mathcal{K}(\mathcal{H})^{ah})$ such that

$$dist(C, \mathcal{D}(\mathcal{K}(\mathcal{H})^{ah})) = ||C + D_0||, [2].$$

Geometry of operator algebras

▶ For every $c \in \mathcal{O}_b$ and $x \in T(\mathcal{O}_b)_c \cong \mathcal{K}(\mathcal{H})^{ah}/\mathcal{D}(\mathcal{K}(\mathcal{H})^{ah})$ there exist a minimal lifting $Z_0 \in \mathcal{B}(\mathcal{H})^{ah}$ (in the quotient norm, not necessarily compact) such that $\gamma(t) = e^{tZ_0} c e^{-tZ_0}$ is a short curve on \mathcal{O}_b in a certain interval, [1],[2].

Minimal Hermitian operator with non-compact diagonal 1

First case: Given any $\gamma \in (-1,1)$ and some $r \in \mathbb{R}_{>0}$

$$T_{r} = \begin{pmatrix} 0 & r\gamma & r\gamma^{2} & r\gamma^{3} & r\gamma^{4} & \cdots \\ r\gamma & 0 & \gamma & \gamma^{2} & \gamma^{3} & \cdots \\ r\gamma^{2} & \gamma & 0 & \gamma^{2} & \gamma^{3} & \cdots \\ r\gamma^{3} & \gamma^{2} & \gamma^{2} & 0 & \gamma^{3} & \cdots \\ r\gamma^{4} & \gamma^{3} & \gamma^{3} & \gamma^{3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \text{ then}$$
 (1)

- $tr(T_rT_r^*) < \infty.$
- $\triangleright D_0 = \text{Diag}(\{d_k\}_{k \in \mathbb{N}})$, such that

$$d_1 = 0$$
, and for each $k \geq 2$

$$d_k = -\sum_{j=0}^{k-3} \gamma^j - \frac{\gamma^k}{1 - \gamma^2} = -\frac{1 - \gamma^{k-2}}{1 - \gamma} - \frac{\gamma^k}{1 - \gamma^2}.$$

is the unique Diagonal such that $||T_r + D_0|| = \text{dist}(T_r, \mathcal{D}(\mathcal{K}(\mathcal{H})))$

Minimal length curves in \mathcal{O}_b : First case

▶ Case 1: Let $b = \text{Diag}(\{\lambda_n\}_{n \in \mathbb{N}})$ with $\{\lambda_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$ such that $\lambda_n \neq \lambda_m, \ \forall \ n \neq m$. Consider T_r defined in (1) and the uniparametric curve

$$\beta(t) = e^{itT_r}be^{-itZ_r}, t \in \mathbb{R}.$$
 (2)

Then,

1. $\beta(t) = e^{it(T_r + \frac{1}{1-\gamma}I)}be^{-it(T_r + \frac{1}{1-\gamma}I)}$, i.e. $\beta \subset \mathcal{O}_b$.

- 2. $\begin{cases} \beta(0) = b, \\ \beta'(0) = iT_r b biT_r \in (T\mathcal{O}_b)_b. \end{cases}$
- 3. Length $(\beta|_{[0,t_0]}) = |t_0| ||T_r|| = d(b,\beta(t_0))$ for each $t_0 \in \left[-\frac{\pi}{2\|T_r\|}, \frac{\pi}{2\|T_r\|}\right].$

Minimal Hermitian operator with non-compact diagonal 2

Second case: Given any $\delta, \gamma \in (0,1)$ and some $r \in \mathbb{R}_{>0}$

$$Z_r = \begin{pmatrix} 0 & -r\delta & r\gamma & -r\delta^2 & r\gamma^2 & \cdots \\ -r\delta & 0 & \gamma & -\delta^2 & \gamma^2 & \cdots \\ r\gamma & \gamma & 0 & -\delta^2 & \gamma^2 & \cdots \\ -r\delta^2 & -\delta^2 & -\delta^2 & 0 & \gamma^2 & \cdots \\ r\gamma^2 & \gamma^2 & \gamma^2 & \gamma^2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \text{ then }$$

- $ightharpoonup tr(Z_rZ_r^*)<\infty.$
- If $\gamma^2 < \delta < \gamma^{1/2}$ (see Fig. 1), there exists a unique bounded diagonal $D_1 = \text{Diag}(\{d'_n\}_{n \in \mathbb{N}}),$ such that

$$||Z_r+D_1||=\operatorname{dist}(Z_r,\mathcal{D}(\mathcal{K}(\mathcal{H}))).$$

Figure 1:Region δ, γ

- \triangleright D_1 fulfills
 - $> d_1' = 0$

- ► Corollary: there exists operators with "oscillant" non-compact minimal diagonal.

Minimal length curves in \mathcal{O}_b : Second case

- ► Case 2: Techniques used in Case 1 for minimal curves did not hold. We had to improve.
- \triangleright Study of the unitary group $\mathcal{U}_{k,d}$. Properties, structure and relations with \mathcal{U}_k .
- Then, show that $\mathcal{O}_b^{\mathcal{U}_{k,d}} = \mathcal{O}_b$.
- $ightharpoonup \gamma: \left|-rac{\pi}{2\|Z_r\|},rac{\pi}{2\|Z_r\|}
 ight|
 ightarrow \mathcal{O}_b,$ $\gamma(t) = e^{tZ_r}be^{-t\overline{Z}_r}$ is a minimal length curve on \mathcal{O}_b in the rectifiable distance.

Figure 2:Orbit \mathcal{O}_b and $\mathcal{U}_{k,d}$

References

[1] Carlos E. Durán, Luis E. Mata-Lorenzo, and Lázaro Recht. Metric geometry in homogeneous spaces of the unitary group of a C^* -algebra. I. Minimal curves.

Adv. Math., 184(2):342-366, 2004.

- [2] Esteban Andruchow and Gabriel Larotonda. The rectifiable distance in the unitary Fredholm group. Studia Math., 196(2):151-178, 2010.
- [3] Tamara Bottazzi and Alejandro Varela. Unitary subgroups and orbits of compact self-adjoint operators. Studia Math., 238(2):155-176, 2017.
- [4] Tamara Bottazzi and Alejandro Varela. Minimal length curves in unitary orbits of a Hermitian compact operator. Differential Geom. Appl., 45:1–22, 2016.

Acknowledgments

- To Open Arms organization for the grant provided to T. Bottazzi.
- To CONICET and UNRN for economical support.